influxdb/tsdb/series_file.go

843 lines
20 KiB
Go

package tsdb
import (
"bufio"
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"io/ioutil"
"os"
"path/filepath"
"sync"
"github.com/cespare/xxhash"
"github.com/influxdata/influxdb/models"
"github.com/influxdata/influxdb/pkg/mmap"
"github.com/influxdata/influxdb/pkg/rhh"
)
// ErrSeriesOverflow is returned when too many series are added to a series writer.
var ErrSeriesOverflow = errors.New("series overflow")
// SeriesIDSize is the size in bytes of a series key ID.
const SeriesIDSize = 8
// Series flag constants.
const (
SeriesFileFlagSize = 1
SeriesFileTombstoneFlag = 0x01
)
// MaxSeriesFileHashSize is the maximum number of series in a single hash map.
const MaxSeriesFileHashSize = (1 << 20 * SeriesMapLoadFactor) / 100 // (1MB * 90) / 100 == ~943K
// SeriesMapThreshold is the number of series IDs to hold in the in-memory
// series map before compacting and rebuilding the on-disk representation.
const SeriesMapThreshold = 1 << 25 // ~33M ids * 8 bytes per id == 256MB
// SeriesFile represents the section of the index that holds series data.
type SeriesFile struct {
mu sync.RWMutex
path string
data []byte
file *os.File
w *bufio.Writer
size int64
seriesMap *seriesMap
compactingSeriesMap *seriesMap
// MaxSize is the maximum size of the file.
MaxSize int64
}
// NewSeriesFile returns a new instance of SeriesFile.
func NewSeriesFile(path string) *SeriesFile {
return &SeriesFile{
path: path,
MaxSize: DefaultMaxSeriesFileSize,
}
}
// Open memory maps the data file at the file's path.
func (f *SeriesFile) Open() error {
// Create the parent directories if they don't exist.
if err := os.MkdirAll(filepath.Join(filepath.Dir(f.path)), 0700); err != nil {
return err
}
// Open file handler for appending.
file, err := os.OpenFile(f.path, os.O_WRONLY|os.O_CREATE|os.O_APPEND, 0666)
if err != nil {
return err
}
f.file = file
// Ensure header byte exists.
f.size = 0
if fi, err := file.Stat(); err != nil {
return err
} else if fi.Size() > 0 {
f.size = fi.Size()
} else {
if _, err := f.file.Write([]byte{0}); err != nil {
return err
}
f.size = 1
}
// Wrap file write a bufferred writer.
f.w = bufio.NewWriter(f.file)
// Memory map file data.
data, err := mmap.Map(f.path, f.MaxSize)
if err != nil {
return fmt.Errorf("open series file: %v", err)
}
f.data = data
// Load series map.
m := newSeriesMap(f.path+SeriesMapFileSuffix, f)
if err := m.open(); err != nil {
return err
}
f.seriesMap = m
return nil
}
// Close unmaps the data file.
func (f *SeriesFile) Close() error {
f.mu.Lock()
defer f.mu.Unlock()
if f.data != nil {
if err := mmap.Unmap(f.data); err != nil {
return err
}
f.data = nil
}
if f.file != nil {
if err := f.file.Close(); err != nil {
return err
}
f.file = nil
}
if f.seriesMap != nil {
if err := f.seriesMap.close(); err != nil {
return err
}
f.seriesMap = nil
}
return nil
}
// Path returns the path to the file.
func (f *SeriesFile) Path() string { return f.path }
// CreateSeriesListIfNotExists creates a list of series in bulk if they don't exist. Returns the offset of the series.
func (f *SeriesFile) CreateSeriesListIfNotExists(names [][]byte, tagsSlice []models.Tags, buf []byte) (offsets []uint64, err error) {
var createRequired bool
type byteRange struct {
offset, size uint64
}
newKeyRanges := make([]byteRange, 0, len(names))
// Find existing series under read-only lock.
f.mu.RLock()
offsets = make([]uint64, len(names))
for i := range names {
offset := f.offset(names[i], tagsSlice[i], buf)
if offset == 0 {
createRequired = true
}
offsets[i] = offset
}
f.mu.RUnlock()
// Return immediately if no series need to be created.
if !createRequired {
return offsets, nil
}
// Obtain write lock to create new series.
f.mu.Lock()
defer f.mu.Unlock()
// Track offsets of duplicate series.
newOffsets := make(map[string]uint64, len(offsets))
for i := range names {
// Skip series that have already been created.
if offset := offsets[i]; offset != 0 {
continue
}
// Generate series key.
buf = AppendSeriesKey(buf[:0], names[i], tagsSlice[i])
// Re-attempt lookup under write lock.
if offsets[i] = newOffsets[string(buf)]; offsets[i] != 0 {
continue
} else if offsets[i] = f.offset(names[i], tagsSlice[i], buf); offsets[i] != 0 {
continue
}
// Append flag byte.
if _, err := f.w.Write([]byte{0}); err != nil {
return nil, err
}
f.size += SeriesFileFlagSize
// Append series to the end of the file.
offset := uint64(f.size)
if _, err := f.w.Write(buf); err != nil {
return nil, err
}
newOffsets[string(buf)] = offset
// Move current offset to the end.
sz := int64(len(buf))
f.size += sz
// Append new key to be added to hash map after flush.
offsets[i] = offset
newKeyRanges = append(newKeyRanges, byteRange{offset, uint64(sz)})
}
// Flush writer.
if err := f.w.Flush(); err != nil {
return nil, err
}
// Add keys to hash map(s).
for _, keyRange := range newKeyRanges {
key := f.data[keyRange.offset : keyRange.offset+keyRange.size]
f.seriesMap.inmem.Put(key, keyRange.offset)
if f.compactingSeriesMap != nil {
f.compactingSeriesMap.inmem.Put(key, keyRange.offset)
}
}
// Begin compaction if in-memory map is past threshold.
if f.seriesMap.inmem.Len() >= SeriesMapThreshold {
if err := f.compactSeriesMap(); err != nil {
return nil, err
}
}
return offsets, nil
}
// DeleteSeriesID flags a series as permanently deleted.
// If the series is reintroduced later then it must create a new offset.
func (f *SeriesFile) DeleteSeriesID(offset uint64) error {
f.mu.Lock()
defer f.mu.Unlock()
// Already tombstoned, ignore.
if _, ok := f.seriesMap.tombstones[offset]; ok {
return nil
}
// Write tombstone entry.
if _, err := f.w.Write([]byte{SeriesFileTombstoneFlag}); err != nil {
return err
} else if err := binary.Write(f.w, binary.BigEndian, offset); err != nil {
return err
} else if err := f.w.Flush(); err != nil {
return err
}
f.size += SeriesFileTombstoneFlag + 8
// Mark tombstone in memory.
f.seriesMap.tombstones[offset] = struct{}{}
return nil
}
// IsDeleted returns true if the ID has been deleted before.
func (f *SeriesFile) IsDeleted(offset uint64) bool {
f.mu.RLock()
_, ok := f.seriesMap.tombstones[offset]
f.mu.RUnlock()
return ok
}
// Offset returns the byte offset of the series within the block.
func (f *SeriesFile) Offset(name []byte, tags models.Tags, buf []byte) (offset uint64) {
f.mu.RLock()
offset = f.offset(name, tags, buf)
f.mu.RUnlock()
return offset
}
func (f *SeriesFile) offset(name []byte, tags models.Tags, buf []byte) uint64 {
offset := f.seriesMap.offset(AppendSeriesKey(buf[:0], name, tags))
if offset == 0 {
return 0
} else if _, ok := f.seriesMap.tombstones[offset]; ok {
return 0
}
return offset
}
// SeriesKey returns the series key for a given offset.
func (f *SeriesFile) SeriesKey(offset uint64) []byte {
if offset == 0 {
return nil
}
buf := f.data[offset:]
v, n := binary.Uvarint(buf)
return buf[:n+int(v)]
}
// Series returns the parsed series name and tags for an offset.
func (f *SeriesFile) Series(offset uint64) ([]byte, models.Tags) {
key := f.SeriesKey(offset)
if key == nil {
return nil, nil
}
return ParseSeriesKey(key)
}
// HasSeries return true if the series exists.
func (f *SeriesFile) HasSeries(name []byte, tags models.Tags, buf []byte) bool {
return f.Offset(name, tags, buf) > 0
}
// SeriesCount returns the number of series.
func (f *SeriesFile) SeriesCount() uint64 {
f.mu.RLock()
n := uint64(f.seriesMap.n + f.seriesMap.inmem.Len())
f.mu.RUnlock()
return n
}
// SeriesIterator returns an iterator over all the series.
func (f *SeriesFile) SeriesIDIterator() SeriesIDIterator {
return &seriesFileIterator{
offset: 1,
data: f.data[1:f.size],
}
}
// Backup writes the series file to w.
func (f *SeriesFile) Backup(w io.Writer) error {
dir, err := ioutil.TempDir("", "influxd-series-file")
if err != nil {
return err
}
defer os.RemoveAll(dir)
// Create a hard link to the current series file.
tmpFilename := filepath.Join(dir, SeriesFileName)
if err := func() error {
f.mu.RLock()
defer f.mu.RUnlock()
if err := os.Link(f.path, tmpFilename); err != nil {
return fmt.Errorf("error creating series file hard link: %q", err)
}
return nil
}(); err != nil {
return err
}
// Read hard linked file.
file, err := os.Open(tmpFilename)
if err != nil {
return err
}
defer file.Close()
// Copy to outgoing writer.
if _, err := io.Copy(w, file); err != nil {
return err
}
return nil
}
// Restore appends new data from w to the end of the series file.
func (f *SeriesFile) Restore(r io.Reader) error {
f.mu.Lock()
defer f.mu.Unlock()
// Ensure the beginning of the file matches the restore.
if h0, err := hashReader(bytes.NewReader(f.data[:f.size])); err != nil {
return err
} else if h1, err := hashReader(io.LimitReader(r, f.size)); err != nil {
return err
} else if !bytes.Equal(h0, h1) {
return fmt.Errorf("restoring series file doesn't match first %d bytes", f.size)
}
// Copy the rest of the reader to the end of the series file.
// We need to keep the mmapped so we're not able copy elsewhere and swap.
// If an error occurs then we'll attempt to truncate to the original size.
size := f.size
if _, err := io.Copy(f.file, r); err != nil {
f.file.Truncate(size)
return err
}
// Reopen series map.
if err := f.seriesMap.close(); err != nil {
return err
}
f.seriesMap = newSeriesMap(f.path+SeriesMapFileSuffix, f)
if err := f.seriesMap.open(); err != nil {
return err
}
return nil
}
func (f *SeriesFile) compactSeriesMap() error {
// TEMP: Compaction should occur in parallel.
// Encode to a new buffer.
buf := encodeSeriesMap(f.data[:f.size], f.seriesMap.n+f.seriesMap.inmem.Len())
// Open temporary file.
path := f.seriesMap.path
compactionPath := path + ".compacting"
file, err := os.Create(compactionPath)
if err != nil {
return err
}
defer file.Close()
// Write map to disk & close.
if _, err := file.Write(buf); err != nil {
return err
} else if err := file.Close(); err != nil {
return err
}
// Close series map.
if err := f.seriesMap.close(); err != nil {
return err
}
// Swap map to new location.
if err := os.Rename(compactionPath, path); err != nil {
return err
}
// Re-open series map.
f.seriesMap = newSeriesMap(path, f)
if err := f.seriesMap.open(); err != nil {
return err
}
return nil
}
// seriesFileIterator is an iterator over a series ids in a series list.
type seriesFileIterator struct {
data []byte
offset uint64
}
// Next returns the next series element.
func (itr *seriesFileIterator) Next() (SeriesIDElem, error) {
for {
if len(itr.data) == 0 {
return SeriesIDElem{}, nil
}
// Read flag.
flag := itr.data[0]
itr.data = itr.data[1:]
itr.offset++
switch flag {
case SeriesFileTombstoneFlag:
itr.data = itr.data[8:] // skip
itr.offset += 8
default:
var key []byte
key, itr.data = ReadSeriesKey(itr.data)
elem := SeriesIDElem{SeriesID: itr.offset}
itr.offset += uint64(len(key))
return elem, nil
}
}
}
func (itr *seriesFileIterator) Close() error { return nil }
// AppendSeriesKey serializes name and tags to a byte slice.
// The total length is prepended as a uvarint.
func AppendSeriesKey(dst []byte, name []byte, tags models.Tags) []byte {
buf := make([]byte, binary.MaxVarintLen64)
origLen := len(dst)
// The tag count is variable encoded, so we need to know ahead of time what
// the size of the tag count value will be.
tcBuf := make([]byte, binary.MaxVarintLen64)
tcSz := binary.PutUvarint(tcBuf, uint64(len(tags)))
// Size of name/tags. Does not include total length.
size := 0 + //
2 + // size of measurement
len(name) + // measurement
tcSz + // size of number of tags
(4 * len(tags)) + // length of each tag key and value
tags.Size() // size of tag keys/values
// Variable encode length.
totalSz := binary.PutUvarint(buf, uint64(size))
// If caller doesn't provide a buffer then pre-allocate an exact one.
if dst == nil {
dst = make([]byte, 0, size+totalSz)
}
// Append total length.
dst = append(dst, buf[:totalSz]...)
// Append name.
binary.BigEndian.PutUint16(buf, uint16(len(name)))
dst = append(dst, buf[:2]...)
dst = append(dst, name...)
// Append tag count.
dst = append(dst, tcBuf[:tcSz]...)
// Append tags.
for _, tag := range tags {
binary.BigEndian.PutUint16(buf, uint16(len(tag.Key)))
dst = append(dst, buf[:2]...)
dst = append(dst, tag.Key...)
binary.BigEndian.PutUint16(buf, uint16(len(tag.Value)))
dst = append(dst, buf[:2]...)
dst = append(dst, tag.Value...)
}
// Verify that the total length equals the encoded byte count.
if got, exp := len(dst)-origLen, size+totalSz; got != exp {
panic(fmt.Sprintf("series key encoding does not match calculated total length: actual=%d, exp=%d, key=%x", got, exp, dst))
}
return dst
}
// ReadSeriesKey returns the series key from the beginning of the buffer.
func ReadSeriesKey(data []byte) (key, remainder []byte) {
sz, n := binary.Uvarint(data)
return data[:int(sz)+n], data[int(sz)+n:]
}
func ReadSeriesKeyLen(data []byte) (sz int, remainder []byte) {
sz64, i := binary.Uvarint(data)
return int(sz64), data[i:]
}
func ReadSeriesKeyMeasurement(data []byte) (name, remainder []byte) {
n, data := binary.BigEndian.Uint16(data), data[2:]
return data[:n], data[n:]
}
func ReadSeriesKeyTagN(data []byte) (n int, remainder []byte) {
n64, i := binary.Uvarint(data)
return int(n64), data[i:]
}
func ReadSeriesKeyTag(data []byte) (key, value, remainder []byte) {
n, data := binary.BigEndian.Uint16(data), data[2:]
key, data = data[:n], data[n:]
n, data = binary.BigEndian.Uint16(data), data[2:]
value, data = data[:n], data[n:]
return key, value, data
}
// ParseSeriesKey extracts the name & tags from a series key.
func ParseSeriesKey(data []byte) (name []byte, tags models.Tags) {
_, data = ReadSeriesKeyLen(data)
name, data = ReadSeriesKeyMeasurement(data)
tagN, data := ReadSeriesKeyTagN(data)
tags = make(models.Tags, tagN)
for i := 0; i < tagN; i++ {
var key, value []byte
key, value, data = ReadSeriesKeyTag(data)
tags[i] = models.Tag{Key: key, Value: value}
}
return name, tags
}
func CompareSeriesKeys(a, b []byte) int {
// Handle 'nil' keys.
if len(a) == 0 && len(b) == 0 {
return 0
} else if len(a) == 0 {
return -1
} else if len(b) == 0 {
return 1
}
// Read total size.
_, a = ReadSeriesKeyLen(a)
_, b = ReadSeriesKeyLen(b)
// Read names.
name0, a := ReadSeriesKeyMeasurement(a)
name1, b := ReadSeriesKeyMeasurement(b)
// Compare names, return if not equal.
if cmp := bytes.Compare(name0, name1); cmp != 0 {
return cmp
}
// Read tag counts.
tagN0, a := ReadSeriesKeyTagN(a)
tagN1, b := ReadSeriesKeyTagN(b)
// Compare each tag in order.
for i := 0; ; i++ {
// Check for EOF.
if i == tagN0 && i == tagN1 {
return 0
} else if i == tagN0 {
return -1
} else if i == tagN1 {
return 1
}
// Read keys.
var key0, key1, value0, value1 []byte
key0, value0, a = ReadSeriesKeyTag(a)
key1, value1, b = ReadSeriesKeyTag(b)
// Compare keys & values.
if cmp := bytes.Compare(key0, key1); cmp != 0 {
return cmp
} else if cmp := bytes.Compare(value0, value1); cmp != 0 {
return cmp
}
}
}
type seriesKeys [][]byte
func (a seriesKeys) Len() int { return len(a) }
func (a seriesKeys) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a seriesKeys) Less(i, j int) bool {
return CompareSeriesKeys(a[i], a[j]) == -1
}
const (
SeriesMapFileSuffix = "map"
SeriesMapLoadFactor = 90
SeriesMapCountSize = 8
SeriesMapMaxOffsetSize = 8
SeriesMapHeaderSize = SeriesMapCountSize + SeriesMapMaxOffsetSize
SeriesMapElemSize = 8 + 8 // hash + value
)
// seriesMap represents a read-only hash map of series offsets.
type seriesMap struct {
path string
sfile *SeriesFile
inmem *rhh.HashMap
tombstones map[uint64]struct{}
n int64
maxOffset uint64
capacity int64
data []byte
mask int64
}
func newSeriesMap(path string, sfile *SeriesFile) *seriesMap {
return &seriesMap{
path: path,
sfile: sfile,
tombstones: make(map[uint64]struct{}),
}
}
func (m *seriesMap) open() error {
// Memory map file data.
data, err := mmap.Map(m.path, 0)
if err != nil && !os.IsNotExist(err) {
return err
}
m.data = data
// Read header if available.
if len(m.data) > 0 {
buf := data
m.n, buf = int64(binary.BigEndian.Uint64(buf)), buf[SeriesMapCountSize:]
m.maxOffset, buf = uint64(binary.BigEndian.Uint64(buf)), buf[SeriesMapMaxOffsetSize:]
m.capacity = int64(len(buf) / SeriesMapElemSize)
m.mask = int64(m.capacity - 1)
} else {
m.n, m.maxOffset = 0, 1
}
// Index all data created after the on-disk hash map.
inmem := rhh.NewHashMap(rhh.DefaultOptions)
tombstones := make(map[uint64]struct{})
for b, offset := m.sfile.data[m.maxOffset:m.sfile.size], m.maxOffset; len(b) > 0; {
// Read flag.
flag := b[0]
b, offset = b[1:], offset+1
switch flag {
case SeriesFileTombstoneFlag:
seriesID := binary.BigEndian.Uint64(b[:8])
b = b[8:]
tombstones[seriesID] = struct{}{}
default:
var key []byte
key, b = ReadSeriesKey(b)
inmem.Put(key, offset)
offset += uint64(len(key))
}
}
m.inmem = inmem
m.tombstones = tombstones
return nil
}
func (m *seriesMap) close() error {
if m.data != nil {
if err := mmap.Unmap(m.data); err != nil {
return err
}
m.data = nil
}
return nil
}
// offset finds the series key's offset in either the on-disk or in-memory hash maps.
func (m *seriesMap) offset(key []byte) uint64 {
offset, _ := m.inmem.Get(key).(uint64)
if _, ok := m.tombstones[offset]; ok {
return 0
} else if offset != 0 {
return offset
}
return m.onDiskOffset(key)
}
func (m *seriesMap) onDiskOffset(key []byte) uint64 {
if len(m.data) == 0 {
return 0
}
hash := rhh.HashKey(key)
for d, pos := int64(0), hash&m.mask; ; d, pos = d+1, (pos+1)&m.mask {
elem := m.data[SeriesMapHeaderSize+(pos*SeriesMapElemSize):]
elem = elem[:SeriesMapElemSize]
h := int64(binary.BigEndian.Uint64(elem[:8]))
if h == 0 || d > rhh.Dist(h, pos, m.capacity) {
return 0
} else if h == hash {
if v := binary.BigEndian.Uint64(elem[8:]); bytes.Equal(m.sfile.SeriesKey(v), key) {
return v
}
}
}
}
// encodeSeriesMap encodes series file data into a series map.
func encodeSeriesMap(src []byte, n int64) []byte {
capacity := (n * 100) / SeriesMapLoadFactor
capacity = pow2(capacity)
// Build output buffer with count and max offset at the beginning.
buf := make([]byte, SeriesMapHeaderSize+(capacity*SeriesMapElemSize))
binary.BigEndian.PutUint64(buf[0:8], uint64(n))
binary.BigEndian.PutUint64(buf[8:16], uint64(len(src)))
// Loop over all series in data. Offset starts at 1.
for b, offset := src[1:], uint64(1); len(b) > 0; {
var key []byte
key, b = ReadSeriesKey(b)
insertSeriesMap(src, buf, key, offset, capacity)
offset += uint64(len(key))
}
return buf
}
func insertSeriesMap(src, buf, key []byte, val uint64, capacity int64) {
mask := int64(capacity - 1)
hash := rhh.HashKey(key)
// Continue searching until we find an empty slot or lower probe distance.
for dist, pos := int64(0), hash&mask; ; dist, pos = dist+1, (pos+1)&mask {
elem := buf[SeriesMapHeaderSize+(pos*SeriesMapElemSize):]
elem = elem[:SeriesMapElemSize]
h := int64(binary.BigEndian.Uint64(elem[:8]))
v := binary.BigEndian.Uint64(elem[8:])
k, _ := ReadSeriesKey(src[v:])
// Empty slot found or matching key, insert and exit.
if h == 0 || bytes.Equal(key, k) {
binary.BigEndian.PutUint64(elem[:8], uint64(hash))
binary.BigEndian.PutUint64(elem[8:], val)
return
}
// If the existing elem has probed less than us, then swap places with
// existing elem, and keep going to find another slot for that elem.
if d := rhh.Dist(h, pos, capacity); d < dist {
// Insert current values.
binary.BigEndian.PutUint64(elem[:8], uint64(hash))
binary.BigEndian.PutUint64(elem[8:], val)
// Swap with values in that position.
hash, key, val = h, k, v
// Update current distance.
dist = d
}
}
}
// pow2 returns the number that is the next highest power of 2.
// Returns v if it is a power of 2.
func pow2(v int64) int64 {
for i := int64(2); i < 1<<62; i *= 2 {
if i >= v {
return i
}
}
panic("unreachable")
}
// hashReader generates an xxhash from the contents of r.
func hashReader(r io.Reader) ([]byte, error) {
h := xxhash.New()
if _, err := io.Copy(h, r); err != nil {
return nil, err
}
return h.Sum(nil), nil
}