310 lines
8.0 KiB
Go
310 lines
8.0 KiB
Go
package tsm1
|
|
|
|
// Timestamp encoding is adaptive and based on structure of the timestamps that are encoded. It
|
|
// uses a combination of delta encoding, scaling and compression using simple8b, run length encoding
|
|
// as well as falling back to no compression if needed.
|
|
//
|
|
// Timestamp values to be encoded should be sorted before encoding. When encoded, the values are
|
|
// first delta-encoded. The first value is the starting timestamp, subsequent values are the difference.
|
|
// from the prior value.
|
|
//
|
|
// Timestamp resolution can also be in the nanosecond. Many timestamps are monotonically increasing
|
|
// and fall on even boundaries of time such as every 10s. When the timestamps have this structure,
|
|
// they are scaled by the largest common divisor that is also a factor of 10. This has the effect
|
|
// of converting very large integer deltas into very small one that can be reversed by multiplying them
|
|
// by the scaling factor.
|
|
//
|
|
// Using these adjusted values, if all the deltas are the same, the time range is stored using run
|
|
// length encoding. If run length encoding is not possible and all values are less than 1 << 60 - 1
|
|
// (~36.5 yrs in nanosecond resolution), then the timestamps are encoded using simple8b encoding. If
|
|
// any value exceeds the maximum values, the deltas are stored uncompressed using 8b each.
|
|
//
|
|
// Each compressed byte slice has a 1 byte header indicating the compression type. The 4 high bits
|
|
// indicated the encoding type. The 4 low bits are used by the encoding type.
|
|
//
|
|
// For run-length encoding, the 4 low bits store the log10 of the scaling factor. The next 8 bytes are
|
|
// the starting timestamp, next 1-10 bytes is the delta value using variable-length encoding, finally the
|
|
// next 1-10 bytes is the count of values.
|
|
//
|
|
// For simple8b encoding, the 4 low bits store the log10 of the scaling factor. The next 8 bytes is the
|
|
// first delta value stored uncompressed, the remaining bytes are 64bit words containg compressed delta
|
|
// values.
|
|
//
|
|
// For uncompressed encoding, the delta values are stored using 8 bytes each.
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
"math"
|
|
"time"
|
|
|
|
"github.com/jwilder/encoding/simple8b"
|
|
)
|
|
|
|
const (
|
|
// timeUncompressed is a an uncompressed format using 8 bytes per timestamp
|
|
timeUncompressed = 0
|
|
// timeCompressedPackedSimple is a bit-packed format using simple8b encoding
|
|
timeCompressedPackedSimple = 1
|
|
// timeCompressedRLE is a run-length encoding format
|
|
timeCompressedRLE = 2
|
|
)
|
|
|
|
// TimeEncoder encodes time.Time to byte slices.
|
|
type TimeEncoder interface {
|
|
Write(t time.Time)
|
|
Bytes() ([]byte, error)
|
|
}
|
|
|
|
// TimeDecoder decodes byte slices to time.Time values.
|
|
type TimeDecoder interface {
|
|
Next() bool
|
|
Read() time.Time
|
|
Error() error
|
|
}
|
|
|
|
type encoder struct {
|
|
ts []uint64
|
|
}
|
|
|
|
// NewTimeEncoder returns a TimeEncoder
|
|
func NewTimeEncoder() TimeEncoder {
|
|
return &encoder{}
|
|
}
|
|
|
|
// Write adds a time.Time to the compressed stream.
|
|
func (e *encoder) Write(t time.Time) {
|
|
e.ts = append(e.ts, uint64(t.UnixNano()))
|
|
}
|
|
|
|
func (e *encoder) reduce() (max, divisor uint64, rle bool, deltas []uint64) {
|
|
// Compute the deltas in place to avoid allocating another slice
|
|
deltas = e.ts
|
|
// Starting values for a max and divisor
|
|
max, divisor = 0, 1e12
|
|
|
|
// Indicates whether the the deltas can be run-length encoded
|
|
rle = true
|
|
|
|
// Iterate in reverse so we can apply deltas in place
|
|
for i := len(deltas) - 1; i > 0; i-- {
|
|
|
|
// First differential encode the values
|
|
deltas[i] = deltas[i] - deltas[i-1]
|
|
|
|
// We also need to keep track of the max value and largest common divisor
|
|
v := deltas[i]
|
|
|
|
if v > max {
|
|
max = v
|
|
}
|
|
|
|
for {
|
|
// If our value is divisible by 10, break. Otherwise, try the next smallest divisor.
|
|
if v%divisor == 0 {
|
|
break
|
|
}
|
|
divisor /= 10
|
|
}
|
|
|
|
// Skip the first value || see if prev = curr. The deltas can be RLE if the are all equal.
|
|
rle = i == len(deltas)-1 || rle && (deltas[i+1] == deltas[i])
|
|
}
|
|
return
|
|
}
|
|
|
|
// Bytes returns the encoded bytes of all written times.
|
|
func (e *encoder) Bytes() ([]byte, error) {
|
|
if len(e.ts) == 0 {
|
|
return []byte{}, nil
|
|
}
|
|
|
|
// Maximum and largest common divisor. rle is true if dts (the delta timestamps),
|
|
// are all the same.
|
|
max, div, rle, dts := e.reduce()
|
|
|
|
// The deltas are all the same, so we can run-length encode them
|
|
if rle && len(e.ts) > 1 {
|
|
return e.encodeRLE(e.ts[0], e.ts[1], div, len(e.ts))
|
|
}
|
|
|
|
// We can't compress this time-range, the deltas exceed 1 << 60
|
|
if max > simple8b.MaxValue {
|
|
return e.encodeRaw()
|
|
}
|
|
|
|
return e.encodePacked(div, dts)
|
|
}
|
|
|
|
func (e *encoder) encodePacked(div uint64, dts []uint64) ([]byte, error) {
|
|
enc := simple8b.NewEncoder()
|
|
for _, v := range dts[1:] {
|
|
enc.Write(uint64(v) / div)
|
|
}
|
|
|
|
b := make([]byte, 8+1)
|
|
|
|
// 4 high bits used for the encoding type
|
|
b[0] = byte(timeCompressedPackedSimple) << 4
|
|
// 4 low bits are the log10 divisor
|
|
b[0] |= byte(math.Log10(float64(div)))
|
|
|
|
// The first delta value
|
|
binary.BigEndian.PutUint64(b[1:9], uint64(dts[0]))
|
|
|
|
// The compressed deltas
|
|
deltas, err := enc.Bytes()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return append(b, deltas...), nil
|
|
}
|
|
|
|
func (e *encoder) encodeRaw() ([]byte, error) {
|
|
b := make([]byte, 1+len(e.ts)*8)
|
|
b[0] = byte(timeUncompressed) << 4
|
|
for i, v := range e.ts {
|
|
binary.BigEndian.PutUint64(b[1+i*8:1+i*8+8], uint64(v))
|
|
}
|
|
return b, nil
|
|
}
|
|
|
|
func (e *encoder) encodeRLE(first, delta, div uint64, n int) ([]byte, error) {
|
|
// Large varints can take up to 10 bytes
|
|
b := make([]byte, 1+10*3)
|
|
|
|
// 4 high bits used for the encoding type
|
|
b[0] = byte(timeCompressedRLE) << 4
|
|
// 4 low bits are the log10 divisor
|
|
b[0] |= byte(math.Log10(float64(div)))
|
|
|
|
i := 1
|
|
// The first timestamp
|
|
binary.BigEndian.PutUint64(b[i:], uint64(first))
|
|
i += 8
|
|
// The first delta
|
|
i += binary.PutUvarint(b[i:], uint64(delta/div))
|
|
// The number of times the delta is repeated
|
|
i += binary.PutUvarint(b[i:], uint64(n))
|
|
|
|
return b[:i], nil
|
|
}
|
|
|
|
type decoder struct {
|
|
v time.Time
|
|
ts []uint64
|
|
err error
|
|
}
|
|
|
|
func NewTimeDecoder(b []byte) TimeDecoder {
|
|
d := &decoder{}
|
|
d.decode(b)
|
|
return d
|
|
}
|
|
|
|
func (d *decoder) Next() bool {
|
|
if len(d.ts) == 0 {
|
|
return false
|
|
}
|
|
d.v = time.Unix(0, int64(d.ts[0]))
|
|
d.ts = d.ts[1:]
|
|
return true
|
|
}
|
|
|
|
func (d *decoder) Read() time.Time {
|
|
return d.v
|
|
}
|
|
|
|
func (d *decoder) Error() error {
|
|
return d.err
|
|
}
|
|
|
|
func (d *decoder) decode(b []byte) {
|
|
if len(b) == 0 {
|
|
return
|
|
}
|
|
|
|
// Encoding type is stored in the 4 high bits of the first byte
|
|
encoding := b[0] >> 4
|
|
switch encoding {
|
|
case timeUncompressed:
|
|
d.decodeRaw(b[1:])
|
|
case timeCompressedRLE:
|
|
d.decodeRLE(b)
|
|
case timeCompressedPackedSimple:
|
|
d.decodePacked(b)
|
|
default:
|
|
d.err = fmt.Errorf("unknown encoding: %v", encoding)
|
|
}
|
|
}
|
|
|
|
func (d *decoder) decodePacked(b []byte) {
|
|
div := uint64(math.Pow10(int(b[0] & 0xF)))
|
|
first := uint64(binary.BigEndian.Uint64(b[1:9]))
|
|
|
|
enc := simple8b.NewDecoder(b[9:])
|
|
|
|
deltas := []uint64{first}
|
|
for enc.Next() {
|
|
deltas = append(deltas, enc.Read())
|
|
}
|
|
|
|
// Compute the prefix sum and scale the deltas back up
|
|
for i := 1; i < len(deltas); i++ {
|
|
dgap := deltas[i] * div
|
|
deltas[i] = deltas[i-1] + dgap
|
|
}
|
|
|
|
d.ts = deltas
|
|
}
|
|
|
|
func (d *decoder) decodeRLE(b []byte) {
|
|
var i, n int
|
|
|
|
// Lower 4 bits hold the 10 based exponent so we can scale the values back up
|
|
mod := int64(math.Pow10(int(b[i] & 0xF)))
|
|
i++
|
|
|
|
// Next 8 bytes is the starting timestamp
|
|
first := binary.BigEndian.Uint64(b[i : i+8])
|
|
i += 8
|
|
|
|
// Next 1-10 bytes is our (scaled down by factor of 10) run length values
|
|
value, n := binary.Uvarint(b[i:])
|
|
|
|
// Scale the value back up
|
|
value *= uint64(mod)
|
|
i += n
|
|
|
|
// Last 1-10 bytes is how many times the value repeats
|
|
count, _ := binary.Uvarint(b[i:])
|
|
|
|
// Rebuild construct the original values now
|
|
deltas := make([]uint64, count)
|
|
for i := range deltas {
|
|
deltas[i] = value
|
|
}
|
|
|
|
// Reverse the delta-encoding
|
|
deltas[0] = first
|
|
for i := 1; i < len(deltas); i++ {
|
|
deltas[i] = deltas[i-1] + deltas[i]
|
|
}
|
|
|
|
d.ts = deltas
|
|
}
|
|
|
|
func (d *decoder) decodeRaw(b []byte) {
|
|
d.ts = make([]uint64, len(b)/8)
|
|
for i := range d.ts {
|
|
d.ts[i] = binary.BigEndian.Uint64(b[i*8 : i*8+8])
|
|
|
|
delta := d.ts[i]
|
|
// Compute the prefix sum and scale the deltas back up
|
|
if i > 0 {
|
|
d.ts[i] = d.ts[i-1] + delta
|
|
}
|
|
}
|
|
}
|