added kusal preprocess code

pull/6/head
Michael Nguyen 2018-06-18 12:20:09 -05:00
parent c7efb3c208
commit ba27a6d95d
4 changed files with 83 additions and 2 deletions

1
.gitignore vendored
View File

@ -3,3 +3,4 @@ __pycache__/
*.pyc *.pyc
.DS_Store .DS_Store
run*.sh run*.sh
.vscode

67
datasets/kusal.py Normal file
View File

@ -0,0 +1,67 @@
from concurrent.futures import ProcessPoolExecutor
from functools import partial
import glob
import librosa
import numpy as np
import os
from hparams import hparams
from util import audio
def build_from_path(in_dir, out_dir, num_workers=1, tqdm=lambda x: x):
'''Preprocesses the Amy dataset from a given input path into a given output directory.'''
# executor = ProcessPoolExecutor(max_workers=num_workers)
futures = []
count = 0
len_files = 0
# Read all of the .wav files:
paths = {}
for path in glob.glob(os.path.join(in_dir, 'audio', '*.wav')):
prompt_id = os.path.basename(path).split('-')[-2]
paths[prompt_id] = path
# Read the prompts file:
with open(os.path.join(in_dir, 'prompts.txt'), encoding='utf-8') as f:
for line in f:
parts = line.strip().split('\t')
if len(parts) == 4 and parts[0] in paths:
path = paths[parts[0]]
text = parts[2]
# futures.append(executor.submit(partial(_process_utterance, out_dir, parts[0], path, text)))
futures.append(partial(_process_utterance, out_dir, parts[0], path, text))
len_files += 1
# return [future.result() for future in futures]
# return [future() for future in futures]
metadata = []
for future in tqdm(futures):
try:
data = future()
metadata.append(data)
except:
count += 1
print("failed to process" , count, "/", len_files)
return metadata
def _process_utterance(out_dir, prompt_id, wav_path, text):
# Load the audio to a numpy array:
wav = audio.load_wav(wav_path)
# Trim leading and trailing silence:
margin = int(hparams.sample_rate * 0.1)
wav = wav[margin:-margin]
wav, _ = librosa.effects.trim(wav, top_db=40, frame_length=1024, hop_length=256)
# Compute the linear-scale spectrogram from the wav:
spectrogram = audio.spectrogram(wav).astype(np.float32)
n_frames = spectrogram.shape[1]
# Compute a mel-scale spectrogram from the wav:
mel_spectrogram = audio.melspectrogram(wav).astype(np.float32)
# Write the spectrograms to disk:
spectrogram_filename = 'kusal-spec-%s.npy' % prompt_id
mel_filename = 'kusal-mel-%s.npy' % prompt_id
np.save(os.path.join(out_dir, spectrogram_filename), spectrogram.T, allow_pickle=False)
np.save(os.path.join(out_dir, mel_filename), mel_spectrogram.T, allow_pickle=False)
# Return a tuple describing this training example:
return (spectrogram_filename, mel_filename, n_frames, text)

View File

@ -43,7 +43,10 @@ def main():
parser.add_argument('--checkpoint', required=True, help='Path to model checkpoint') parser.add_argument('--checkpoint', required=True, help='Path to model checkpoint')
parser.add_argument('--hparams', default='', parser.add_argument('--hparams', default='',
help='Hyperparameter overrides as a comma-separated list of name=value pairs') help='Hyperparameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--force_cpu', default=False, help='Force synthesize with cpu')
args = parser.parse_args() args = parser.parse_args()
if args.force_cpu:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
hparams.parse(args.hparams) hparams.parse(args.hparams)
run_eval(args) run_eval(args)

View File

@ -2,7 +2,7 @@ import argparse
import os import os
from multiprocessing import cpu_count from multiprocessing import cpu_count
from tqdm import tqdm from tqdm import tqdm
from datasets import amy, blizzard, ljspeech from datasets import amy, blizzard, ljspeech, kusal
from hparams import hparams from hparams import hparams
@ -30,6 +30,14 @@ def preprocess_amy(args):
write_metadata(metadata, out_dir) write_metadata(metadata, out_dir)
def preprocess_kusal(args):
in_dir = os.path.join(args.base_dir, 'kusal')
out_dir = os.path.join(args.base_dir, args.output)
os.makedirs(out_dir, exist_ok=True)
metadata = kusal.build_from_path(in_dir, out_dir, args.num_workers, tqdm=tqdm)
write_metadata(metadata, out_dir)
def write_metadata(metadata, out_dir): def write_metadata(metadata, out_dir):
with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f: with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f:
for m in metadata: for m in metadata:
@ -45,7 +53,7 @@ def main():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('--base_dir', default=os.path.expanduser('~/tacotron')) parser.add_argument('--base_dir', default=os.path.expanduser('~/tacotron'))
parser.add_argument('--output', default='training') parser.add_argument('--output', default='training')
parser.add_argument('--dataset', required=True, choices=['amy', 'blizzard', 'ljspeech']) parser.add_argument('--dataset', required=True, choices=['amy', 'blizzard', 'ljspeech', 'kusal'])
parser.add_argument('--num_workers', type=int, default=cpu_count()) parser.add_argument('--num_workers', type=int, default=cpu_count())
args = parser.parse_args() args = parser.parse_args()
if args.dataset == 'amy': if args.dataset == 'amy':
@ -54,6 +62,8 @@ def main():
preprocess_blizzard(args) preprocess_blizzard(args)
elif args.dataset == 'ljspeech': elif args.dataset == 'ljspeech':
preprocess_ljspeech(args) preprocess_ljspeech(args)
elif args.dataset == 'kusal':
preprocess_kusal(args)
if __name__ == "__main__": if __name__ == "__main__":