influxdb/tsdb/aggregate.go

942 lines
25 KiB
Go

package tsdb
import (
"errors"
"fmt"
"sort"
"strings"
"time"
"github.com/influxdb/influxdb/influxql"
"github.com/influxdb/influxdb/models"
"github.com/influxdb/influxdb/pkg/slices"
)
// AggregateExecutor represents a mapper for execute aggregate SELECT statements.
type AggregateExecutor struct {
stmt *influxql.SelectStatement
mappers []*StatefulMapper
}
// NewAggregateExecutor returns a new AggregateExecutor.
func NewAggregateExecutor(stmt *influxql.SelectStatement, mappers []Mapper) *AggregateExecutor {
e := &AggregateExecutor{
stmt: stmt,
mappers: make([]*StatefulMapper, 0, len(mappers)),
}
for _, m := range mappers {
e.mappers = append(e.mappers, &StatefulMapper{m, nil, false})
}
return e
}
// close closes the executor such that all resources are released.
// Once closed, an executor may not be re-used.
func (e *AggregateExecutor) close() {
if e != nil {
for _, m := range e.mappers {
m.Close()
}
}
}
// Execute begins execution of the query and returns a channel to receive rows.
func (e *AggregateExecutor) Execute(closing <-chan struct{}) <-chan *models.Row {
out := make(chan *models.Row, 0)
go e.execute(out, closing)
return out
}
func (e *AggregateExecutor) execute(out chan *models.Row, closing <-chan struct{}) {
// It's important to close all resources when execution completes.
defer e.close()
// Create the functions which will reduce values from mappers for
// a given interval. The function offsets within this slice match
// the offsets within the value slices that are returned by the
// mapper.
reduceFuncs, err := e.initReduceFuncs()
if err != nil {
out <- &models.Row{Err: err}
return
}
// Put together the rows to return, starting with columns.
columnNames := e.stmt.ColumnNames()
// Open the mappers.
if err := e.openMappers(); err != nil {
out <- &models.Row{Err: err}
return
}
// Filter out empty sets if there are multiple tag sets.
hasMultipleTagSets := e.hasMultipleTagSets()
ascending := e.ascending()
// Prime each mapper's chunk buffer.
if err := e.initMappers(); err != nil {
out <- &models.Row{Err: err}
return
}
// Keep looping until all mappers drained.
for !e.mappersDrained() {
chunks, err := e.readNextTagset()
if err != nil {
out <- &models.Row{Err: err}
return
}
// Prep a row, ready for kicking out.
row := &models.Row{
Name: chunks[0].Name,
Tags: chunks[0].Tags,
Columns: columnNames,
}
// Prep for bucketing data by start time of the interval.
buckets := map[int64][][]interface{}{}
var chunkValues []*MapperValue
for _, chunk := range chunks {
for _, chunkValue := range chunk.Values {
chunkValues = append(chunkValues, chunkValue)
}
}
sort.Sort(MapperValues(chunkValues))
for _, chunkValue := range chunkValues {
startTime := chunkValue.Time
values := chunkValue.Value.([]interface{})
if _, ok := buckets[startTime]; !ok {
buckets[startTime] = make([][]interface{}, len(values))
}
for i, v := range values {
buckets[startTime][i] = append(buckets[startTime][i], v)
}
}
// Now, after the loop above, within each time bucket is a slice. Within the element of each
// slice is another slice of interface{}, ready for passing to the reducer functions.
// Work each bucket of time, in time ascending order.
tMins := make(int64Slice, 0, len(buckets))
for k, _ := range buckets {
tMins = append(tMins, k)
}
if ascending {
sort.Sort(tMins)
} else {
sort.Sort(sort.Reverse(tMins))
}
values := make([][]interface{}, len(tMins))
for i, t := range tMins {
values[i] = make([]interface{}, 0, len(columnNames))
values[i] = append(values[i], time.Unix(0, t).UTC()) // Time value is always first.
for j, f := range reduceFuncs {
reducedVal := f(buckets[t][j])
values[i] = append(values[i], reducedVal)
}
}
// Perform aggregate unwraps
values, err = e.processFunctions(values, columnNames)
if err != nil {
out <- &models.Row{Err: err}
}
// Perform any mathematics.
values = processForMath(e.stmt.Fields, values)
// Handle any fill options
values = e.processFill(values)
// process derivatives
values = e.processDerivative(values)
// If we have multiple tag sets we'll want to filter out the empty ones
if hasMultipleTagSets && resultsEmpty(values) {
continue
}
row.Values = values
// Check to see if our client disconnected, or it has been to long since
// we were asked for data...
select {
case out <- row:
case <-closing:
out <- &models.Row{Err: fmt.Errorf("execute was closed by caller")}
break
case <-time.After(30 * time.Second):
// This should never happen, so if it does, it is a problem
out <- &models.Row{Err: fmt.Errorf("execute was closed by read timeout")}
break
}
}
close(out)
}
// initReduceFuncs returns a list of reduce functions for the aggregates in the query.
func (e *AggregateExecutor) initReduceFuncs() ([]reduceFunc, error) {
calls := e.stmt.FunctionCalls()
fns := make([]reduceFunc, len(calls))
for i, c := range calls {
fn, err := initializeReduceFunc(c)
if err != nil {
return nil, err
}
fns[i] = fn
}
return fns, nil
}
// openMappers opens all the mappers.
func (e *AggregateExecutor) openMappers() error {
for _, m := range e.mappers {
if err := m.Open(); err != nil {
return err
}
}
return nil
}
// initMappers buffers the first chunk of each mapper.
func (e *AggregateExecutor) initMappers() error {
for _, m := range e.mappers {
chunk, err := m.NextChunk()
if err != nil {
return err
}
m.bufferedChunk = chunk
if m.bufferedChunk == nil {
m.drained = true
}
}
return nil
}
// hasMultipleTagSets returns true if there is more than one tagset in the mappers.
func (e *AggregateExecutor) hasMultipleTagSets() bool {
set := make(map[string]struct{})
for _, m := range e.mappers {
for _, t := range m.TagSets() {
set[t] = struct{}{}
if len(set) > 1 {
return true
}
}
}
return false
}
// ascending returns true if statement is sorted in ascending order.
func (e *AggregateExecutor) ascending() bool {
if len(e.stmt.SortFields) == 0 {
return true
}
return e.stmt.SortFields[0].Ascending
}
// mappersDrained returns whether all the executors Mappers have been drained of data.
func (e *AggregateExecutor) mappersDrained() bool {
for _, m := range e.mappers {
if !m.drained {
return false
}
}
return true
}
// nextMapperTagset returns the alphabetically lowest tagset across all Mappers.
func (e *AggregateExecutor) nextMapperTagSet() string {
tagset := ""
for _, m := range e.mappers {
if m.bufferedChunk != nil {
if tagset == "" {
tagset = m.bufferedChunk.key()
} else if m.bufferedChunk.key() < tagset {
tagset = m.bufferedChunk.key()
}
}
}
return tagset
}
// readNextTagset returns all chunks for the next tagset.
func (e *AggregateExecutor) readNextTagset() ([]*MapperOutput, error) {
// Send out data for the next alphabetically-lowest tagset.
// All Mappers send out in this order so collect data for this tagset, ignoring all others.
tagset := e.nextMapperTagSet()
chunks := []*MapperOutput{}
// Pull as much as possible from each mapper. Stop when a mapper offers
// data for a new tagset, or empties completely.
for _, m := range e.mappers {
if m.drained {
continue
}
for {
if m.bufferedChunk == nil {
chunk, err := m.NextChunk()
if err != nil {
return nil, err
}
m.bufferedChunk = chunk
if m.bufferedChunk == nil {
m.drained = true
break
}
}
// Got a chunk. Can we use it?
if m.bufferedChunk.key() != tagset {
break // No, so just leave it in the buffer.
}
// We can, take it.
chunks = append(chunks, m.bufferedChunk)
m.bufferedChunk = nil
}
}
return chunks, nil
}
// processFill will take the results and return new results (or the same if no fill modifications are needed)
// with whatever fill options the query has.
func (e *AggregateExecutor) processFill(results [][]interface{}) [][]interface{} {
// don't do anything if we're supposed to leave the nulls
if e.stmt.Fill == influxql.NullFill {
return results
}
isCount := e.stmt.HasSimpleCount()
if e.stmt.Fill == influxql.NoFill {
// remove any rows that have even one nil value. This one is tricky because they could have multiple
// aggregates, but this option means that any row that has even one nil gets purged.
newResults := make([][]interface{}, 0, len(results))
for _, vals := range results {
hasNil := false
// start at 1 because the first value is always time
for j := 1; j < len(vals); j++ {
if vals[j] == nil || (isCount && isZero(vals[j])) {
hasNil = true
break
}
}
if !hasNil {
newResults = append(newResults, vals)
}
}
return newResults
}
// They're either filling with previous values or a specific number
for i, vals := range results {
// start at 1 because the first value is always time
for j := 1; j < len(vals); j++ {
if vals[j] == nil || (isCount && isZero(vals[j])) {
switch e.stmt.Fill {
case influxql.PreviousFill:
if i != 0 {
vals[j] = results[i-1][j]
}
case influxql.NumberFill:
vals[j] = e.stmt.FillValue
}
}
}
}
return results
}
// Returns true if the given interface is a zero valued int64 or float64.
func isZero(i interface{}) bool {
switch v := i.(type) {
case int64:
return v == 0
case float64:
return v == 0
default:
return false
}
}
// processDerivative returns the derivatives of the results
func (e *AggregateExecutor) processDerivative(results [][]interface{}) [][]interface{} {
// Return early if we're not supposed to process the derivatives
if e.stmt.HasDerivative() {
interval, err := derivativeInterval(e.stmt)
if err != nil {
return results // XXX need to handle this better.
}
// Determines whether to drop negative differences
isNonNegative := e.stmt.FunctionCalls()[0].Name == "non_negative_derivative"
return ProcessAggregateDerivative(results, isNonNegative, interval)
}
return results
}
func (e *AggregateExecutor) processFunctions(results [][]interface{}, columnNames []string) ([][]interface{}, error) {
callInPosition := e.stmt.FunctionCallsByPosition()
hasTimeField := e.stmt.HasTimeFieldSpecified()
flatCallInPositions := make([][]*influxql.Call, 0)
for _, calls := range callInPosition {
if calls == nil {
flatCallInPositions = append(flatCallInPositions, calls)
}
for _, call := range calls {
flatCallInPositions = append(flatCallInPositions, []*influxql.Call{call})
}
}
var err error
for i, calls := range flatCallInPositions {
// We can only support expanding fields if a single selector call was specified
// i.e. select tx, max(rx) from foo
// If you have multiple selectors or aggregates, there is no way of knowing who gets to insert the values, so we don't
// i.e. select tx, max(rx), min(rx) from foo
if len(calls) == 1 {
var c *influxql.Call
c = calls[0]
switch c.Name {
case "top", "bottom":
results, err = e.processAggregates(results, columnNames, c)
if err != nil {
return results, err
}
case "first", "last", "min", "max":
results, err = e.processSelectors(results, i, hasTimeField, columnNames)
if err != nil {
return results, err
}
}
}
}
return results, nil
}
func (e *AggregateExecutor) processSelectors(results [][]interface{}, callPosition int, hasTimeField bool, columnNames []string) ([][]interface{}, error) {
// if the columns doesn't have enough columns, expand it
for i, columns := range results {
if len(columns) < len(columnNames) {
columns = append(columns, make([]interface{}, len(columnNames)-len(columns))...)
} else if len(columns) > len(columnNames) {
columnNames = append(columnNames, make([]string, len(columns)-len(columnNames))...)
}
for j := 1; j < len(columns); j++ {
switch v := columns[j].(type) {
case PositionPoint:
tMin := columns[0].(time.Time)
results[i] = e.selectorPointToQueryResult(columns, hasTimeField, callPosition, v, tMin, columnNames)
}
}
}
return results, nil
}
func (e *AggregateExecutor) selectorPointToQueryResult(columns []interface{}, hasTimeField bool, columnIndex int, p PositionPoint, tMin time.Time, columnNames []string) []interface{} {
callCount := len(e.stmt.FunctionCalls())
if callCount == 1 {
tm := time.Unix(0, p.Time).UTC()
// If we didn't explicity ask for time, and we have a group by, then use TMIN for the time returned
if len(e.stmt.Dimensions) > 0 && !hasTimeField {
tm = tMin.UTC()
}
columns[0] = tm
}
for i, c := range columnNames {
// skip over time, we already handled that above
if i == 0 {
continue
}
if (i == columnIndex && hasTimeField) || (i == columnIndex+1 && !hasTimeField) {
// Check to see if we previously processed this column, if so, continue
if _, ok := columns[i].(PositionPoint); !ok && columns[i] != nil {
continue
}
columns[i] = p.Value
continue
}
if callCount == 1 {
// Always favor fields over tags if there is a name collision
if t, ok := p.Fields[c]; ok {
columns[i] = t
} else if t, ok := p.Tags[c]; ok {
// look in the tags for a value
columns[i] = t
}
}
}
return columns
}
func (e *AggregateExecutor) processAggregates(results [][]interface{}, columnNames []string, call *influxql.Call) ([][]interface{}, error) {
var values [][]interface{}
// Check if we have a group by, if not, rewrite the entire result by flattening it out
for _, vals := range results {
// start at 1 because the first value is always time
for j := 1; j < len(vals); j++ {
switch v := vals[j].(type) {
case PositionPoints:
tMin := vals[0].(time.Time)
for _, p := range v {
result := e.aggregatePointToQueryResult(p, tMin, call, columnNames)
values = append(values, result)
}
case nil:
continue
default:
return nil, fmt.Errorf("unrechable code - processAggregates for type %T %v", v, v)
}
}
}
return values, nil
}
func (e *AggregateExecutor) aggregatePointToQueryResult(p PositionPoint, tMin time.Time, call *influxql.Call, columnNames []string) []interface{} {
tm := time.Unix(0, p.Time).UTC()
// If we didn't explicity ask for time, and we have a group by, then use TMIN for the time returned
if len(e.stmt.Dimensions) > 0 && !e.stmt.HasTimeFieldSpecified() {
tm = tMin.UTC()
}
vals := []interface{}{tm}
for _, c := range columnNames {
if c == call.Name {
vals = append(vals, p.Value)
continue
}
// TODO in the future fields will also be available to us.
// we should always favor fields over tags if there is a name collision
// look in the tags for a value
if t, ok := p.Tags[c]; ok {
vals = append(vals, t)
}
}
return vals
}
// AggregateMapper runs the map phase for aggregate SELECT queries.
type AggregateMapper struct {
shard *Shard
stmt *influxql.SelectStatement
qmin, qmax int64 // query time range
tx Tx
cursors []CursorSet
cursorIndex int
interval int // Current interval for which data is being fetched.
intervalN int // Maximum number of intervals to return.
intervalSize int64 // Size of each interval.
qminWindow int64 // Minimum time of the query floored to start of interval.
mapFuncs []mapFunc // The mapping functions.
fieldNames []string // the field name being read for mapping.
selectFields []string
selectTags []string
whereFields []string
}
// NewAggregateMapper returns a new instance of AggregateMapper.
func NewAggregateMapper(sh *Shard, stmt *influxql.SelectStatement) *AggregateMapper {
return &AggregateMapper{
shard: sh,
stmt: stmt,
}
}
// Open opens and initializes the mapper.
func (m *AggregateMapper) Open() error {
// Ignore if node has the shard but hasn't written to it yet.
if m.shard == nil {
return nil
}
// Rewrite statement.
stmt, err := m.shard.index.RewriteSelectStatement(m.stmt)
if err != nil {
return err
}
m.stmt = stmt
// Set all time-related parameters on the mapper.
m.qmin, m.qmax = influxql.TimeRangeAsEpochNano(m.stmt.Condition)
if err := m.initializeMapFunctions(); err != nil {
return err
}
// For GROUP BY time queries, limit the number of data points returned by the limit and offset
d, err := m.stmt.GroupByInterval()
if err != nil {
return err
}
m.intervalSize = d.Nanoseconds()
if m.qmin == 0 || m.intervalSize == 0 {
m.intervalN = 1
m.intervalSize = m.qmax - m.qmin
} else {
intervalTop := m.qmax/m.intervalSize*m.intervalSize + m.intervalSize
intervalBottom := m.qmin / m.intervalSize * m.intervalSize
m.intervalN = int((intervalTop - intervalBottom) / m.intervalSize)
}
if m.stmt.Limit > 0 || m.stmt.Offset > 0 {
// ensure that the offset isn't higher than the number of points we'd get
if m.stmt.Offset > m.intervalN {
return nil
}
// Take the lesser of either the pre computed number of GROUP BY buckets that
// will be in the result or the limit passed in by the user
if m.stmt.Limit < m.intervalN {
m.intervalN = m.stmt.Limit
}
}
// If we are exceeding our MaxGroupByPoints error out
if m.intervalN > MaxGroupByPoints {
return errors.New("too many points in the group by interval. maybe you forgot to specify a where time clause?")
}
// Ensure that the start time for the results is on the start of the window.
m.qminWindow = m.qmin
if m.intervalSize > 0 && m.intervalN > 1 {
m.qminWindow = m.qminWindow / m.intervalSize * m.intervalSize
}
// Get a read-only transaction.
tx, err := m.shard.engine.Begin(false)
if err != nil {
return err
}
m.tx = tx
// Collect measurements.
mms := Measurements(m.shard.index.MeasurementsByName(m.stmt.SourceNames()))
m.selectFields = mms.SelectFields(m.stmt)
m.selectTags = mms.SelectTags(m.stmt)
m.whereFields = mms.WhereFields(m.stmt)
// Open cursors for each measurement.
for _, mm := range mms {
if err := m.openMeasurement(mm); err != nil {
return err
}
}
return nil
}
func (m *AggregateMapper) openMeasurement(mm *Measurement) error {
// Validate that ANY GROUP BY is not a field for the measurement.
if err := mm.ValidateGroupBy(m.stmt); err != nil {
return err
}
// Validate the fields and tags asked for exist and keep track of which are in the select vs the where
selectFields := mm.SelectFields(m.stmt)
selectTags := mm.SelectTags(m.stmt)
// If we only have tags in our select clause we just return
if len(selectFields) == 0 && len(selectTags) > 0 {
return fmt.Errorf("statement must have at least one field in select clause")
}
// Calculate tag sets and apply SLIMIT/SOFFSET.
tagSets, err := mm.DimensionTagSets(m.stmt)
if err != nil {
return err
}
tagSets = m.stmt.LimitTagSets(tagSets)
// Create all cursors for reading the data from this shard.
for _, t := range tagSets {
cursorSet := CursorSet{
Measurement: mm.Name,
Tags: t.Tags,
}
if len(t.Tags) == 0 {
cursorSet.Key = mm.Name
} else {
cursorSet.Key = strings.Join([]string{mm.Name, string(MarshalTags(t.Tags))}, "|")
}
for i, key := range t.SeriesKeys {
fields := slices.Union(slices.Union(selectFields, m.fieldNames, false), m.whereFields, false)
c := m.tx.Cursor(key, fields, m.shard.FieldCodec(mm.Name), true)
if c == nil {
continue
}
seriesTags := m.shard.index.TagsForSeries(key)
cursorSet.Cursors = append(cursorSet.Cursors, NewTagsCursor(c, t.Filters[i], seriesTags))
}
// tsc.Init(m.qmin)
m.cursors = append(m.cursors, cursorSet)
}
sort.Sort(CursorSets(m.cursors))
return nil
}
// initializeMapFunctions initialize the mapping functions for the mapper.
func (m *AggregateMapper) initializeMapFunctions() error {
// Set up each mapping function for this statement.
aggregates := m.stmt.FunctionCalls()
m.mapFuncs = make([]mapFunc, len(aggregates))
m.fieldNames = make([]string, len(m.mapFuncs))
for i, c := range aggregates {
mfn, err := initializeMapFunc(c)
if err != nil {
return err
}
m.mapFuncs[i] = mfn
// Check for calls like `derivative(mean(value), 1d)`
var nested *influxql.Call = c
if fn, ok := c.Args[0].(*influxql.Call); ok {
nested = fn
}
switch lit := nested.Args[0].(type) {
case *influxql.VarRef:
m.fieldNames[i] = lit.Val
case *influxql.Distinct:
if c.Name != "count" {
return fmt.Errorf("aggregate call didn't contain a field %s", c.String())
}
m.fieldNames[i] = lit.Val
default:
return fmt.Errorf("aggregate call didn't contain a field %s", c.String())
}
}
return nil
}
// Close closes the mapper.
func (m *AggregateMapper) Close() {
if m != nil && m.tx != nil {
m.tx.Rollback()
}
return
}
// TagSets returns the list of tag sets for which this mapper has data.
func (m *AggregateMapper) TagSets() []string { return CursorSets(m.cursors).Keys() }
// Fields returns all SELECT fields.
func (m *AggregateMapper) Fields() []string { return append(m.selectFields, m.selectTags...) }
// NextChunk returns the next interval of data.
// Tagsets are always processed in the same order as AvailTagsSets().
// When there is no more data for any tagset nil is returned.
func (m *AggregateMapper) NextChunk() (interface{}, error) {
var tmin, tmax int64
for {
// All tagset cursors processed. NextChunk'ing complete.
if m.cursorIndex == len(m.cursors) {
return nil, nil
}
// All intervals complete for this tagset. Move to the next tagset.
tmin, tmax = m.nextInterval()
if tmin < 0 {
m.interval = 0
m.cursorIndex++
continue
}
break
}
// Prep the return data for this tagset.
// This will hold data for a single interval for a single tagset.
cursorSet := m.cursors[m.cursorIndex]
output := &MapperOutput{
Name: cursorSet.Measurement,
Tags: cursorSet.Tags,
Fields: m.selectFields,
CursorKey: cursorSet.Key,
}
// Always clamp tmin and tmax. This can happen as bucket-times are bucketed to the nearest
// interval. This is necessary to grab the "partial" buckets at the beginning and end of the time range
qmin, qmax := tmin, tmax
if qmin < m.qmin {
qmin = m.qmin
}
if qmax > m.qmax {
qmax = m.qmax + 1
}
mapperValue := &MapperValue{
Time: tmin,
Value: make([]interface{}, len(m.mapFuncs)),
}
// Build a map input from the cursor.
inputs := readMapInputs(cursorSet.Cursors, m.fieldNames, qmin, qmin, qmax)
for i := range m.mapFuncs {
if len(m.stmt.Dimensions) > 0 && !m.stmt.HasTimeFieldSpecified() {
inputs[i].TMin = tmin
}
// Execute the map function which walks the entire interval, and aggregates the result.
value := m.mapFuncs[i](&inputs[i])
if value == nil {
continue
}
mapperValue.Value.([]interface{})[i] = value
}
output.Values = append(output.Values, mapperValue)
return output, nil
}
func readMapInputs(cursors []*TagsCursor, fieldNames []string, seek, tmin, tmax int64) []MapInput {
inputs := make([]MapInput, len(fieldNames))
for i := range inputs {
inputs[i].TMin = -1
}
for _, c := range cursors {
for {
var timestamp int64
var value interface{}
if !c.Seeked() {
timestamp, value = c.SeekTo(seek)
} else {
timestamp, value = c.Next()
}
// We're done if the point is outside the query's time range [tmin:tmax).
if timestamp != tmin && (timestamp < tmin || timestamp >= tmax) {
c.Unread(timestamp, value)
break
}
// Convert values to fields map.
fields, ok := value.(map[string]interface{})
if !ok {
fields = map[string]interface{}{"": value}
}
// Value didn't match, look for the next one.
if value == nil {
continue
}
for i, field := range fieldNames {
fieldValue := value
// Filter value.
if c.filter != nil {
// Convert value to a map for filter evaluation.
m, ok := fieldValue.(map[string]interface{})
if !ok {
m = map[string]interface{}{field: fieldValue}
}
// If filter fails then skip to the next value.
if !influxql.EvalBool(c.filter, m) {
continue
}
}
// Filter out single field, if specified.
if m, ok := fieldValue.(map[string]interface{}); ok {
fieldValue = m[field]
}
if fieldValue == nil {
continue
}
inputs[i].Items = append(inputs[i].Items, MapItem{
Timestamp: timestamp,
Value: fieldValue,
Fields: fields,
Tags: c.tags,
})
}
}
}
for _, input := range inputs {
sort.Sort(MapItems(input.Items))
}
return inputs
}
// nextInterval returns the next interval for which to return data.
// If start is less than 0 there are no more intervals.
func (m *AggregateMapper) nextInterval() (start, end int64) {
t := m.qminWindow + int64(m.interval+m.stmt.Offset)*m.intervalSize
// On to next interval.
m.interval++
if t > m.qmax || m.interval > m.intervalN {
start, end = -1, 1
} else {
start, end = t, t+m.intervalSize
}
return
}
type CursorSet struct {
Measurement string
Tags map[string]string
Key string
Cursors []*TagsCursor
}
// CursorSets represents a sortable slice of CursorSet.
type CursorSets []CursorSet
func (a CursorSets) Len() int { return len(a) }
func (a CursorSets) Less(i, j int) bool { return a[i].Key < a[j].Key }
func (a CursorSets) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a CursorSets) Keys() []string {
keys := make([]string, len(a))
for i := range a {
keys[i] = a[i].Key
}
sort.Strings(keys)
return keys
}
type int64Slice []int64
func (a int64Slice) Len() int { return len(a) }
func (a int64Slice) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a int64Slice) Less(i, j int) bool { return a[i] < a[j] }