influxdb/shard.go

218 lines
5.5 KiB
Go

package influxdb
import (
"encoding/binary"
"errors"
"fmt"
"math"
"sort"
"time"
"github.com/boltdb/bolt"
)
// ShardGroup represents a group of shards created for a single time range.
type ShardGroup struct {
ID uint64 `json:"id,omitempty"`
StartTime time.Time `json:"startTime,omitempty"`
EndTime time.Time `json:"endTime,omitempty"`
Shards []*Shard `json:"shards,omitempty"`
}
// close closes all shards.
func (g *ShardGroup) close() {
for _, sh := range g.Shards {
_ = sh.close()
}
}
// Shard represents the logical storage for a given time range.
// The instance on a local server may contain the raw data in "store" if the
// shard is assigned to the server's data node id.
type Shard struct {
ID uint64 `json:"id,omitempty"`
DataNodeIDs []uint64 `json:"nodeIDs,omitempty"` // owners
store *bolt.DB
}
// newShardGroup returns a new initialized ShardGroup instance.
func newShardGroup() *ShardGroup { return &ShardGroup{} }
// Duration returns the duration between the shard group's start and end time.
func (g *ShardGroup) Duration() time.Duration { return g.EndTime.Sub(g.StartTime) }
// newShard returns a new initialized Shard instance.
func newShard() *Shard { return &Shard{} }
// open initializes and opens the shard's store.
func (s *Shard) open(path string) error {
// Return an error if the shard is already open.
if s.store != nil {
return errors.New("shard already open")
}
// Open store on shard.
store, err := bolt.Open(path, 0600, &bolt.Options{Timeout: 1 * time.Second})
if err != nil {
return err
}
s.store = store
// Initialize store.
if err := s.store.Update(func(tx *bolt.Tx) error {
_, _ = tx.CreateBucketIfNotExists([]byte("values"))
return nil
}); err != nil {
_ = s.close()
return fmt.Errorf("init: %s", err)
}
return nil
}
// close shuts down the shard's store.
func (s *Shard) close() error {
if s.store == nil {
return nil
}
return s.store.Close()
}
// HasDataNodeID return true if the data node owns the shard.
func (s *Shard) HasDataNodeID(id uint64) bool {
for _, dataNodeID := range s.DataNodeIDs {
if dataNodeID == id {
return true
}
}
return false
}
// readSeries reads encoded series data from a shard.
func (s *Shard) readSeries(seriesID uint32, timestamp int64) (values []byte, err error) {
err = s.store.View(func(tx *bolt.Tx) error {
// Find series bucket.
b := tx.Bucket(u32tob(seriesID))
if b == nil {
return nil
}
// Retrieve encoded series data.
values = b.Get(u64tob(uint64(timestamp)))
return nil
})
return
}
// writeSeries writes series data to a shard.
func (s *Shard) writeSeries(seriesID uint32, timestamp int64, values []byte, overwrite bool) error {
return s.store.Update(func(tx *bolt.Tx) error {
// Create a bucket for the series.
b, err := tx.CreateBucketIfNotExists(u32tob(seriesID))
if err != nil {
return err
}
// Insert the values by timestamp.
if err := b.Put(u64tob(uint64(timestamp)), values); err != nil {
return err
}
return nil
})
}
func (s *Shard) deleteSeries(name string) error {
panic("not yet implemented") // TODO
}
// Shards represents a list of shards.
type Shards []*Shard
// pointHeaderSize represents the size of a point header, in bytes.
const pointHeaderSize = 4 + 12 // seriesID + timestamp
// marshalPointHeader encodes a series id, timestamp, & flagset into a byte slice.
func marshalPointHeader(seriesID uint32, timestamp int64) []byte {
b := make([]byte, 12)
binary.BigEndian.PutUint32(b[0:4], seriesID)
binary.BigEndian.PutUint64(b[4:12], uint64(timestamp))
return b
}
// unmarshalPointHeader decodes a byte slice into a series id, timestamp & flagset.
func unmarshalPointHeader(b []byte) (seriesID uint32, timestamp int64) {
seriesID = binary.BigEndian.Uint32(b[0:4])
timestamp = int64(binary.BigEndian.Uint64(b[4:12]))
return
}
// marshalValues encodes a set of field ids and values to a byte slice.
func marshalValues(values map[uint8]interface{}) []byte {
// Sort fields for consistency.
fieldIDs := make([]uint8, 0, len(values))
for fieldID := range values {
fieldIDs = append(fieldIDs, fieldID)
}
sort.Sort(uint8Slice(fieldIDs))
// Allocate byte slice and write field count.
b := make([]byte, 1, 10)
b[0] = byte(len(values))
// Write out each field.
for _, fieldID := range fieldIDs {
// Create a temporary buffer for this field.
buf := make([]byte, 9)
buf[0] = fieldID
// Encode value after field id.
// TODO: Support non-float types.
switch v := values[fieldID].(type) {
case float64:
binary.BigEndian.PutUint64(buf[1:9], math.Float64bits(v))
default:
panic(fmt.Sprintf("unsupported value type: %T", v))
}
// Append temp buffer to the end.
b = append(b, buf...)
}
return b
}
// unmarshalValues decodes a byte slice into a set of field ids and values.
func unmarshalValues(b []byte) map[uint8]interface{} {
// Read the field count from the field byte.
n := int(b[0])
// Create a map to hold the decoded data.
values := make(map[uint8]interface{}, n)
// Start from the second byte and iterate over until we're done decoding.
b = b[1:]
for i := 0; i < n; i++ {
// First byte is the field identifier.
fieldID := b[0]
// Decode value.
// TODO: Support non-float types.
value := math.Float64frombits(binary.BigEndian.Uint64(b[1:9]))
values[fieldID] = value
// Move bytes forward.
b = b[9:]
}
return values
}
type uint8Slice []uint8
func (p uint8Slice) Len() int { return len(p) }
func (p uint8Slice) Less(i, j int) bool { return p[i] < p[j] }
func (p uint8Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }