mycroft-core/test/unittests/client/test_audio_consumer.py

212 lines
7.5 KiB
Python

# Copyright 2017 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import speech_recognition
from os.path import dirname, join
from speech_recognition import WavFile, AudioData
from mycroft.client.speech.listener import (AudioConsumer, RecognizerLoop,
AUDIO_DATA, STREAM_START,
STREAM_DATA, STREAM_STOP)
from mycroft.stt import MycroftSTT
from queue import Queue
class MockRecognizer(object):
def __init__(self):
self.transcriptions = []
def recognize_mycroft(self, audio, key=None,
language=None, show_all=False):
if len(self.transcriptions) > 0:
return self.transcriptions.pop(0)
else:
raise speech_recognition.UnknownValueError()
def set_transcriptions(self, transcriptions):
self.transcriptions = transcriptions
class AudioConsumerTest(unittest.TestCase):
"""
AudioConsumerTest
"""
def setUp(self):
self.loop = RecognizerLoop()
self.queue = Queue()
self.recognizer = MockRecognizer()
self.consumer = AudioConsumer(
self.loop.state, self.queue, self.loop, MycroftSTT(),
self.loop.wakeup_recognizer,
self.loop.wakeword_recognizer)
def __create_sample_from_test_file(self, sample_name):
root_dir = dirname(dirname(dirname(__file__)))
filename = join(
root_dir, 'unittests', 'client',
'data', sample_name + '.wav')
wavfile = WavFile(filename)
with wavfile as source:
return AudioData(
source.stream.read(), wavfile.SAMPLE_RATE,
wavfile.SAMPLE_WIDTH)
def test_word_extraction(self):
"""
This is intended to test the extraction of the word: ``mycroft``.
The values for ``ideal_begin`` and ``ideal_end`` were found using an
audio tool like Audacity and they represent a sample value position of
the audio. ``tolerance`` is an acceptable margin error for the distance
between the ideal and actual values found by the ``WordExtractor``
"""
# TODO: implement WordExtractor test without relying on the listener
return
audio = self.__create_sample_from_test_file('weather_mycroft')
self.queue.put((AUDIO_DATA, audio))
tolerance = 4000
ideal_begin = 70000
ideal_end = 92000
monitor = {}
self.recognizer.set_transcriptions(["what's the weather next week"])
def wakeword_callback(message):
monitor['pos_begin'] = message.get('pos_begin')
monitor['pos_end'] = message.get('pos_end')
self.loop.once('recognizer_loop:wakeword', wakeword_callback)
self.consumer.read()
actual_begin = monitor.get('pos_begin')
self.assertIsNotNone(actual_begin)
diff = abs(actual_begin - ideal_begin)
self.assertTrue(
diff <= tolerance,
str(diff) + " is not less than " + str(tolerance))
actual_end = monitor.get('pos_end')
self.assertIsNotNone(actual_end)
diff = abs(actual_end - ideal_end)
self.assertTrue(
diff <= tolerance,
str(diff) + " is not less than " + str(tolerance))
@unittest.skip('Disabled while unittests are brought upto date')
def test_wakeword_in_beginning(self):
tag = AUDIO_DATA
data = self.__create_sample_from_test_file('weather_mycroft')
self.queue.put((tag, data))
self.recognizer.set_transcriptions(["what's the weather next week"])
monitor = {}
def callback(message):
monitor['utterances'] = message.get('utterances')
self.loop.once('recognizer_loop:utterance', callback)
self.consumer.read()
utterances = monitor.get('utterances')
self.assertIsNotNone(utterances)
self.assertTrue(len(utterances) == 1)
self.assertEquals("what's the weather next week", utterances[0])
@unittest.skip('Disabled while unittests are brought upto date')
def test_wakeword(self):
self.queue.put((AUDIO_DATA,
self.__create_sample_from_test_file('mycroft')))
self.recognizer.set_transcriptions(["silence"])
monitor = {}
def callback(message):
monitor['utterances'] = message.get('utterances')
self.loop.once('recognizer_loop:utterance', callback)
self.consumer.read()
utterances = monitor.get('utterances')
self.assertIsNotNone(utterances)
self.assertTrue(len(utterances) == 1)
self.assertEquals("silence", utterances[0])
def test_ignore_wakeword_when_sleeping(self):
self.queue.put((AUDIO_DATA,
self.__create_sample_from_test_file('mycroft')))
self.recognizer.set_transcriptions(["not detected"])
self.loop.sleep()
monitor = {}
def wakeword_callback(message):
monitor['wakeword'] = message.get('utterance')
self.loop.once('recognizer_loop:wakeword', wakeword_callback)
self.consumer.read()
self.assertIsNone(monitor.get('wakeword'))
self.assertTrue(self.loop.state.sleeping)
def test_wakeup(self):
tag = AUDIO_DATA
data = self.__create_sample_from_test_file('mycroft_wakeup')
self.queue.put((tag, data))
self.loop.sleep()
self.consumer.read()
self.assertFalse(self.loop.state.sleeping)
@unittest.skip('Disabled while unittests are brought upto date')
def test_stop(self):
self.queue.put((AUDIO_DATA,
self.__create_sample_from_test_file('mycroft')))
self.consumer.read()
self.queue.put((AUDIO_DATA,
self.__create_sample_from_test_file('stop')))
self.recognizer.set_transcriptions(["stop"])
monitor = {}
def utterance_callback(message):
monitor['utterances'] = message.get('utterances')
self.loop.once('recognizer_loop:utterance', utterance_callback)
self.consumer.read()
utterances = monitor.get('utterances')
self.assertIsNotNone(utterances)
self.assertTrue(len(utterances) == 1)
self.assertEquals("stop", utterances[0])
@unittest.skip('Disabled while unittests are brought upto date')
def test_record(self):
self.queue.put((AUDIO_DATA,
self.__create_sample_from_test_file('mycroft')))
self.consumer.read()
self.queue.put((AUDIO_DATA,
self.__create_sample_from_test_file('record')))
self.recognizer.set_transcriptions(["record"])
monitor = {}
def utterance_callback(message):
monitor['utterances'] = message.get('utterances')
self.loop.once('recognizer_loop:utterance', utterance_callback)
self.consumer.read()
utterances = monitor.get('utterances')
self.assertIsNotNone(utterances)
self.assertTrue(len(utterances) == 1)
self.assertEquals("record", utterances[0])