mirror of https://github.com/MycroftAI/mimic2.git
32 lines
1.2 KiB
Python
32 lines
1.2 KiB
Python
from concurrent.futures import ProcessPoolExecutor
|
|
from functools import partial
|
|
import numpy as np
|
|
import os
|
|
from util import audio
|
|
|
|
|
|
def build_from_path(in_dir, out_dir, num_workers=1, tqdm=lambda x: x):
|
|
executor = ProcessPoolExecutor(max_workers=num_workers)
|
|
futures = []
|
|
index = 1
|
|
with open(os.path.join(in_dir, 'metadata.csv')) as f:
|
|
for line in f:
|
|
parts = line.strip().split('|')
|
|
wav_path = os.path.join(in_dir, 'wavs', '%s.wav' % parts[0])
|
|
text = parts[2]
|
|
futures.append(executor.submit(partial(_process_utterance, out_dir, index, wav_path, text)))
|
|
index += 1
|
|
return [future.result() for future in tqdm(futures)]
|
|
|
|
|
|
def _process_utterance(out_dir, index, wav_path, text):
|
|
wav = audio.load_wav(wav_path)
|
|
spectrogram = audio.spectrogram(wav).astype(np.float32)
|
|
n_frames = spectrogram.shape[1]
|
|
mel_spectrogram = audio.melspectrogram(wav).astype(np.float32)
|
|
spectrogram_filename = 'ljspeech-spec-%05d.npy' % index
|
|
mel_filename = 'ljspeech-mel-%05d.npy' % index
|
|
np.save(os.path.join(out_dir, spectrogram_filename), spectrogram.T, allow_pickle=False)
|
|
np.save(os.path.join(out_dir, mel_filename), mel_spectrogram.T, allow_pickle=False)
|
|
return (spectrogram_filename, mel_filename, n_frames, text)
|