import tensorflow as tf # Default hyperparameters: hparams = tf.contrib.training.HParams( # Comma-separated list of cleaners to run on text prior to training and eval. For non-English # text, you may want to use "basic_cleaners" or "transliteration_cleaners" See TRAINING_DATA.md. cleaners='english_cleaners', # Audio: num_mels=80, num_freq=1025, min_mel_freq=125, max_mel_freq=7600, sample_rate=22000, frame_length_ms=50, frame_shift_ms=12.5, min_level_db=-100, ref_level_db=20, #MAILABS trim params trim_fft_size=1024, trim_hop_size=256, trim_top_db=40, # Model: # TODO: add more configurable hparams outputs_per_step=5, embedding_dim=512, # Training: batch_size=32, adam_beta1=0.9, adam_beta2=0.999, initial_learning_rate=0.0015, learning_rate_decay_halflife=100000, use_cmudict=True, # Use CMUDict during training to learn pronunciation of ARPAbet phonemes # Eval: max_iters=200, griffin_lim_iters=50, power=1.5, # Power to raise magnitudes to prior to Griffin-Lim ) def hparams_debug_string(): values = hparams.values() hp = [' %s: %s' % (name, values[name]) for name in sorted(values)] return 'Hyperparameters:\n' + '\n'.join(hp)