mycroft-core/mycroft/tts/mimic2_tts.py

319 lines
9.4 KiB
Python

# Copyright 2017 Mycroft AI Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from mycroft.tts import TTS, TTSValidator
from mycroft.tts.remote_tts import RemoteTTSTimeoutException
from mycroft.util.log import LOG
from mycroft.util.format import pronounce_number
from mycroft.tts import cache_handler
from mycroft.util import play_wav, get_cache_directory
from requests_futures.sessions import FuturesSession
from requests.exceptions import (
ReadTimeout, ConnectionError, ConnectTimeout, HTTPError
)
from urllib import parse
from .mimic_tts import VISIMES
import math
import base64
import os
import re
import json
# Heuristic value, caps character length of a chunk of text to be spoken as a
# work around for current Mimic2 implementation limits.
_max_sentence_size = 170
def _break_chunks(l, n):
""" Yield successive n-sized chunks
Args:
l (list): text (str) to split
chunk_size (int): chunk size
"""
for i in range(0, len(l), n):
yield " ".join(l[i:i + n])
def _split_by_chunk_size(text, chunk_size):
""" Split text into word chunks by chunk_size size
Args:
text (str): text to split
chunk_size (int): chunk size
Returns:
list: list of text chunks
"""
text_list = text.split()
if len(text_list) <= chunk_size:
return [text]
if chunk_size < len(text_list) < (chunk_size * 2):
return list(_break_chunks(
text_list,
int(math.ceil(len(text_list) / 2))
))
elif (chunk_size * 2) < len(text_list) < (chunk_size * 3):
return list(_break_chunks(
text_list,
int(math.ceil(len(text_list) / 3))
))
elif (chunk_size * 3) < len(text_list) < (chunk_size * 4):
return list(_break_chunks(
text_list,
int(math.ceil(len(text_list) / 4))
))
else:
return list(_break_chunks(
text_list,
int(math.ceil(len(text_list) / 5))
))
def _split_by_punctuation(chunks, puncs):
"""splits text by various punctionations
e.g. hello, world => [hello, world]
Args:
chunks (list or str): text (str) to split
puncs (list): list of punctuations used to split text
Returns:
list: list with split text
"""
if isinstance(chunks, str):
out = [chunks]
else:
out = chunks
for punc in puncs:
splits = []
for t in out:
# Split text by punctuation, but not embedded punctuation. E.g.
# Split: "Short sentence. Longer sentence."
# But not at: "I.B.M." or "3.424", "3,424" or "what's-his-name."
splits += re.split(r'(?<!\.\S)' + punc + r'\s', t)
out = splits
return [t.strip() for t in out]
def _add_punctuation(text):
""" Add punctuation at the end of each chunk.
Mimic2 expects some form of punctuation at the end of a sentence.
"""
punctuation = ['.', '?', '!', ';']
if len(text) >= 1 and text[-1] not in punctuation:
return text + '.'
else:
return text
def _sentence_chunker(text):
""" Split text into smaller chunks for TTS generation.
NOTE: The smaller chunks are needed due to current Mimic2 TTS limitations.
This stage can be removed once Mimic2 can generate longer sentences.
Args:
text (str): text to split
chunk_size (int): size of each chunk
split_by_punc (bool, optional): Defaults to True.
Returns:
list: list of text chunks
"""
if len(text) <= _max_sentence_size:
return [_add_punctuation(text)]
# first split by punctuations that are major pauses
first_splits = _split_by_punctuation(
text,
puncs=[r'\.', r'\!', r'\?', r'\:', r'\;']
)
# if chunks are too big, split by minor pauses (comma, hyphen)
second_splits = []
for chunk in first_splits:
if len(chunk) > _max_sentence_size:
second_splits += _split_by_punctuation(chunk,
puncs=[r'\,', '--', '-'])
else:
second_splits.append(chunk)
# if chunks are still too big, chop into pieces of at most 20 words
third_splits = []
for chunk in second_splits:
if len(chunk) > _max_sentence_size:
third_splits += _split_by_chunk_size(chunk, 20)
else:
third_splits.append(chunk)
return [_add_punctuation(chunk) for chunk in third_splits]
class Mimic2(TTS):
def __init__(self, lang, config):
super(Mimic2, self).__init__(
lang, config, Mimic2Validator(self)
)
try:
LOG.info("Getting Pre-loaded cache")
cache_handler.main(config['preloaded_cache'])
LOG.info("Successfully downloaded Pre-loaded cache")
except Exception as e:
LOG.error("Could not get the pre-loaded cache ({})"
.format(repr(e)))
self.url = config['url']
self.session = FuturesSession()
def _save(self, data):
""" Save WAV files in tmp
Args:
data (byes): WAV data
"""
with open(self.filename, 'wb') as f:
f.write(data)
def _play(self, req):
""" Play WAV file after saving to tmp
Args:
req (object): requests object
"""
if req.status_code == 200:
self._save(req.content)
play_wav(self.filename).communicate()
else:
LOG.error(
'%s Http Error: %s for url: %s' %
(req.status_code, req.reason, req.url))
def _requests(self, sentence):
"""create asynchronous request list
Args:
chunks (list): list of text to synthesize
Returns:
list: list of FutureSession objects
"""
url = self.url + parse.quote(sentence)
req_route = url + "&visimes=True"
return self.session.get(req_route, timeout=5)
def viseme(self, phonemes):
""" Maps phonemes to appropriate viseme encoding
Args:
phonemes (list): list of tuples (phoneme, time_start)
Returns:
list: list of tuples (viseme_encoding, time_start)
"""
visemes = []
for pair in phonemes:
if pair[0]:
phone = pair[0].lower()
else:
# if phoneme doesn't exist use
# this as placeholder since it
# is the most common one "3"
phone = 'z'
vis = VISIMES.get(phone)
vis_dur = float(pair[1])
visemes.append((vis, vis_dur))
return visemes
def _prepocess_sentence(sentence):
""" Split sentence in chunks better suited for mimic2. """
return _sentence_chunker(sentence)
def get_tts(self, sentence, wav_file):
""" Generate (remotely) and play mimic2 WAV audio
Args:
sentence (str): Phrase to synthesize to audio with mimic2
wav_file (str): Location to write audio output
"""
LOG.debug("Generating Mimic2 TSS for: " + str(sentence))
try:
req = self._requests(sentence)
results = req.result().json()
audio = base64.b64decode(results['audio_base64'])
vis = results['visimes']
with open(wav_file, 'wb') as f:
f.write(audio)
except (ReadTimeout, ConnectionError, ConnectTimeout, HTTPError):
raise RemoteTTSTimeoutException(
"Mimic 2 server request timed out. Falling back to mimic")
return (wav_file, vis)
def save_phonemes(self, key, phonemes):
"""
Cache phonemes
Args:
key: Hash key for the sentence
phonemes: phoneme string to save
"""
cache_dir = get_cache_directory("tts/" + self.tts_name)
pho_file = os.path.join(cache_dir, key + ".pho")
try:
with open(pho_file, "w") as cachefile:
cachefile.write(json.dumps(phonemes))
except Exception:
LOG.exception("Failed to write {} to cache".format(pho_file))
def load_phonemes(self, key):
"""
Load phonemes from cache file.
Args:
Key: Key identifying phoneme cache
"""
pho_file = os.path.join(get_cache_directory("tts/" + self.tts_name),
key + ".pho")
if os.path.exists(pho_file):
try:
with open(pho_file, "r") as cachefile:
phonemes = json.load(cachefile)
return phonemes
except Exception as e:
LOG.error("Failed to read .PHO from cache ({})".format(e))
return None
class Mimic2Validator(TTSValidator):
def __init__(self, tts):
super(Mimic2Validator, self).__init__(tts)
def validate_lang(self):
# TODO
pass
def validate_connection(self):
# TODO
pass
def get_tts_class(self):
return Mimic2