mimic2/util/audio.py

158 lines
4.5 KiB
Python

import librosa
import librosa.filters
import math
import numpy as np
import tensorflow as tf
from scipy import signal
from hparams import hparams
def load_wav(path):
return librosa.core.load(path, sr=hparams.sample_rate)[0]
def save_wav(wav, path):
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
librosa.output.write_wav(path, wav.astype(np.int16), hparams.sample_rate)
def trim_silence(wav):
return librosa.effects.trim(
wav, top_db=hparams.trim_top_db,
frame_length=hparams.trim_fft_size,
hop_length=hparams.trim_hop_size)[0]
def spectrogram(y):
D = _stft(y)
S = _amp_to_db(np.abs(D)) - hparams.ref_level_db
return _normalize(S)
def inv_spectrogram(spectrogram):
'''Converts spectrogram to waveform using librosa'''
S = _db_to_amp(_denormalize(spectrogram) +
hparams.ref_level_db) # Convert back to linear
# Reconstruct phase
return _griffin_lim(S ** hparams.power)
def inv_spectrogram_tensorflow(spectrogram):
'''Builds computational graph to convert spectrogram to waveform using TensorFlow.'''
S = _db_to_amp_tensorflow(_denormalize_tensorflow(
spectrogram) + hparams.ref_level_db)
return _griffin_lim_tensorflow(tf.pow(S, hparams.power))
def melspectrogram(y):
D = _stft(y)
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hparams.ref_level_db
return _normalize(S)
def find_endpoint(wav, threshold_db=-40, min_silence_sec=0.8):
window_length = int(hparams.sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = _db_to_amp(threshold_db)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x:x + window_length]) < threshold:
return x + hop_length
return len(wav)
def _griffin_lim(S):
'''librosa implementation of Griffin-Lim
Based on https://github.com/librosa/librosa/issues/434
'''
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
S_complex = np.abs(S).astype(np.complex)
y = _istft(S_complex * angles)
for i in range(hparams.griffin_lim_iters):
angles = np.exp(1j * np.angle(_stft(y)))
y = _istft(S_complex * angles)
return y
def _griffin_lim_tensorflow(S):
'''TensorFlow implementation of Griffin-Lim
Based on https://github.com/Kyubyong/tensorflow-exercises/blob/master/Audio_Processing.ipynb
'''
with tf.variable_scope('griffinlim'):
# TensorFlow's stft and istft operate on a batch of spectrograms; create batch of size 1
S = tf.expand_dims(S, 0)
S_complex = tf.identity(tf.cast(S, dtype=tf.complex64))
y = _istft_tensorflow(S_complex)
for i in range(hparams.griffin_lim_iters):
est = _stft_tensorflow(y)
angles = est / tf.cast(tf.maximum(1e-8, tf.abs(est)), tf.complex64)
y = _istft_tensorflow(S_complex * angles)
return tf.squeeze(y, 0)
def _stft(y):
n_fft, hop_length, win_length = _stft_parameters()
return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length)
def _istft(y):
_, hop_length, win_length = _stft_parameters()
return librosa.istft(y, hop_length=hop_length, win_length=win_length)
def _stft_tensorflow(signals):
n_fft, hop_length, win_length = _stft_parameters()
return tf.contrib.signal.stft(signals, win_length, hop_length, n_fft, pad_end=False)
def _istft_tensorflow(stfts):
n_fft, hop_length, win_length = _stft_parameters()
return tf.contrib.signal.inverse_stft(stfts, win_length, hop_length, n_fft)
def _stft_parameters():
n_fft = (hparams.num_freq - 1) * 2
hop_length = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate)
win_length = int(hparams.frame_length_ms / 1000 * hparams.sample_rate)
return n_fft, hop_length, win_length
# Conversions:
_mel_basis = None
def _linear_to_mel(spectrogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectrogram)
def _build_mel_basis():
n_fft = (hparams.num_freq - 1) * 2
return librosa.filters.mel(hparams.sample_rate, n_fft, n_mels=hparams.num_mels,
fmin=hparams.min_mel_freq, fmax=hparams.max_mel_freq)
def _amp_to_db(x):
return 20 * np.log10(np.maximum(1e-5, x))
def _db_to_amp(x):
return np.power(10.0, x * 0.05)
def _db_to_amp_tensorflow(x):
return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05)
def _normalize(S):
return np.clip((S - hparams.min_level_db) / -hparams.min_level_db, 0, 1)
def _denormalize(S):
return (np.clip(S, 0, 1) * -hparams.min_level_db) + hparams.min_level_db
def _denormalize_tensorflow(S):
return (tf.clip_by_value(S, 0, 1) * -hparams.min_level_db) + hparams.min_level_db