mimic2/synthesizer.py

60 lines
1.9 KiB
Python

import io
import math
import numpy as np
import tensorflow as tf
from hparams import hparams, hparams_debug_string
from librosa import effects
from models import create_model
from text import text_to_sequence
from util import audio
def find_alignment_endpoint(alignment_shape, ratio):
return math.ceil(alignment_shape[1] * ratio)
class Synthesizer:
def load(self, checkpoint_path, model_name='tacotron'):
print('Constructing model: %s' % model_name)
inputs = tf.placeholder(tf.int32, [1, None], 'inputs')
input_lengths = tf.placeholder(tf.int32, [1], 'input_lengths')
with tf.variable_scope('model') as scope:
self.model = create_model(model_name, hparams)
self.model.initialize(inputs, input_lengths)
self.wav_output = audio.inv_spectrogram_tensorflow(
self.model.linear_outputs[0])
self.alignment = self.model.alignments[0]
print('Loading checkpoint: %s' % checkpoint_path)
self.session = tf.Session()
self.session.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(self.session, checkpoint_path)
def synthesize(self, text, return_wav=False):
cleaner_names = [x.strip() for x in hparams.cleaners.split(',')]
seq = text_to_sequence(text, cleaner_names)
feed_dict = {
self.model.inputs: [np.asarray(seq, dtype=np.int32)],
self.model.input_lengths: np.asarray([len(seq)], dtype=np.int32)
}
wav, alignment = self.session.run(
[self.wav_output, self.alignment],
feed_dict=feed_dict
)
audio_endpoint = audio.find_endpoint(wav)
alignment_endpoint = find_alignment_endpoint(
alignment.shape, audio_endpoint / len(wav)
)
wav = wav[:audio_endpoint]
alignment = alignment[:, :alignment_endpoint]
if return_wav:
return wav, alignment
out = io.BytesIO()
audio.save_wav(wav, out)
return out.getvalue(), alignment