influxdb/models/points.go

1903 lines
45 KiB
Go

package models // import "github.com/influxdata/influxdb/models"
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"math"
"sort"
"strconv"
"strings"
"time"
"github.com/influxdata/influxdb/pkg/escape"
)
var (
measurementEscapeCodes = map[byte][]byte{
',': []byte(`\,`),
' ': []byte(`\ `),
}
tagEscapeCodes = map[byte][]byte{
',': []byte(`\,`),
' ': []byte(`\ `),
'=': []byte(`\=`),
}
ErrPointMustHaveAField = errors.New("point without fields is unsupported")
ErrInvalidNumber = errors.New("invalid number")
ErrInvalidPoint = errors.New("point is invalid")
ErrMaxKeyLengthExceeded = errors.New("max key length exceeded")
)
const (
MaxKeyLength = 65535
)
// Point defines the values that will be written to the database
type Point interface {
Name() string
SetName(string)
Tags() Tags
AddTag(key, value string)
SetTags(tags Tags)
Fields() Fields
Time() time.Time
SetTime(t time.Time)
UnixNano() int64
HashID() uint64
Key() []byte
Data() []byte
SetData(buf []byte)
// String returns a string representation of the point, if there is a
// timestamp associated with the point then it will be specified with the default
// precision of nanoseconds
String() string
// Bytes returns a []byte representation of the point similar to string.
MarshalBinary() ([]byte, error)
// PrecisionString returns a string representation of the point, if there
// is a timestamp associated with the point then it will be specified in the
// given unit
PrecisionString(precision string) string
// RoundedString returns a string representation of the point, if there
// is a timestamp associated with the point, then it will be rounded to the
// given duration
RoundedString(d time.Duration) string
// Split will attempt to return multiple points with the same timestamp whose
// string representations are no longer than size. Points with a single field or
// a point without a timestamp may exceed the requested size.
Split(size int) []Point
// Round will round the timestamp of the point to the given duration
Round(d time.Duration)
// StringSize returns the length of the string that would be returned by String()
StringSize() int
// AppendString appends the result of String() to the provided buffer and returns
// the result, potentially reducing string allocations
AppendString(buf []byte) []byte
// FieldIterator retuns a FieldIterator that can be used to traverse the
// fields of a point without constructing the in-memory map
FieldIterator() FieldIterator
}
type FieldType int
const (
Integer FieldType = iota
Float
Boolean
String
Empty
)
type FieldIterator interface {
Next() bool
FieldKey() []byte
Type() FieldType
StringValue() string
IntegerValue() int64
BooleanValue() bool
FloatValue() float64
Delete()
Reset()
}
// Points represents a sortable list of points by timestamp.
type Points []Point
func (a Points) Len() int { return len(a) }
func (a Points) Less(i, j int) bool { return a[i].Time().Before(a[j].Time()) }
func (a Points) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// point is the default implementation of Point.
type point struct {
time time.Time
// text encoding of measurement and tags
// key must always be stored sorted by tags, if the original line was not sorted,
// we need to resort it
key []byte
// text encoding of field data
fields []byte
// text encoding of timestamp
ts []byte
// binary encoded field data
data []byte
// cached version of parsed fields from data
cachedFields map[string]interface{}
// cached version of parsed name from key
cachedName string
// cached version of parsed tags
cachedTags Tags
it fieldIterator
}
const (
// the number of characters for the largest possible int64 (9223372036854775807)
maxInt64Digits = 19
// the number of characters for the smallest possible int64 (-9223372036854775808)
minInt64Digits = 20
// the number of characters required for the largest float64 before a range check
// would occur during parsing
maxFloat64Digits = 25
// the number of characters required for smallest float64 before a range check occur
// would occur during parsing
minFloat64Digits = 27
)
// ParsePoints returns a slice of Points from a text representation of a point
// with each point separated by newlines. If any points fail to parse, a non-nil error
// will be returned in addition to the points that parsed successfully.
func ParsePoints(buf []byte) ([]Point, error) {
return ParsePointsWithPrecision(buf, time.Now().UTC(), "n")
}
// ParsePointsString is identical to ParsePoints but accepts a string
// buffer.
func ParsePointsString(buf string) ([]Point, error) {
return ParsePoints([]byte(buf))
}
// ParseKey returns the measurement name and tags from a point.
func ParseKey(buf []byte) (string, Tags, error) {
// Ignore the error because scanMeasurement returns "missing fields" which we ignore
// when just parsing a key
state, i, _ := scanMeasurement(buf, 0)
var tags Tags
if state == tagKeyState {
tags = parseTags(buf)
// scanMeasurement returns the location of the comma if there are tags, strip that off
return string(buf[:i-1]), tags, nil
}
return string(buf[:i]), tags, nil
}
// ParsePointsWithPrecision is similar to ParsePoints, but allows the
// caller to provide a precision for time.
func ParsePointsWithPrecision(buf []byte, defaultTime time.Time, precision string) ([]Point, error) {
points := make([]Point, 0, bytes.Count(buf, []byte{'\n'})+1)
var (
pos int
block []byte
failed []string
)
for pos < len(buf) {
pos, block = scanLine(buf, pos)
pos++
if len(block) == 0 {
continue
}
// lines which start with '#' are comments
start := skipWhitespace(block, 0)
// If line is all whitespace, just skip it
if start >= len(block) {
continue
}
if block[start] == '#' {
continue
}
// strip the newline if one is present
if block[len(block)-1] == '\n' {
block = block[:len(block)-1]
}
pt, err := parsePoint(block[start:], defaultTime, precision)
if err != nil {
failed = append(failed, fmt.Sprintf("unable to parse '%s': %v", string(block[start:len(block)]), err))
} else {
points = append(points, pt)
}
}
if len(failed) > 0 {
return points, fmt.Errorf("%s", strings.Join(failed, "\n"))
}
return points, nil
}
func parsePoint(buf []byte, defaultTime time.Time, precision string) (Point, error) {
// scan the first block which is measurement[,tag1=value1,tag2=value=2...]
pos, key, err := scanKey(buf, 0)
if err != nil {
return nil, err
}
// measurement name is required
if len(key) == 0 {
return nil, fmt.Errorf("missing measurement")
}
if len(key) > MaxKeyLength {
return nil, fmt.Errorf("max key length exceeded: %v > %v", len(key), MaxKeyLength)
}
// scan the second block is which is field1=value1[,field2=value2,...]
pos, fields, err := scanFields(buf, pos)
if err != nil {
return nil, err
}
// at least one field is required
if len(fields) == 0 {
return nil, fmt.Errorf("missing fields")
}
// scan the last block which is an optional integer timestamp
pos, ts, err := scanTime(buf, pos)
if err != nil {
return nil, err
}
pt := &point{
key: key,
fields: fields,
ts: ts,
}
if len(ts) == 0 {
pt.time = defaultTime
pt.SetPrecision(precision)
} else {
ts, err := parseIntBytes(ts, 10, 64)
if err != nil {
return nil, err
}
pt.time, err = SafeCalcTime(ts, precision)
if err != nil {
return nil, err
}
// Determine if there are illegal non-whitespace characters after the
// timestamp block.
for pos < len(buf) {
if buf[pos] != ' ' {
return nil, ErrInvalidPoint
}
pos++
}
}
return pt, nil
}
// GetPrecisionMultiplier will return a multiplier for the precision specified
func GetPrecisionMultiplier(precision string) int64 {
d := time.Nanosecond
switch precision {
case "u":
d = time.Microsecond
case "ms":
d = time.Millisecond
case "s":
d = time.Second
case "m":
d = time.Minute
case "h":
d = time.Hour
}
return int64(d)
}
// scanKey scans buf starting at i for the measurement and tag portion of the point.
// It returns the ending position and the byte slice of key within buf. If there
// are tags, they will be sorted if they are not already.
func scanKey(buf []byte, i int) (int, []byte, error) {
start := skipWhitespace(buf, i)
i = start
// Determines whether the tags are sort, assume they are
sorted := true
// indices holds the indexes within buf of the start of each tag. For example,
// a buf of 'cpu,host=a,region=b,zone=c' would have indices slice of [4,11,20]
// which indicates that the first tag starts at buf[4], seconds at buf[11], and
// last at buf[20]
indices := make([]int, 100)
// tracks how many commas we've seen so we know how many values are indices.
// Since indices is an arbitrarily large slice,
// we need to know how many values in the buffer are in use.
commas := 0
// First scan the Point's measurement.
state, i, err := scanMeasurement(buf, i)
if err != nil {
return i, buf[start:i], err
}
// Optionally scan tags if needed.
if state == tagKeyState {
i, commas, indices, err = scanTags(buf, i, indices)
if err != nil {
return i, buf[start:i], err
}
}
// Now we know where the key region is within buf, and the location of tags, we
// need to determine if duplicate tags exist and if the tags are sorted. This iterates
// over the list comparing each tag in the sequence with each other.
for j := 0; j < commas-1; j++ {
// get the left and right tags
_, left := scanTo(buf[indices[j]:indices[j+1]-1], 0, '=')
_, right := scanTo(buf[indices[j+1]:indices[j+2]-1], 0, '=')
// If left is greater than right, the tags are not sorted. We do not have to
// continue because the short path no longer works.
// If the tags are equal, then there are duplicate tags, and we should abort.
// If the tags are not sorted, this pass may not find duplicate tags and we
// need to do a more exhaustive search later.
if cmp := bytes.Compare(left, right); cmp > 0 {
sorted = false
break
} else if cmp == 0 {
return i, buf[start:i], fmt.Errorf("duplicate tags")
}
}
// If the tags are not sorted, then sort them. This sort is inline and
// uses the tag indices we created earlier. The actual buffer is not sorted, the
// indices are using the buffer for value comparison. After the indices are sorted,
// the buffer is reconstructed from the sorted indices.
if !sorted && commas > 0 {
// Get the measurement name for later
measurement := buf[start : indices[0]-1]
// Sort the indices
indices := indices[:commas]
insertionSort(0, commas, buf, indices)
// Create a new key using the measurement and sorted indices
b := make([]byte, len(buf[start:i]))
pos := copy(b, measurement)
for _, i := range indices {
b[pos] = ','
pos++
_, v := scanToSpaceOr(buf, i, ',')
pos += copy(b[pos:], v)
}
// Check again for duplicate tags now that the tags are sorted.
for j := 0; j < commas-1; j++ {
// get the left and right tags
_, left := scanTo(buf[indices[j]:], 0, '=')
_, right := scanTo(buf[indices[j+1]:], 0, '=')
// If the tags are equal, then there are duplicate tags, and we should abort.
// If the tags are not sorted, this pass may not find duplicate tags and we
// need to do a more exhaustive search later.
if bytes.Equal(left, right) {
return i, b, fmt.Errorf("duplicate tags")
}
}
return i, b, nil
}
return i, buf[start:i], nil
}
// The following constants allow us to specify which state to move to
// next, when scanning sections of a Point.
const (
tagKeyState = iota
tagValueState
fieldsState
)
// scanMeasurement examines the measurement part of a Point, returning
// the next state to move to, and the current location in the buffer.
func scanMeasurement(buf []byte, i int) (int, int, error) {
// Check first byte of measurement, anything except a comma is fine.
// It can't be a space, since whitespace is stripped prior to this
// function call.
if i >= len(buf) || buf[i] == ',' {
return -1, i, fmt.Errorf("missing measurement")
}
for {
i++
if i >= len(buf) {
// cpu
return -1, i, fmt.Errorf("missing fields")
}
if buf[i-1] == '\\' {
// Skip character (it's escaped).
continue
}
// Unescaped comma; move onto scanning the tags.
if buf[i] == ',' {
return tagKeyState, i + 1, nil
}
// Unescaped space; move onto scanning the fields.
if buf[i] == ' ' {
// cpu value=1.0
return fieldsState, i, nil
}
}
}
// scanTags examines all the tags in a Point, keeping track of and
// returning the updated indices slice, number of commas and location
// in buf where to start examining the Point fields.
func scanTags(buf []byte, i int, indices []int) (int, int, []int, error) {
var (
err error
commas int
state = tagKeyState
)
for {
switch state {
case tagKeyState:
// Grow our indices slice if we have too many tags.
if commas >= len(indices) {
newIndics := make([]int, cap(indices)*2)
copy(newIndics, indices)
indices = newIndics
}
indices[commas] = i
commas++
i, err = scanTagsKey(buf, i)
state = tagValueState // tag value always follows a tag key
case tagValueState:
state, i, err = scanTagsValue(buf, i)
case fieldsState:
indices[commas] = i + 1
return i, commas, indices, nil
}
if err != nil {
return i, commas, indices, err
}
}
}
// scanTagsKey scans each character in a tag key.
func scanTagsKey(buf []byte, i int) (int, error) {
// First character of the key.
if i >= len(buf) || buf[i] == ' ' || buf[i] == ',' || buf[i] == '=' {
// cpu,{'', ' ', ',', '='}
return i, fmt.Errorf("missing tag key")
}
// Examine each character in the tag key until we hit an unescaped
// equals (the tag value), or we hit an error (i.e., unescaped
// space or comma).
for {
i++
// Either we reached the end of the buffer or we hit an
// unescaped comma or space.
if i >= len(buf) ||
((buf[i] == ' ' || buf[i] == ',') && buf[i-1] != '\\') {
// cpu,tag{'', ' ', ','}
return i, fmt.Errorf("missing tag value")
}
if buf[i] == '=' && buf[i-1] != '\\' {
// cpu,tag=
return i + 1, nil
}
}
}
// scanTagsValue scans each character in a tag value.
func scanTagsValue(buf []byte, i int) (int, int, error) {
// Tag value cannot be empty.
if i >= len(buf) || buf[i] == ',' || buf[i] == ' ' {
// cpu,tag={',', ' '}
return -1, i, fmt.Errorf("missing tag value")
}
// Examine each character in the tag value until we hit an unescaped
// comma (move onto next tag key), an unescaped space (move onto
// fields), or we error out.
for {
i++
if i >= len(buf) {
// cpu,tag=value
return -1, i, fmt.Errorf("missing fields")
}
// An unescaped equals sign is an invalid tag value.
if buf[i] == '=' && buf[i-1] != '\\' {
// cpu,tag={'=', 'fo=o'}
return -1, i, fmt.Errorf("invalid tag format")
}
if buf[i] == ',' && buf[i-1] != '\\' {
// cpu,tag=foo,
return tagKeyState, i + 1, nil
}
// cpu,tag=foo value=1.0
// cpu, tag=foo\= value=1.0
if buf[i] == ' ' && buf[i-1] != '\\' {
return fieldsState, i, nil
}
}
}
func insertionSort(l, r int, buf []byte, indices []int) {
for i := l + 1; i < r; i++ {
for j := i; j > l && less(buf, indices, j, j-1); j-- {
indices[j], indices[j-1] = indices[j-1], indices[j]
}
}
}
func less(buf []byte, indices []int, i, j int) bool {
// This grabs the tag names for i & j, it ignores the values
_, a := scanTo(buf, indices[i], '=')
_, b := scanTo(buf, indices[j], '=')
return bytes.Compare(a, b) < 0
}
// scanFields scans buf, starting at i for the fields section of a point. It returns
// the ending position and the byte slice of the fields within buf
func scanFields(buf []byte, i int) (int, []byte, error) {
start := skipWhitespace(buf, i)
i = start
quoted := false
// tracks how many '=' we've seen
equals := 0
// tracks how many commas we've seen
commas := 0
for {
// reached the end of buf?
if i >= len(buf) {
break
}
// escaped characters?
if buf[i] == '\\' && i+1 < len(buf) {
i += 2
continue
}
// If the value is quoted, scan until we get to the end quote
// Only quote values in the field value since quotes are not significant
// in the field key
if buf[i] == '"' && equals > commas {
quoted = !quoted
i++
continue
}
// If we see an =, ensure that there is at least on char before and after it
if buf[i] == '=' && !quoted {
equals++
// check for "... =123" but allow "a\ =123"
if buf[i-1] == ' ' && buf[i-2] != '\\' {
return i, buf[start:i], fmt.Errorf("missing field key")
}
// check for "...a=123,=456" but allow "a=123,a\,=456"
if buf[i-1] == ',' && buf[i-2] != '\\' {
return i, buf[start:i], fmt.Errorf("missing field key")
}
// check for "... value="
if i+1 >= len(buf) {
return i, buf[start:i], fmt.Errorf("missing field value")
}
// check for "... value=,value2=..."
if buf[i+1] == ',' || buf[i+1] == ' ' {
return i, buf[start:i], fmt.Errorf("missing field value")
}
if isNumeric(buf[i+1]) || buf[i+1] == '-' || buf[i+1] == 'N' || buf[i+1] == 'n' {
var err error
i, err = scanNumber(buf, i+1)
if err != nil {
return i, buf[start:i], err
}
continue
}
// If next byte is not a double-quote, the value must be a boolean
if buf[i+1] != '"' {
var err error
i, _, err = scanBoolean(buf, i+1)
if err != nil {
return i, buf[start:i], err
}
continue
}
}
if buf[i] == ',' && !quoted {
commas++
}
// reached end of block?
if buf[i] == ' ' && !quoted {
break
}
i++
}
if quoted {
return i, buf[start:i], fmt.Errorf("unbalanced quotes")
}
// check that all field sections had key and values (e.g. prevent "a=1,b"
if equals == 0 || commas != equals-1 {
return i, buf[start:i], fmt.Errorf("invalid field format")
}
return i, buf[start:i], nil
}
// scanTime scans buf, starting at i for the time section of a point. It
// returns the ending position and the byte slice of the timestamp within buf
// and and error if the timestamp is not in the correct numeric format.
func scanTime(buf []byte, i int) (int, []byte, error) {
start := skipWhitespace(buf, i)
i = start
for {
// reached the end of buf?
if i >= len(buf) {
break
}
// Reached end of block or trailing whitespace?
if buf[i] == '\n' || buf[i] == ' ' {
break
}
// Handle negative timestamps
if i == start && buf[i] == '-' {
i++
continue
}
// Timestamps should be integers, make sure they are so we don't need
// to actually parse the timestamp until needed.
if buf[i] < '0' || buf[i] > '9' {
return i, buf[start:i], fmt.Errorf("bad timestamp")
}
i++
}
return i, buf[start:i], nil
}
func isNumeric(b byte) bool {
return (b >= '0' && b <= '9') || b == '.'
}
// scanNumber returns the end position within buf, start at i after
// scanning over buf for an integer, or float. It returns an
// error if a invalid number is scanned.
func scanNumber(buf []byte, i int) (int, error) {
start := i
var isInt bool
// Is negative number?
if i < len(buf) && buf[i] == '-' {
i++
// There must be more characters now, as just '-' is illegal.
if i == len(buf) {
return i, ErrInvalidNumber
}
}
// how many decimal points we've see
decimal := false
// indicates the number is float in scientific notation
scientific := false
for {
if i >= len(buf) {
break
}
if buf[i] == ',' || buf[i] == ' ' {
break
}
if buf[i] == 'i' && i > start && !isInt {
isInt = true
i++
continue
}
if buf[i] == '.' {
// Can't have more than 1 decimal (e.g. 1.1.1 should fail)
if decimal {
return i, ErrInvalidNumber
}
decimal = true
}
// `e` is valid for floats but not as the first char
if i > start && (buf[i] == 'e' || buf[i] == 'E') {
scientific = true
i++
continue
}
// + and - are only valid at this point if they follow an e (scientific notation)
if (buf[i] == '+' || buf[i] == '-') && (buf[i-1] == 'e' || buf[i-1] == 'E') {
i++
continue
}
// NaN is an unsupported value
if i+2 < len(buf) && (buf[i] == 'N' || buf[i] == 'n') {
return i, ErrInvalidNumber
}
if !isNumeric(buf[i]) {
return i, ErrInvalidNumber
}
i++
}
if isInt && (decimal || scientific) {
return i, ErrInvalidNumber
}
numericDigits := i - start
if isInt {
numericDigits--
}
if decimal {
numericDigits--
}
if buf[start] == '-' {
numericDigits--
}
if numericDigits == 0 {
return i, ErrInvalidNumber
}
// It's more common that numbers will be within min/max range for their type but we need to prevent
// out or range numbers from being parsed successfully. This uses some simple heuristics to decide
// if we should parse the number to the actual type. It does not do it all the time because it incurs
// extra allocations and we end up converting the type again when writing points to disk.
if isInt {
// Make sure the last char is an 'i' for integers (e.g. 9i10 is not valid)
if buf[i-1] != 'i' {
return i, ErrInvalidNumber
}
// Parse the int to check bounds the number of digits could be larger than the max range
// We subtract 1 from the index to remove the `i` from our tests
if len(buf[start:i-1]) >= maxInt64Digits || len(buf[start:i-1]) >= minInt64Digits {
if _, err := parseIntBytes(buf[start:i-1], 10, 64); err != nil {
return i, fmt.Errorf("unable to parse integer %s: %s", buf[start:i-1], err)
}
}
} else {
// Parse the float to check bounds if it's scientific or the number of digits could be larger than the max range
if scientific || len(buf[start:i]) >= maxFloat64Digits || len(buf[start:i]) >= minFloat64Digits {
if _, err := parseFloatBytes(buf[start:i], 10); err != nil {
return i, fmt.Errorf("invalid float")
}
}
}
return i, nil
}
// scanBoolean returns the end position within buf, start at i after
// scanning over buf for boolean. Valid values for a boolean are
// t, T, true, TRUE, f, F, false, FALSE. It returns an error if a invalid boolean
// is scanned.
func scanBoolean(buf []byte, i int) (int, []byte, error) {
start := i
if i < len(buf) && (buf[i] != 't' && buf[i] != 'f' && buf[i] != 'T' && buf[i] != 'F') {
return i, buf[start:i], fmt.Errorf("invalid boolean")
}
i++
for {
if i >= len(buf) {
break
}
if buf[i] == ',' || buf[i] == ' ' {
break
}
i++
}
// Single char bool (t, T, f, F) is ok
if i-start == 1 {
return i, buf[start:i], nil
}
// length must be 4 for true or TRUE
if (buf[start] == 't' || buf[start] == 'T') && i-start != 4 {
return i, buf[start:i], fmt.Errorf("invalid boolean")
}
// length must be 5 for false or FALSE
if (buf[start] == 'f' || buf[start] == 'F') && i-start != 5 {
return i, buf[start:i], fmt.Errorf("invalid boolean")
}
// Otherwise
valid := false
switch buf[start] {
case 't':
valid = bytes.Equal(buf[start:i], []byte("true"))
case 'f':
valid = bytes.Equal(buf[start:i], []byte("false"))
case 'T':
valid = bytes.Equal(buf[start:i], []byte("TRUE")) || bytes.Equal(buf[start:i], []byte("True"))
case 'F':
valid = bytes.Equal(buf[start:i], []byte("FALSE")) || bytes.Equal(buf[start:i], []byte("False"))
}
if !valid {
return i, buf[start:i], fmt.Errorf("invalid boolean")
}
return i, buf[start:i], nil
}
// skipWhitespace returns the end position within buf, starting at i after
// scanning over spaces in tags
func skipWhitespace(buf []byte, i int) int {
for i < len(buf) {
if buf[i] != ' ' && buf[i] != '\t' && buf[i] != 0 {
break
}
i++
}
return i
}
// scanLine returns the end position in buf and the next line found within
// buf.
func scanLine(buf []byte, i int) (int, []byte) {
start := i
quoted := false
fields := false
// tracks how many '=' and commas we've seen
// this duplicates some of the functionality in scanFields
equals := 0
commas := 0
for {
// reached the end of buf?
if i >= len(buf) {
break
}
// skip past escaped characters
if buf[i] == '\\' {
i += 2
continue
}
if buf[i] == ' ' {
fields = true
}
// If we see a double quote, makes sure it is not escaped
if fields {
if !quoted && buf[i] == '=' {
i++
equals++
continue
} else if !quoted && buf[i] == ',' {
i++
commas++
continue
} else if buf[i] == '"' && equals > commas {
i++
quoted = !quoted
continue
}
}
if buf[i] == '\n' && !quoted {
break
}
i++
}
return i, buf[start:i]
}
// scanTo returns the end position in buf and the next consecutive block
// of bytes, starting from i and ending with stop byte, where stop byte
// has not been escaped.
//
// If there are leading spaces, they are skipped.
func scanTo(buf []byte, i int, stop byte) (int, []byte) {
start := i
for {
// reached the end of buf?
if i >= len(buf) {
break
}
// Reached unescaped stop value?
if buf[i] == stop && (i == 0 || buf[i-1] != '\\') {
break
}
i++
}
return i, buf[start:i]
}
// scanTo returns the end position in buf and the next consecutive block
// of bytes, starting from i and ending with stop byte. If there are leading
// spaces, they are skipped.
func scanToSpaceOr(buf []byte, i int, stop byte) (int, []byte) {
start := i
if buf[i] == stop || buf[i] == ' ' {
return i, buf[start:i]
}
for {
i++
if buf[i-1] == '\\' {
continue
}
// reached the end of buf?
if i >= len(buf) {
return i, buf[start:i]
}
// reached end of block?
if buf[i] == stop || buf[i] == ' ' {
return i, buf[start:i]
}
}
}
func scanTagValue(buf []byte, i int) (int, []byte) {
start := i
for {
if i >= len(buf) {
break
}
if buf[i] == ',' && buf[i-1] != '\\' {
break
}
i++
}
if i > len(buf) {
return i, nil
}
return i, buf[start:i]
}
func scanFieldValue(buf []byte, i int) (int, []byte) {
start := i
quoted := false
for i < len(buf) {
// Only escape char for a field value is a double-quote and backslash
if buf[i] == '\\' && i+1 < len(buf) && (buf[i+1] == '"' || buf[i+1] == '\\') {
i += 2
continue
}
// Quoted value? (e.g. string)
if buf[i] == '"' {
i++
quoted = !quoted
continue
}
if buf[i] == ',' && !quoted {
break
}
i++
}
return i, buf[start:i]
}
func escapeMeasurement(in []byte) []byte {
for b, esc := range measurementEscapeCodes {
in = bytes.Replace(in, []byte{b}, esc, -1)
}
return in
}
func unescapeMeasurement(in []byte) []byte {
for b, esc := range measurementEscapeCodes {
in = bytes.Replace(in, esc, []byte{b}, -1)
}
return in
}
func escapeTag(in []byte) []byte {
for b, esc := range tagEscapeCodes {
if bytes.IndexByte(in, b) != -1 {
in = bytes.Replace(in, []byte{b}, esc, -1)
}
}
return in
}
func unescapeTag(in []byte) []byte {
if bytes.IndexByte(in, '\\') == -1 {
return in
}
for b, esc := range tagEscapeCodes {
if bytes.IndexByte(in, b) != -1 {
in = bytes.Replace(in, esc, []byte{b}, -1)
}
}
return in
}
// escapeStringFieldReplacer replaces double quotes and backslashes
// with the same character preceded by a backslash.
// As of Go 1.7 this benchmarked better in allocations and CPU time
// compared to iterating through a string byte-by-byte and appending to a new byte slice,
// calling strings.Replace twice, and better than (*Regex).ReplaceAllString.
var escapeStringFieldReplacer = strings.NewReplacer(`"`, `\"`, `\`, `\\`)
// EscapeStringField returns a copy of in with any double quotes or
// backslashes with escaped values
func EscapeStringField(in string) string {
return escapeStringFieldReplacer.Replace(in)
}
// unescapeStringField returns a copy of in with any escaped double-quotes
// or backslashes unescaped
func unescapeStringField(in string) string {
if strings.IndexByte(in, '\\') == -1 {
return in
}
var out []byte
i := 0
for {
if i >= len(in) {
break
}
// unescape backslashes
if in[i] == '\\' && i+1 < len(in) && in[i+1] == '\\' {
out = append(out, '\\')
i += 2
continue
}
// unescape double-quotes
if in[i] == '\\' && i+1 < len(in) && in[i+1] == '"' {
out = append(out, '"')
i += 2
continue
}
out = append(out, in[i])
i++
}
return string(out)
}
// NewPoint returns a new point with the given measurement name, tags, fields and timestamp. If
// an unsupported field value (NaN) or out of range time is passed, this function returns an error.
func NewPoint(name string, tags Tags, fields Fields, t time.Time) (Point, error) {
key, err := pointKey(name, tags, fields, t)
if err != nil {
return nil, err
}
return &point{
key: key,
time: t,
fields: fields.MarshalBinary(),
}, nil
}
// pointKey checks some basic requirements for valid points, and returns the
// key, along with an possible error
func pointKey(measurement string, tags Tags, fields Fields, t time.Time) ([]byte, error) {
if len(fields) == 0 {
return nil, ErrPointMustHaveAField
}
if !t.IsZero() {
if err := CheckTime(t); err != nil {
return nil, err
}
}
for key, value := range fields {
switch value := value.(type) {
case float64:
// Ensure the caller validates and handles invalid field values
if math.IsNaN(value) {
return nil, fmt.Errorf("NaN is an unsupported value for field %s", key)
}
case float32:
// Ensure the caller validates and handles invalid field values
if math.IsNaN(float64(value)) {
return nil, fmt.Errorf("NaN is an unsupported value for field %s", key)
}
}
if len(key) == 0 {
return nil, fmt.Errorf("all fields must have non-empty names")
}
}
key := MakeKey([]byte(measurement), tags)
if len(key) > MaxKeyLength {
return nil, fmt.Errorf("max key length exceeded: %v > %v", len(key), MaxKeyLength)
}
return key, nil
}
// NewPointFromBytes returns a new Point from a marshalled Point.
func NewPointFromBytes(b []byte) (Point, error) {
p := &point{}
if err := p.UnmarshalBinary(b); err != nil {
return nil, err
}
if len(p.Fields()) == 0 {
return nil, ErrPointMustHaveAField
}
return p, nil
}
// MustNewPoint returns a new point with the given measurement name, tags, fields and timestamp. If
// an unsupported field value (NaN) is passed, this function panics.
func MustNewPoint(name string, tags Tags, fields Fields, time time.Time) Point {
pt, err := NewPoint(name, tags, fields, time)
if err != nil {
panic(err.Error())
}
return pt
}
func (p *point) Data() []byte {
return p.data
}
func (p *point) SetData(b []byte) {
p.data = b
}
func (p *point) Key() []byte {
return p.key
}
func (p *point) name() []byte {
_, name := scanTo(p.key, 0, ',')
return name
}
// Name return the measurement name for the point
func (p *point) Name() string {
if p.cachedName != "" {
return p.cachedName
}
p.cachedName = string(escape.Unescape(p.name()))
return p.cachedName
}
// SetName updates the measurement name for the point
func (p *point) SetName(name string) {
p.cachedName = ""
p.key = MakeKey([]byte(name), p.Tags())
}
// Time return the timestamp for the point
func (p *point) Time() time.Time {
return p.time
}
// SetTime updates the timestamp for the point
func (p *point) SetTime(t time.Time) {
p.time = t
}
// Round implements Point.Round
func (p *point) Round(d time.Duration) {
p.time = p.time.Round(d)
}
// Tags returns the tag set for the point
func (p *point) Tags() Tags {
if p.cachedTags != nil {
return p.cachedTags
}
p.cachedTags = parseTags(p.key)
return p.cachedTags
}
func parseTags(buf []byte) Tags {
if len(buf) == 0 {
return nil
}
pos, name := scanTo(buf, 0, ',')
// it's an empty key, so there are no tags
if len(name) == 0 {
return nil
}
tags := make(Tags, 0, bytes.Count(buf, []byte(",")))
hasEscape := bytes.IndexByte(buf, '\\') != -1
i := pos + 1
var key, value []byte
for {
if i >= len(buf) {
break
}
i, key = scanTo(buf, i, '=')
i, value = scanTagValue(buf, i+1)
if len(value) == 0 {
continue
}
if hasEscape {
tags = append(tags, Tag{Key: unescapeTag(key), Value: unescapeTag(value)})
} else {
tags = append(tags, Tag{Key: key, Value: value})
}
i++
}
return tags
}
// MakeKey creates a key for a set of tags.
func MakeKey(name []byte, tags Tags) []byte {
// unescape the name and then re-escape it to avoid double escaping.
// The key should always be stored in escaped form.
return append(escapeMeasurement(unescapeMeasurement(name)), tags.HashKey()...)
}
// SetTags replaces the tags for the point
func (p *point) SetTags(tags Tags) {
p.key = MakeKey([]byte(p.Name()), tags)
p.cachedTags = tags
}
// AddTag adds or replaces a tag value for a point
func (p *point) AddTag(key, value string) {
tags := p.Tags()
tags = append(tags, Tag{Key: []byte(key), Value: []byte(value)})
sort.Sort(tags)
p.cachedTags = tags
p.key = MakeKey([]byte(p.Name()), tags)
}
// Fields returns the fields for the point
func (p *point) Fields() Fields {
if p.cachedFields != nil {
return p.cachedFields
}
p.cachedFields = p.unmarshalBinary()
return p.cachedFields
}
// SetPrecision will round a time to the specified precision
func (p *point) SetPrecision(precision string) {
switch precision {
case "n":
case "u":
p.SetTime(p.Time().Truncate(time.Microsecond))
case "ms":
p.SetTime(p.Time().Truncate(time.Millisecond))
case "s":
p.SetTime(p.Time().Truncate(time.Second))
case "m":
p.SetTime(p.Time().Truncate(time.Minute))
case "h":
p.SetTime(p.Time().Truncate(time.Hour))
}
}
func (p *point) String() string {
if p.Time().IsZero() {
return string(p.Key()) + " " + string(p.fields)
}
return string(p.Key()) + " " + string(p.fields) + " " + strconv.FormatInt(p.UnixNano(), 10)
}
// AppendString implements Point.AppendString
func (p *point) AppendString(buf []byte) []byte {
buf = append(buf, p.key...)
buf = append(buf, ' ')
buf = append(buf, p.fields...)
if !p.time.IsZero() {
buf = append(buf, ' ')
buf = strconv.AppendInt(buf, p.UnixNano(), 10)
}
return buf
}
func (p *point) StringSize() int {
size := len(p.key) + len(p.fields) + 1
if !p.time.IsZero() {
digits := 1 // even "0" has one digit
t := p.UnixNano()
if t < 0 {
// account for negative sign, then negate
digits++
t = -t
}
for t > 9 { // already accounted for one digit
digits++
t /= 10
}
size += digits + 1 // digits and a space
}
return size
}
func (p *point) MarshalBinary() ([]byte, error) {
tb, err := p.time.MarshalBinary()
if err != nil {
return nil, err
}
b := make([]byte, 8+len(p.key)+len(p.fields)+len(tb))
i := 0
binary.BigEndian.PutUint32(b[i:], uint32(len(p.key)))
i += 4
i += copy(b[i:], p.key)
binary.BigEndian.PutUint32(b[i:i+4], uint32(len(p.fields)))
i += 4
i += copy(b[i:], p.fields)
copy(b[i:], tb)
return b, nil
}
func (p *point) UnmarshalBinary(b []byte) error {
var i int
keyLen := int(binary.BigEndian.Uint32(b[:4]))
i += int(4)
p.key = b[i : i+keyLen]
i += keyLen
fieldLen := int(binary.BigEndian.Uint32(b[i : i+4]))
i += int(4)
p.fields = b[i : i+fieldLen]
i += fieldLen
p.time = time.Now()
p.time.UnmarshalBinary(b[i:])
return nil
}
func (p *point) PrecisionString(precision string) string {
if p.Time().IsZero() {
return fmt.Sprintf("%s %s", p.Key(), string(p.fields))
}
return fmt.Sprintf("%s %s %d", p.Key(), string(p.fields),
p.UnixNano()/GetPrecisionMultiplier(precision))
}
func (p *point) RoundedString(d time.Duration) string {
if p.Time().IsZero() {
return fmt.Sprintf("%s %s", p.Key(), string(p.fields))
}
return fmt.Sprintf("%s %s %d", p.Key(), string(p.fields),
p.time.Round(d).UnixNano())
}
func (p *point) unmarshalBinary() Fields {
iter := p.FieldIterator()
fields := make(Fields, 8)
for iter.Next() {
if len(iter.FieldKey()) == 0 {
continue
}
switch iter.Type() {
case Float:
fields[string(iter.FieldKey())] = iter.FloatValue()
case Integer:
fields[string(iter.FieldKey())] = iter.IntegerValue()
case String:
fields[string(iter.FieldKey())] = iter.StringValue()
case Boolean:
fields[string(iter.FieldKey())] = iter.BooleanValue()
}
}
return fields
}
func (p *point) HashID() uint64 {
h := NewInlineFNV64a()
h.Write(p.key)
sum := h.Sum64()
return sum
}
func (p *point) UnixNano() int64 {
return p.Time().UnixNano()
}
func (p *point) Split(size int) []Point {
if p.time.IsZero() || len(p.String()) <= size {
return []Point{p}
}
// key string, timestamp string, spaces
size -= len(p.key) + len(strconv.FormatInt(p.time.UnixNano(), 10)) + 2
var points []Point
var start, cur int
for cur < len(p.fields) {
end, _ := scanTo(p.fields, cur, '=')
end, _ = scanFieldValue(p.fields, end+1)
if cur > start && end-start > size {
points = append(points, &point{
key: p.key,
time: p.time,
fields: p.fields[start : cur-1],
})
start = cur
}
cur = end + 1
}
points = append(points, &point{
key: p.key,
time: p.time,
fields: p.fields[start:],
})
return points
}
// Tag represents a single key/value tag pair.
type Tag struct {
Key []byte
Value []byte
}
// Tags represents a sorted list of tags.
type Tags []Tag
// NewTags returns a new Tags from a map.
func NewTags(m map[string]string) Tags {
if len(m) == 0 {
return nil
}
a := make(Tags, 0, len(m))
for k, v := range m {
a = append(a, Tag{Key: []byte(k), Value: []byte(v)})
}
sort.Sort(a)
return a
}
func (a Tags) Len() int { return len(a) }
func (a Tags) Less(i, j int) bool { return bytes.Compare(a[i].Key, a[j].Key) == -1 }
func (a Tags) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// Get returns the value for a key.
func (a Tags) Get(key []byte) []byte {
// OPTIMIZE: Use sort.Search if tagset is large.
for _, t := range a {
if bytes.Equal(t.Key, key) {
return t.Value
}
}
return nil
}
// GetString returns the string value for a string key.
func (a Tags) GetString(key string) string {
return string(a.Get([]byte(key)))
}
// Set sets the value for a key.
func (a *Tags) Set(key, value []byte) {
for _, t := range *a {
if bytes.Equal(t.Key, key) {
t.Value = value
return
}
}
*a = append(*a, Tag{Key: key, Value: value})
sort.Sort(*a)
}
// SetString sets the string value for a string key.
func (a *Tags) SetString(key, value string) {
a.Set([]byte(key), []byte(value))
}
// Delete removes a tag by key.
func (a *Tags) Delete(key []byte) {
for i, t := range *a {
if bytes.Equal(t.Key, key) {
copy((*a)[i:], (*a)[i+1:])
(*a)[len(*a)-1] = Tag{}
*a = (*a)[:len(*a)-1]
return
}
}
}
// Map returns a map representation of the tags.
func (a Tags) Map() map[string]string {
m := make(map[string]string, len(a))
for _, t := range a {
m[string(t.Key)] = string(t.Value)
}
return m
}
// Merge merges the tags combining the two. If both define a tag with the
// same key, the merged value overwrites the old value.
// A new map is returned.
func (a Tags) Merge(other map[string]string) Tags {
merged := make(map[string]string, len(a)+len(other))
for _, t := range a {
merged[string(t.Key)] = string(t.Value)
}
for k, v := range other {
merged[k] = v
}
return NewTags(merged)
}
// HashKey hashes all of a tag's keys.
func (a Tags) HashKey() []byte {
// Empty maps marshal to empty bytes.
if len(a) == 0 {
return nil
}
escaped := make(Tags, 0, len(a))
for _, t := range a {
ek := escapeTag(t.Key)
ev := escapeTag(t.Value)
if len(ev) > 0 {
escaped = append(escaped, Tag{Key: ek, Value: ev})
}
}
// Extract keys and determine final size.
sz := len(escaped) + (len(escaped) * 2) // separators
keys := make([][]byte, len(escaped)+1)
for i, t := range escaped {
keys[i] = t.Key
sz += len(t.Key) + len(t.Value)
}
keys = keys[:len(escaped)]
sort.Sort(byteSlices(keys))
// Generate marshaled bytes.
b := make([]byte, sz)
buf := b
idx := 0
for i, k := range keys {
buf[idx] = ','
idx++
copy(buf[idx:idx+len(k)], k)
idx += len(k)
buf[idx] = '='
idx++
v := escaped[i].Value
copy(buf[idx:idx+len(v)], v)
idx += len(v)
}
return b[:idx]
}
// Fields represents a mapping between a Point's field names and their
// values.
type Fields map[string]interface{}
func parseNumber(val []byte) (interface{}, error) {
if val[len(val)-1] == 'i' {
val = val[:len(val)-1]
return parseIntBytes(val, 10, 64)
}
for i := 0; i < len(val); i++ {
// If there is a decimal or an N (NaN), I (Inf), parse as float
if val[i] == '.' || val[i] == 'N' || val[i] == 'n' || val[i] == 'I' || val[i] == 'i' || val[i] == 'e' {
return parseFloatBytes(val, 64)
}
if val[i] < '0' && val[i] > '9' {
return string(val), nil
}
}
return parseFloatBytes(val, 64)
}
func (p *point) FieldIterator() FieldIterator {
p.Reset()
return p
}
type fieldIterator struct {
start, end int
key, keybuf []byte
valueBuf []byte
fieldType FieldType
}
func (p *point) Next() bool {
p.it.start = p.it.end
if p.it.start >= len(p.fields) {
return false
}
p.it.end, p.it.key = scanTo(p.fields, p.it.start, '=')
if escape.IsEscaped(p.it.key) {
p.it.keybuf = escape.AppendUnescaped(p.it.keybuf[:0], p.it.key)
p.it.key = p.it.keybuf
}
p.it.end, p.it.valueBuf = scanFieldValue(p.fields, p.it.end+1)
p.it.end++
if len(p.it.valueBuf) == 0 {
p.it.fieldType = Empty
return true
}
c := p.it.valueBuf[0]
if c == '"' {
p.it.fieldType = String
return true
}
if strings.IndexByte(`0123456789-.nNiI`, c) >= 0 {
if p.it.valueBuf[len(p.it.valueBuf)-1] == 'i' {
p.it.fieldType = Integer
p.it.valueBuf = p.it.valueBuf[:len(p.it.valueBuf)-1]
} else {
p.it.fieldType = Float
}
return true
}
// to keep the same behavior that currently exists, default to boolean
p.it.fieldType = Boolean
return true
}
func (p *point) FieldKey() []byte {
return p.it.key
}
func (p *point) Type() FieldType {
return p.it.fieldType
}
func (p *point) StringValue() string {
return unescapeStringField(string(p.it.valueBuf[1 : len(p.it.valueBuf)-1]))
}
func (p *point) IntegerValue() int64 {
n, err := parseIntBytes(p.it.valueBuf, 10, 64)
if err != nil {
panic(fmt.Sprintf("unable to parse integer value %q: %v", p.it.valueBuf, err))
}
return n
}
func (p *point) BooleanValue() bool {
b, err := parseBoolBytes(p.it.valueBuf)
if err != nil {
panic(fmt.Sprintf("unable to parse bool value %q: %v", p.it.valueBuf, err))
}
return b
}
func (p *point) FloatValue() float64 {
f, err := parseFloatBytes(p.it.valueBuf, 64)
if err != nil {
// panic because that's what the non-iterator code does
panic(fmt.Sprintf("unable to parse floating point value %q: %v", p.it.valueBuf, err))
}
return f
}
func (p *point) Delete() {
switch {
case p.it.end == p.it.start:
case p.it.end >= len(p.fields):
p.fields = p.fields[:p.it.start]
case p.it.start == 0:
p.fields = p.fields[p.it.end:]
default:
p.fields = append(p.fields[:p.it.start], p.fields[p.it.end:]...)
}
p.it.end = p.it.start
p.it.key = nil
p.it.valueBuf = nil
p.it.fieldType = Empty
}
func (p *point) Reset() {
p.it.fieldType = Empty
p.it.key = nil
p.it.valueBuf = nil
p.it.start = 0
p.it.end = 0
}
// MarshalBinary encodes all the fields to their proper type and returns the binary
// represenation
// NOTE: uint64 is specifically not supported due to potential overflow when we decode
// again later to an int64
// NOTE2: uint is accepted, and may be 64 bits, and is for some reason accepted...
func (p Fields) MarshalBinary() []byte {
var b []byte
keys := make([]string, 0, len(p))
for k := range p {
keys = append(keys, k)
}
// Not really necessary, can probably be removed.
sort.Strings(keys)
for i, k := range keys {
if i > 0 {
b = append(b, ',')
}
b = appendField(b, k, p[k])
}
return b
}
func appendField(b []byte, k string, v interface{}) []byte {
b = append(b, []byte(escape.String(k))...)
b = append(b, '=')
// check popular types first
switch v := v.(type) {
case float64:
b = strconv.AppendFloat(b, v, 'f', -1, 64)
case int64:
b = strconv.AppendInt(b, v, 10)
b = append(b, 'i')
case string:
b = append(b, '"')
b = append(b, []byte(EscapeStringField(v))...)
b = append(b, '"')
case bool:
b = strconv.AppendBool(b, v)
case int32:
b = strconv.AppendInt(b, int64(v), 10)
b = append(b, 'i')
case int16:
b = strconv.AppendInt(b, int64(v), 10)
b = append(b, 'i')
case int8:
b = strconv.AppendInt(b, int64(v), 10)
b = append(b, 'i')
case int:
b = strconv.AppendInt(b, int64(v), 10)
b = append(b, 'i')
case uint32:
b = strconv.AppendInt(b, int64(v), 10)
b = append(b, 'i')
case uint16:
b = strconv.AppendInt(b, int64(v), 10)
b = append(b, 'i')
case uint8:
b = strconv.AppendInt(b, int64(v), 10)
b = append(b, 'i')
// TODO: 'uint' should be considered just as "dangerous" as a uint64,
// perhaps the value should be checked and capped at MaxInt64? We could
// then include uint64 as an accepted value
case uint:
b = strconv.AppendInt(b, int64(v), 10)
b = append(b, 'i')
case float32:
b = strconv.AppendFloat(b, float64(v), 'f', -1, 32)
case []byte:
b = append(b, v...)
case nil:
// skip
default:
// Can't determine the type, so convert to string
b = append(b, '"')
b = append(b, []byte(EscapeStringField(fmt.Sprintf("%v", v)))...)
b = append(b, '"')
}
return b
}
type byteSlices [][]byte
func (a byteSlices) Len() int { return len(a) }
func (a byteSlices) Less(i, j int) bool { return bytes.Compare(a[i], a[j]) == -1 }
func (a byteSlices) Swap(i, j int) { a[i], a[j] = a[j], a[i] }