# visualisation tools for mimic2 import matplotlib.pyplot as plt from statistics import stdev, mode, mean, median from statistics import StatisticsError import argparse import glob import os import csv import copy import seaborn as sns import random from text.cmudict import CMUDict def get_audio_seconds(frames): return (frames*12.5)/1000 def append_data_statistics(meta_data): # get data statistics for char_cnt in meta_data: data = meta_data[char_cnt]["data"] audio_len_list = [d["audio_len"] for d in data] mean_audio_len = mean(audio_len_list) try: mode_audio_list = [round(d["audio_len"], 2) for d in data] mode_audio_len = mode(mode_audio_list) except StatisticsError: mode_audio_len = audio_len_list[0] median_audio_len = median(audio_len_list) try: std = stdev( d["audio_len"] for d in data ) except: std = 0 meta_data[char_cnt]["mean"] = mean_audio_len meta_data[char_cnt]["median"] = median_audio_len meta_data[char_cnt]["mode"] = mode_audio_len meta_data[char_cnt]["std"] = std return meta_data def process_meta_data(path): meta_data = {} # load meta data with open(path, 'r') as f: data = csv.reader(f, delimiter='|') for row in data: frames = int(row[2]) utt = row[3] audio_len = get_audio_seconds(frames) char_count = len(utt) if not meta_data.get(char_count): meta_data[char_count] = { "data": [] } meta_data[char_count]["data"].append( { "utt": utt, "frames": frames, "audio_len": audio_len, "row": "{}|{}|{}|{}".format(row[0], row[1], row[2], row[3]) } ) meta_data = append_data_statistics(meta_data) return meta_data def get_data_points(meta_data): x = [char_cnt for char_cnt in meta_data] y_avg = [meta_data[d]['mean'] for d in meta_data] y_mode = [meta_data[d]['mode'] for d in meta_data] y_median = [meta_data[d]['median'] for d in meta_data] y_std = [meta_data[d]['std'] for d in meta_data] y_num_samples = [len(meta_data[d]['data']) for d in meta_data] return { "x": x, "y_avg": y_avg, "y_mode": y_mode, "y_median": y_median, "y_std": y_std, "y_num_samples": y_num_samples } def save_training(file_path, meta_data): rows = [] for char_cnt in meta_data: data = meta_data[char_cnt]['data'] for d in data: rows.append(d['row'] + "\n") random.shuffle(rows) with open(file_path, 'w+') as f: for row in rows: f.write(row) def plot(meta_data, save_path=None): save = False if save_path: save = True graph_data = get_data_points(meta_data) x = graph_data['x'] y_avg = graph_data['y_avg'] y_std = graph_data['y_std'] y_mode = graph_data['y_mode'] y_median = graph_data['y_median'] y_num_samples = graph_data['y_num_samples'] plt.figure() plt.plot(x, y_avg, 'ro') plt.xlabel("character lengths", fontsize=30) plt.ylabel("avg seconds", fontsize=30) if save: name = "char_len_vs_avg_secs" plt.savefig(os.path.join(save_path, name)) plt.figure() plt.plot(x, y_mode, 'ro') plt.xlabel("character lengths", fontsize=30) plt.ylabel("mode seconds", fontsize=30) if save: name = "char_len_vs_mode_secs" plt.savefig(os.path.join(save_path, name)) plt.figure() plt.plot(x, y_median, 'ro') plt.xlabel("character lengths", fontsize=30) plt.ylabel("median seconds", fontsize=30) if save: name = "char_len_vs_med_secs" plt.savefig(os.path.join(save_path, name)) plt.figure() plt.plot(x, y_std, 'ro') plt.xlabel("character lengths", fontsize=30) plt.ylabel("standard deviation", fontsize=30) if save: name = "char_len_vs_std" plt.savefig(os.path.join(save_path, name)) plt.figure() plt.plot(x, y_num_samples, 'ro') plt.xlabel("character lengths", fontsize=30) plt.ylabel("number of samples", fontsize=30) if save: name = "char_len_vs_num_samples" plt.savefig(os.path.join(save_path, name)) def plot_phonemes(train_path, cmu_dict_path, save_path): cmudict = CMUDict(cmu_dict_path) phonemes = {} with open(train_path, 'r') as f: data = csv.reader(f, delimiter='|') phonemes["None"] = 0 for row in data: words = row[3].split() for word in words: pho = cmudict.lookup(word) if pho: indie = pho[0].split() for nemes in indie: if phonemes.get(nemes): phonemes[nemes] += 1 else: phonemes[nemes] = 1 else: phonemes["None"] += 1 x, y = [], [] for key in phonemes: x.append(key) y.append(phonemes[key]) plt.figure() plt.rcParams["figure.figsize"] = (50, 20) plot = sns.barplot(x, y) if save_path: fig = plot.get_figure() fig.savefig(os.path.join(save_path, "phoneme_dist")) def main(): parser = argparse.ArgumentParser() parser.add_argument( '--train_file_path', required=True, help='this is the path to the train.txt file that the preprocess.py script creates' ) parser.add_argument( '--save_to', help='path to save charts of data to' ) parser.add_argument( '--cmu_dict_path', help='give cmudict-0.7b to see phoneme distribution' ) args = parser.parse_args() meta_data = process_meta_data(args.train_file_path) plt.rcParams["figure.figsize"] = (10, 5) plot(meta_data, save_path=args.save_to) if args.cmu_dict_path: plt.rcParams["figure.figsize"] = (30, 10) plot_phonemes(args.train_file_path, args.cmu_dict_path, args.save_to) plt.show() if __name__ == '__main__': main()