mimic2/hparams.py

50 lines
1.3 KiB
Python

import tensorflow as tf
# Default hyperparameters:
hparams = tf.contrib.training.HParams(
# Comma-separated list of cleaners to run on text prior to training and eval. For non-English
# text, you may want to use "basic_cleaners" or "transliteration_cleaners" See TRAINING_DATA.md.
cleaners='english_cleaners',
# Audio:
num_mels=80,
num_freq=1025,
min_mel_freq=125,
max_mel_freq=7600,
sample_rate=22000,
frame_length_ms=50,
frame_shift_ms=12.5,
min_level_db=-100,
ref_level_db=20,
#MAILABS trim params
trim_fft_size=1024,
trim_hop_size=256,
trim_top_db=40,
# Model:
# TODO: add more configurable hparams
outputs_per_step=5,
embedding_dim=512,
# Training:
batch_size=32,
adam_beta1=0.9,
adam_beta2=0.999,
initial_learning_rate=0.0015,
learning_rate_decay_halflife=100000,
use_cmudict=False, # Use CMUDict during training to learn pronunciation of ARPAbet phonemes
# Eval:
max_iters=200,
griffin_lim_iters=50,
power=1.5, # Power to raise magnitudes to prior to Griffin-Lim
)
def hparams_debug_string():
values = hparams.values()
hp = [' %s: %s' % (name, values[name]) for name in sorted(values)]
return 'Hyperparameters:\n' + '\n'.join(hp)