mirror of https://github.com/MycroftAI/mimic2.git
Drop preemphasis
parent
d0e09d064a
commit
122f9783e7
|
@ -15,7 +15,6 @@ hparams = tf.contrib.training.HParams(
|
|||
sample_rate=22000,
|
||||
frame_length_ms=50,
|
||||
frame_shift_ms=12.5,
|
||||
preemphasis=0.97,
|
||||
min_level_db=-100,
|
||||
ref_level_db=20,
|
||||
|
||||
|
|
|
@ -33,7 +33,6 @@ class Synthesizer:
|
|||
self.model.input_lengths: np.asarray([len(seq)], dtype=np.int32)
|
||||
}
|
||||
wav = self.session.run(self.wav_output, feed_dict=feed_dict)
|
||||
wav = audio.inv_preemphasis(wav)
|
||||
wav = wav[:audio.find_endpoint(wav)]
|
||||
out = io.BytesIO()
|
||||
audio.save_wav(wav, out)
|
||||
|
|
|
@ -16,16 +16,8 @@ def save_wav(wav, path):
|
|||
librosa.output.write_wav(path, wav.astype(np.int16), hparams.sample_rate)
|
||||
|
||||
|
||||
def preemphasis(x):
|
||||
return signal.lfilter([1, -hparams.preemphasis], [1], x)
|
||||
|
||||
|
||||
def inv_preemphasis(x):
|
||||
return signal.lfilter([1], [1, -hparams.preemphasis], x)
|
||||
|
||||
|
||||
def spectrogram(y):
|
||||
D = _stft(preemphasis(y))
|
||||
D = _stft(y)
|
||||
S = _amp_to_db(np.abs(D)) - hparams.ref_level_db
|
||||
return _normalize(S)
|
||||
|
||||
|
@ -33,21 +25,17 @@ def spectrogram(y):
|
|||
def inv_spectrogram(spectrogram):
|
||||
'''Converts spectrogram to waveform using librosa'''
|
||||
S = _db_to_amp(_denormalize(spectrogram) + hparams.ref_level_db) # Convert back to linear
|
||||
return inv_preemphasis(_griffin_lim(S ** hparams.power)) # Reconstruct phase
|
||||
return _griffin_lim(S ** hparams.power) # Reconstruct phase
|
||||
|
||||
|
||||
def inv_spectrogram_tensorflow(spectrogram):
|
||||
'''Builds computational graph to convert spectrogram to waveform using TensorFlow.
|
||||
|
||||
Unlike inv_spectrogram, this does NOT invert the preemphasis. The caller should call
|
||||
inv_preemphasis on the output after running the graph.
|
||||
'''
|
||||
'''Builds computational graph to convert spectrogram to waveform using TensorFlow.'''
|
||||
S = _db_to_amp_tensorflow(_denormalize_tensorflow(spectrogram) + hparams.ref_level_db)
|
||||
return _griffin_lim_tensorflow(tf.pow(S, hparams.power))
|
||||
|
||||
|
||||
def melspectrogram(y):
|
||||
D = _stft(preemphasis(y))
|
||||
D = _stft(y)
|
||||
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hparams.ref_level_db
|
||||
return _normalize(S)
|
||||
|
||||
|
|
Loading…
Reference in New Issue