Add support for CSS10 datasets and improved docker image to reuse pip install

pull/24/head
Marc Schreiber 2018-11-25 21:18:45 +01:00 committed by Marc Schreiber
parent 00b92b5c84
commit 531ef65f87
5 changed files with 75 additions and 6 deletions

1
.dockerignore Normal file
View File

@ -0,0 +1 @@
.git/

View File

@ -63,6 +63,7 @@ Contributions are accepted! We'd love the communities help in building a better
* [LJ Speech](https://keithito.com/LJ-Speech-Dataset/) (Public Domain)
* [Blizzard 2012](http://www.cstr.ed.ac.uk/projects/blizzard/2012/phase_one) (Creative Commons Attribution Share-Alike)
* [M-ailabs](http://www.m-ailabs.bayern/en/the-mailabs-speech-dataset/)
* [CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages](https://github.com/Kyubyong/css10)
You can use other datasets if you convert them to the right format. See [TRAINING_DATA.md](TRAINING_DATA.md) for more info.
@ -90,7 +91,17 @@ Contributions are accepted! We'd love the communities help in building a better
|- lab
|- wav
```
alternatively, like this for CSS10, German dataset (make sure to adjust `text/symbols.py` in order to meet the character set):
```
tacotron
|- css10
|- achtgesichterambiwasse
|- meisterfloh
|- serapionsbruederauswahl
|- transcript.txt
```
For M-AILABS follow the directory structure from [here](http://www.m-ailabs.bayern/en/the-mailabs-speech-dataset/)
3. **Preprocess the data**

View File

@ -1,8 +1,12 @@
FROM tensorflow/tensorflow:1.8.0-py3
RUN mkdir /root/mimic2
COPY . /root/mimic2
WORKDIR /root/mimic2
RUN pip install --no-cache-dir -r requirements.txt
ENTRYPOINT [ "/bin/bash" ]
COPY requirements.txt /root/mimic2/requirements.txt
RUN pip install --upgrade pip && pip install --no-cache-dir -r requirements.txt
RUN apt update && apt install -y ffmpeg
COPY . /root/mimic2
ENTRYPOINT [ "/bin/bash" ]

43
datasets/css10.py Normal file
View File

@ -0,0 +1,43 @@
from concurrent.futures import ProcessPoolExecutor
from functools import partial
import numpy as np
import os
from util import audio
def build_from_path(in_dir, out_dir, num_workers=1, tqdm=lambda x: x):
'''Preprocesses the css10 dataset from a given input path into a given output directory.'''
executor = ProcessPoolExecutor(max_workers=num_workers)
futures = []
# Read the transcript file
with open(os.path.join(in_dir, 'transcript.txt'), encoding='utf-8') as f:
for line in f:
parts = line.strip().split('|')
path = os.path.join(in_dir, parts[0])
text = parts[1]
futures.append(executor.submit(partial(_process_utterance, out_dir, parts[0].split('/')[1], path, text)))
return [future.result() for future in tqdm(futures)]
def _process_utterance(out_dir, prompt_id, wav_path, text):
# Load the audio to a numpy array:
wav = audio.load_wav(wav_path)
# Compute the linear-scale spectrogram from the wav:
spectrogram = audio.spectrogram(wav).astype(np.float32)
# Compute a mel-scale spectrogram from the wav:
mel_spectrogram = audio.melspectrogram(wav).astype(np.float32)
# Write the spectrograms to disk:
spectrogram_filename = 'css10-spec-%s.npy' % prompt_id
mel_filename = 'css10css10-mel-%s.npy' % prompt_id
np.save(os.path.join(out_dir, spectrogram_filename), spectrogram.T, allow_pickle=False)
np.save(os.path.join(out_dir, mel_filename), mel_spectrogram.T, allow_pickle=False)
# Return a tuple describing this training example:
n_frames = spectrogram.shape[1]
return (spectrogram_filename, mel_filename, n_frames, text)

View File

@ -2,7 +2,7 @@ import argparse
import os
from multiprocessing import cpu_count
from tqdm import tqdm
from datasets import amy, blizzard, ljspeech, kusal, mailabs
from datasets import amy, blizzard, css10, ljspeech, kusal, mailabs
from hparams import hparams, hparams_debug_string
@ -32,6 +32,14 @@ def preprocess_amy(args):
write_metadata(metadata, out_dir)
def preprocess_css10_de(args):
in_dir = os.path.join(args.base_dir, 'css10')
out_dir = os.path.join(args.base_dir, args.output)
os.makedirs(out_dir, exist_ok=True)
metadata = css10.build_from_path(in_dir, out_dir, args.num_workers, tqdm=tqdm)
write_metadata(metadata, out_dir)
def preprocess_kusal(args):
in_dir = os.path.join(args.base_dir, 'kusal')
out_dir = os.path.join(args.base_dir, args.output)
@ -79,7 +87,7 @@ def main():
parser.add_argument('--base_dir', default=os.path.expanduser('~/tacotron'))
parser.add_argument('--output', default='training')
parser.add_argument(
'--dataset', required=True, choices=['amy', 'blizzard', 'ljspeech', 'kusal', 'mailabs']
'--dataset', required=True, choices=['amy', 'blizzard', 'css10', 'ljspeech', 'kusal', 'mailabs']
)
parser.add_argument('--mailabs_books_dir',
help='absolute directory to the books for the mlailabs')
@ -103,6 +111,8 @@ def main():
preprocess_amy(args)
elif args.dataset == 'blizzard':
preprocess_blizzard(args)
elif args.dataset == 'css10':
preprocess_css10_de(args)
elif args.dataset == 'ljspeech':
preprocess_ljspeech(args)
elif args.dataset == 'kusal':