mimic2/datasets/blizzard.py

74 lines
2.6 KiB
Python

from concurrent.futures import ProcessPoolExecutor
from functools import partial
import numpy as np
import os
from hparams import hparams
from util import audio
_max_out_length = 700
_end_buffer = 0.05
_min_confidence = 90
# Note: "A Tramp Abroad" & "The Man That Corrupted Hadleyburg" are higher quality than the others.
books = [
'ATrampAbroad',
'TheManThatCorruptedHadleyburg',
# 'LifeOnTheMississippi',
# 'TheAdventuresOfTomSawyer',
]
def build_from_path(in_dir, out_dir, num_workers=1, tqdm=lambda x: x):
executor = ProcessPoolExecutor(max_workers=num_workers)
futures = []
index = 1
for book in books:
with open(os.path.join(in_dir, book, 'sentence_index.txt')) as f:
for line in f:
parts = line.strip().split('\t')
if line[0] is not '#' and len(parts) == 8 and float(parts[3]) > _min_confidence:
wav_path = os.path.join(in_dir, book, 'wav', '%s.wav' % parts[0])
labels_path = os.path.join(in_dir, book, 'lab', '%s.lab' % parts[0])
text = parts[5]
task = partial(_process_utterance, out_dir, index, wav_path, labels_path, text)
futures.append(executor.submit(task))
index += 1
results = [future.result() for future in tqdm(futures)]
return [r for r in results if r is not None]
def _process_utterance(out_dir, index, wav_path, labels_path, text):
# Load the wav file and trim silence from the ends:
wav = audio.load_wav(wav_path)
start_offset, end_offset = _parse_labels(labels_path)
start = int(start_offset * hparams.sample_rate)
end = int(end_offset * hparams.sample_rate) if end_offset is not None else -1
wav = wav[start:end]
max_samples = _max_out_length * hparams.frame_shift_ms / 1000 * hparams.sample_rate
if len(wav) > max_samples:
return None
spectrogram = audio.spectrogram(wav).astype(np.float32)
n_frames = spectrogram.shape[1]
mel_spectrogram = audio.melspectrogram(wav).astype(np.float32)
spectrogram_filename = 'blizzard-spec-%05d.npy' % index
mel_filename = 'blizzard-mel-%05d.npy' % index
np.save(os.path.join(out_dir, spectrogram_filename), spectrogram.T, allow_pickle=False)
np.save(os.path.join(out_dir, mel_filename), mel_spectrogram.T, allow_pickle=False)
return (spectrogram_filename, mel_filename, n_frames, text)
def _parse_labels(path):
labels = []
with open(os.path.join(path)) as f:
for line in f:
parts = line.strip().split(' ')
if len(parts) >= 3:
labels.append((float(parts[0]), ' '.join(parts[2:])))
start = 0
end = None
if labels[0][1] == 'sil':
start = labels[0][0]
if labels[-1][1] == 'sil':
end = labels[-2][0] + _end_buffer
return (start, end)