319 lines
9.4 KiB
Python
319 lines
9.4 KiB
Python
# Copyright 2017 Mycroft AI Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from mycroft.tts import TTS, TTSValidator
|
|
from mycroft.tts.remote_tts import RemoteTTSTimeoutException
|
|
from mycroft.util.log import LOG
|
|
from mycroft.util.format import pronounce_number
|
|
from mycroft.tts import cache_handler
|
|
from mycroft.util import play_wav, get_cache_directory
|
|
from requests_futures.sessions import FuturesSession
|
|
from requests.exceptions import (
|
|
ReadTimeout, ConnectionError, ConnectTimeout, HTTPError
|
|
)
|
|
from urllib import parse
|
|
from .mimic_tts import VISIMES
|
|
import math
|
|
import base64
|
|
import os
|
|
import re
|
|
import json
|
|
|
|
|
|
# Heuristic value, caps character length of a chunk of text to be spoken as a
|
|
# work around for current Mimic2 implementation limits.
|
|
_max_sentence_size = 170
|
|
|
|
|
|
def _break_chunks(l, n):
|
|
""" Yield successive n-sized chunks
|
|
|
|
Args:
|
|
l (list): text (str) to split
|
|
chunk_size (int): chunk size
|
|
"""
|
|
for i in range(0, len(l), n):
|
|
yield " ".join(l[i:i + n])
|
|
|
|
|
|
def _split_by_chunk_size(text, chunk_size):
|
|
""" Split text into word chunks by chunk_size size
|
|
|
|
Args:
|
|
text (str): text to split
|
|
chunk_size (int): chunk size
|
|
|
|
Returns:
|
|
list: list of text chunks
|
|
"""
|
|
text_list = text.split()
|
|
|
|
if len(text_list) <= chunk_size:
|
|
return [text]
|
|
|
|
if chunk_size < len(text_list) < (chunk_size * 2):
|
|
return list(_break_chunks(
|
|
text_list,
|
|
int(math.ceil(len(text_list) / 2))
|
|
))
|
|
elif (chunk_size * 2) < len(text_list) < (chunk_size * 3):
|
|
return list(_break_chunks(
|
|
text_list,
|
|
int(math.ceil(len(text_list) / 3))
|
|
))
|
|
elif (chunk_size * 3) < len(text_list) < (chunk_size * 4):
|
|
return list(_break_chunks(
|
|
text_list,
|
|
int(math.ceil(len(text_list) / 4))
|
|
))
|
|
else:
|
|
return list(_break_chunks(
|
|
text_list,
|
|
int(math.ceil(len(text_list) / 5))
|
|
))
|
|
|
|
|
|
def _split_by_punctuation(chunks, puncs):
|
|
"""splits text by various punctionations
|
|
e.g. hello, world => [hello, world]
|
|
|
|
Args:
|
|
chunks (list or str): text (str) to split
|
|
puncs (list): list of punctuations used to split text
|
|
|
|
Returns:
|
|
list: list with split text
|
|
"""
|
|
if isinstance(chunks, str):
|
|
out = [chunks]
|
|
else:
|
|
out = chunks
|
|
|
|
for punc in puncs:
|
|
splits = []
|
|
for t in out:
|
|
# Split text by punctuation, but not embedded punctuation. E.g.
|
|
# Split: "Short sentence. Longer sentence."
|
|
# But not at: "I.B.M." or "3.424", "3,424" or "what's-his-name."
|
|
splits += re.split(r'(?<!\.\S)' + punc + r'\s', t)
|
|
out = splits
|
|
return [t.strip() for t in out]
|
|
|
|
|
|
def _add_punctuation(text):
|
|
""" Add punctuation at the end of each chunk.
|
|
|
|
Mimic2 expects some form of punctuation at the end of a sentence.
|
|
"""
|
|
punctuation = ['.', '?', '!', ';']
|
|
if len(text) >= 1 and text[-1] not in punctuation:
|
|
return text + '.'
|
|
else:
|
|
return text
|
|
|
|
|
|
def _sentence_chunker(text):
|
|
""" Split text into smaller chunks for TTS generation.
|
|
|
|
NOTE: The smaller chunks are needed due to current Mimic2 TTS limitations.
|
|
This stage can be removed once Mimic2 can generate longer sentences.
|
|
|
|
Args:
|
|
text (str): text to split
|
|
chunk_size (int): size of each chunk
|
|
split_by_punc (bool, optional): Defaults to True.
|
|
|
|
Returns:
|
|
list: list of text chunks
|
|
"""
|
|
if len(text) <= _max_sentence_size:
|
|
return [_add_punctuation(text)]
|
|
|
|
# first split by punctuations that are major pauses
|
|
first_splits = _split_by_punctuation(
|
|
text,
|
|
puncs=[r'\.', r'\!', r'\?', r'\:', r'\;']
|
|
)
|
|
|
|
# if chunks are too big, split by minor pauses (comma, hyphen)
|
|
second_splits = []
|
|
for chunk in first_splits:
|
|
if len(chunk) > _max_sentence_size:
|
|
second_splits += _split_by_punctuation(chunk,
|
|
puncs=[r'\,', '--', '-'])
|
|
else:
|
|
second_splits.append(chunk)
|
|
|
|
# if chunks are still too big, chop into pieces of at most 20 words
|
|
third_splits = []
|
|
for chunk in second_splits:
|
|
if len(chunk) > _max_sentence_size:
|
|
third_splits += _split_by_chunk_size(chunk, 20)
|
|
else:
|
|
third_splits.append(chunk)
|
|
|
|
return [_add_punctuation(chunk) for chunk in third_splits]
|
|
|
|
|
|
class Mimic2(TTS):
|
|
|
|
def __init__(self, lang, config):
|
|
super(Mimic2, self).__init__(
|
|
lang, config, Mimic2Validator(self)
|
|
)
|
|
try:
|
|
LOG.info("Getting Pre-loaded cache")
|
|
cache_handler.main(config['preloaded_cache'])
|
|
LOG.info("Successfully downloaded Pre-loaded cache")
|
|
except Exception as e:
|
|
LOG.error("Could not get the pre-loaded cache ({})"
|
|
.format(repr(e)))
|
|
self.url = config['url']
|
|
self.session = FuturesSession()
|
|
|
|
def _save(self, data):
|
|
""" Save WAV files in tmp
|
|
|
|
Args:
|
|
data (byes): WAV data
|
|
"""
|
|
with open(self.filename, 'wb') as f:
|
|
f.write(data)
|
|
|
|
def _play(self, req):
|
|
""" Play WAV file after saving to tmp
|
|
|
|
Args:
|
|
req (object): requests object
|
|
"""
|
|
if req.status_code == 200:
|
|
self._save(req.content)
|
|
play_wav(self.filename).communicate()
|
|
else:
|
|
LOG.error(
|
|
'%s Http Error: %s for url: %s' %
|
|
(req.status_code, req.reason, req.url))
|
|
|
|
def _requests(self, sentence):
|
|
"""create asynchronous request list
|
|
|
|
Args:
|
|
chunks (list): list of text to synthesize
|
|
|
|
Returns:
|
|
list: list of FutureSession objects
|
|
"""
|
|
url = self.url + parse.quote(sentence)
|
|
req_route = url + "&visimes=True"
|
|
return self.session.get(req_route, timeout=5)
|
|
|
|
def viseme(self, phonemes):
|
|
""" Maps phonemes to appropriate viseme encoding
|
|
|
|
Args:
|
|
phonemes (list): list of tuples (phoneme, time_start)
|
|
|
|
Returns:
|
|
list: list of tuples (viseme_encoding, time_start)
|
|
"""
|
|
visemes = []
|
|
for pair in phonemes:
|
|
if pair[0]:
|
|
phone = pair[0].lower()
|
|
else:
|
|
# if phoneme doesn't exist use
|
|
# this as placeholder since it
|
|
# is the most common one "3"
|
|
phone = 'z'
|
|
vis = VISIMES.get(phone)
|
|
vis_dur = float(pair[1])
|
|
visemes.append((vis, vis_dur))
|
|
return visemes
|
|
|
|
def _prepocess_sentence(sentence):
|
|
""" Split sentence in chunks better suited for mimic2. """
|
|
return _sentence_chunker(sentence)
|
|
|
|
def get_tts(self, sentence, wav_file):
|
|
""" Generate (remotely) and play mimic2 WAV audio
|
|
|
|
Args:
|
|
sentence (str): Phrase to synthesize to audio with mimic2
|
|
wav_file (str): Location to write audio output
|
|
"""
|
|
LOG.debug("Generating Mimic2 TSS for: " + str(sentence))
|
|
try:
|
|
req = self._requests(sentence)
|
|
results = req.result().json()
|
|
audio = base64.b64decode(results['audio_base64'])
|
|
vis = results['visimes']
|
|
with open(wav_file, 'wb') as f:
|
|
f.write(audio)
|
|
except (ReadTimeout, ConnectionError, ConnectTimeout, HTTPError):
|
|
raise RemoteTTSTimeoutException(
|
|
"Mimic 2 server request timed out. Falling back to mimic")
|
|
return (wav_file, vis)
|
|
|
|
def save_phonemes(self, key, phonemes):
|
|
"""
|
|
Cache phonemes
|
|
|
|
Args:
|
|
key: Hash key for the sentence
|
|
phonemes: phoneme string to save
|
|
"""
|
|
cache_dir = get_cache_directory("tts/" + self.tts_name)
|
|
pho_file = os.path.join(cache_dir, key + ".pho")
|
|
try:
|
|
with open(pho_file, "w") as cachefile:
|
|
cachefile.write(json.dumps(phonemes))
|
|
except Exception:
|
|
LOG.exception("Failed to write {} to cache".format(pho_file))
|
|
|
|
def load_phonemes(self, key):
|
|
"""
|
|
Load phonemes from cache file.
|
|
|
|
Args:
|
|
Key: Key identifying phoneme cache
|
|
"""
|
|
pho_file = os.path.join(get_cache_directory("tts/" + self.tts_name),
|
|
key + ".pho")
|
|
if os.path.exists(pho_file):
|
|
try:
|
|
with open(pho_file, "r") as cachefile:
|
|
phonemes = json.load(cachefile)
|
|
return phonemes
|
|
except Exception as e:
|
|
LOG.error("Failed to read .PHO from cache ({})".format(e))
|
|
return None
|
|
|
|
|
|
class Mimic2Validator(TTSValidator):
|
|
|
|
def __init__(self, tts):
|
|
super(Mimic2Validator, self).__init__(tts)
|
|
|
|
def validate_lang(self):
|
|
# TODO
|
|
pass
|
|
|
|
def validate_connection(self):
|
|
# TODO
|
|
pass
|
|
|
|
def get_tts_class(self):
|
|
return Mimic2
|