import librosa import librosa.filters import math import numpy as np import tensorflow as tf from scipy import signal from hparams import hparams def load_wav(path, hparams=hparams): return librosa.core.load(path, sr=hparams.sample_rate)[0] def save_wav(wav, path, hparams=hparams): wav *= 32767 / max(0.01, np.max(np.abs(wav))) librosa.output.write_wav(path, wav.astype(np.int16), hparams.sample_rate) def trim_silence(wav, hparams=hparams): return librosa.effects.trim( wav, top_db=hparams.trim_top_db, frame_length=hparams.trim_fft_size, hop_length=hparams.trim_hop_size)[0] def spectrogram(y, hparams=hparams): D = _stft(y) S = _amp_to_db(np.abs(D)) - hparams.ref_level_db return _normalize(S) def inv_spectrogram(spectrogram, hparams=hparams): '''Converts spectrogram to waveform using librosa''' S = _db_to_amp(_denormalize(spectrogram) + hparams.ref_level_db) # Convert back to linear # Reconstruct phase return _griffin_lim(S ** hparams.power) def inv_spectrogram_tensorflow(spectrogram, hparams=hparams): '''Builds computational graph to convert spectrogram to waveform using TensorFlow.''' S = _db_to_amp_tensorflow(_denormalize_tensorflow( spectrogram) + hparams.ref_level_db) return _griffin_lim_tensorflow(tf.pow(S, hparams.power)) def melspectrogram(y, hparams=hparams): D = _stft(y) S = _amp_to_db(_linear_to_mel(np.abs(D))) - hparams.ref_level_db return _normalize(S) def find_endpoint(wav, threshold_db=-40, min_silence_sec=0.8, hparams=hparams): window_length = int(hparams.sample_rate * min_silence_sec) hop_length = int(window_length / 4) threshold = _db_to_amp(threshold_db) for x in range(hop_length, len(wav) - window_length, hop_length): if np.max(wav[x:x + window_length]) < threshold: return x + hop_length return len(wav) def _griffin_lim(S, hparams=hparams): '''librosa implementation of Griffin-Lim Based on https://github.com/librosa/librosa/issues/434 ''' angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) S_complex = np.abs(S).astype(np.complex) y = _istft(S_complex * angles) for i in range(hparams.griffin_lim_iters): angles = np.exp(1j * np.angle(_stft(y))) y = _istft(S_complex * angles) return y def _griffin_lim_tensorflow(S, hparams=hparams): '''TensorFlow implementation of Griffin-Lim Based on https://github.com/Kyubyong/tensorflow-exercises/blob/master/Audio_Processing.ipynb ''' with tf.variable_scope('griffinlim'): # TensorFlow's stft and istft operate on a batch of spectrograms; create batch of size 1 S = tf.expand_dims(S, 0) S_complex = tf.identity(tf.cast(S, dtype=tf.complex64)) y = _istft_tensorflow(S_complex) for i in range(hparams.griffin_lim_iters): est = _stft_tensorflow(y) angles = est / tf.cast(tf.maximum(1e-8, tf.abs(est)), tf.complex64) y = _istft_tensorflow(S_complex * angles) return tf.squeeze(y, 0) def _stft(y): n_fft, hop_length, win_length = _stft_parameters() return librosa.stft(y=y, n_fft=n_fft, hop_length=hop_length, win_length=win_length) def _istft(y): _, hop_length, win_length = _stft_parameters() return librosa.istft(y, hop_length=hop_length, win_length=win_length) def _stft_tensorflow(signals): n_fft, hop_length, win_length = _stft_parameters() return tf.contrib.signal.stft(signals, win_length, hop_length, n_fft, pad_end=False) def _istft_tensorflow(stfts): n_fft, hop_length, win_length = _stft_parameters() return tf.contrib.signal.inverse_stft(stfts, win_length, hop_length, n_fft) def _stft_parameters(hparams=hparams): n_fft = (hparams.num_freq - 1) * 2 hop_length = int(hparams.frame_shift_ms / 1000 * hparams.sample_rate) win_length = int(hparams.frame_length_ms / 1000 * hparams.sample_rate) return n_fft, hop_length, win_length # Conversions: _mel_basis = None def _linear_to_mel(spectrogram): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis() return np.dot(_mel_basis, spectrogram) def _build_mel_basis(hparams=hparams): n_fft = (hparams.num_freq - 1) * 2 return librosa.filters.mel(hparams.sample_rate, n_fft, n_mels=hparams.num_mels, fmin=hparams.min_mel_freq, fmax=hparams.max_mel_freq) def _amp_to_db(x): return 20 * np.log10(np.maximum(1e-5, x)) def _db_to_amp(x): return np.power(10.0, x * 0.05) def _db_to_amp_tensorflow(x): return tf.pow(tf.ones(tf.shape(x)) * 10.0, x * 0.05) def _normalize(S, hparams=hparams): return np.clip((S - hparams.min_level_db) / -hparams.min_level_db, 0, 1) def _denormalize(S, hparams=hparams): return (np.clip(S, 0, 1) * -hparams.min_level_db) + hparams.min_level_db def _denormalize_tensorflow(S, hparams=hparams): return (tf.clip_by_value(S, 0, 1) * -hparams.min_level_db) + hparams.min_level_db