influxdb/query/select.go

975 lines
28 KiB
Go

package query
import (
"context"
"fmt"
"io"
"sort"
"strings"
"time"
"github.com/influxdata/influxdb/pkg/tracing"
"github.com/influxdata/influxdb/query/internal/gota"
"github.com/influxdata/influxql"
)
var DefaultTypeMapper = influxql.MultiTypeMapper(
FunctionTypeMapper{},
MathTypeMapper{},
)
// SelectOptions are options that customize the select call.
type SelectOptions struct {
// Authorizer is used to limit access to data
Authorizer Authorizer
// Node to exclusively read from.
// If zero, all nodes are used.
NodeID uint64
// Maximum number of concurrent series.
MaxSeriesN int
// Maximum number of points to read from the query.
// This requires the passed in context to have a Monitor that is
// created using WithMonitor.
MaxPointN int
// Maximum number of buckets for a statement.
MaxBucketsN int
}
// ShardMapper retrieves and maps shards into an IteratorCreator that can later be
// used for executing queries.
type ShardMapper interface {
MapShards(sources influxql.Sources, t influxql.TimeRange, opt SelectOptions) (ShardGroup, error)
}
// ShardGroup represents a shard or a collection of shards that can be accessed
// for creating iterators.
// When creating iterators, the resource used for reading the iterators should be
// separate from the resource used to map the shards. When the ShardGroup is closed,
// it should not close any resources associated with the created Iterator. Those
// resources belong to the Iterator and will be closed when the Iterator itself is
// closed.
// The query engine operates under this assumption and will close the shard group
// after creating the iterators, but before the iterators are actually read.
type ShardGroup interface {
IteratorCreator
influxql.FieldMapper
io.Closer
}
// Select is a prepared statement that is ready to be executed.
type PreparedStatement interface {
// Select creates the Iterators that will be used to read the query.
Select(ctx context.Context) (Cursor, error)
// Explain outputs the explain plan for this statement.
Explain() (string, error)
// Close closes the resources associated with this prepared statement.
// This must be called as the mapped shards may hold open resources such
// as network connections.
Close() error
}
// Prepare will compile the statement with the default compile options and
// then prepare the query.
func Prepare(stmt *influxql.SelectStatement, shardMapper ShardMapper, opt SelectOptions) (PreparedStatement, error) {
c, err := Compile(stmt, CompileOptions{})
if err != nil {
return nil, err
}
return c.Prepare(shardMapper, opt)
}
// Select compiles, prepares, and then initiates execution of the query using the
// default compile options.
func Select(ctx context.Context, stmt *influxql.SelectStatement, shardMapper ShardMapper, opt SelectOptions) (Cursor, error) {
s, err := Prepare(stmt, shardMapper, opt)
if err != nil {
return nil, err
}
// Must be deferred so it runs after Select.
defer s.Close()
return s.Select(ctx)
}
type preparedStatement struct {
stmt *influxql.SelectStatement
opt IteratorOptions
ic interface {
IteratorCreator
io.Closer
}
columns []string
maxPointN int
now time.Time
}
func (p *preparedStatement) Select(ctx context.Context) (Cursor, error) {
// TODO(jsternberg): Remove this hacky method of propagating now.
// Each level of the query should use a time range discovered during
// compilation, but that requires too large of a refactor at the moment.
ctx = context.WithValue(ctx, "now", p.now)
opt := p.opt
opt.InterruptCh = ctx.Done()
cur, err := buildCursor(ctx, p.stmt, p.ic, opt)
if err != nil {
return nil, err
}
// If a monitor exists and we are told there is a maximum number of points,
// register the monitor function.
if m := MonitorFromContext(ctx); m != nil {
if p.maxPointN > 0 {
monitor := PointLimitMonitor(cur, DefaultStatsInterval, p.maxPointN)
m.Monitor(monitor)
}
}
return cur, nil
}
func (p *preparedStatement) Close() error {
return p.ic.Close()
}
// buildExprIterator creates an iterator for an expression.
func buildExprIterator(ctx context.Context, expr influxql.Expr, ic IteratorCreator, sources influxql.Sources, opt IteratorOptions, selector, writeMode bool) (Iterator, error) {
opt.Expr = expr
b := exprIteratorBuilder{
ic: ic,
sources: sources,
opt: opt,
selector: selector,
writeMode: writeMode,
}
switch expr := expr.(type) {
case *influxql.VarRef:
return b.buildVarRefIterator(ctx, expr)
case *influxql.Call:
return b.buildCallIterator(ctx, expr)
default:
return nil, fmt.Errorf("invalid expression type: %T", expr)
}
}
type exprIteratorBuilder struct {
ic IteratorCreator
sources influxql.Sources
opt IteratorOptions
selector bool
writeMode bool
}
func (b *exprIteratorBuilder) buildVarRefIterator(ctx context.Context, expr *influxql.VarRef) (Iterator, error) {
inputs := make([]Iterator, 0, len(b.sources))
if err := func() error {
for _, source := range b.sources {
switch source := source.(type) {
case *influxql.Measurement:
input, err := b.ic.CreateIterator(ctx, source, b.opt)
if err != nil {
return err
}
inputs = append(inputs, input)
case *influxql.SubQuery:
subquery := subqueryBuilder{
ic: b.ic,
stmt: source.Statement,
}
input, err := subquery.buildVarRefIterator(ctx, expr, b.opt)
if err != nil {
return err
} else if input != nil {
inputs = append(inputs, input)
}
}
}
return nil
}(); err != nil {
Iterators(inputs).Close()
return nil, err
}
// Variable references in this section will always go into some call
// iterator. Combine it with a merge iterator.
itr := NewMergeIterator(inputs, b.opt)
if itr == nil {
itr = &nilFloatIterator{}
}
if b.opt.InterruptCh != nil {
itr = NewInterruptIterator(itr, b.opt.InterruptCh)
}
return itr, nil
}
func (b *exprIteratorBuilder) buildCallIterator(ctx context.Context, expr *influxql.Call) (Iterator, error) {
// TODO(jsternberg): Refactor this. This section needs to die in a fire.
opt := b.opt
// Eliminate limits and offsets if they were previously set. These are handled by the caller.
opt.Limit, opt.Offset = 0, 0
switch expr.Name {
case "distinct":
opt.Ordered = true
input, err := buildExprIterator(ctx, expr.Args[0].(*influxql.VarRef), b.ic, b.sources, opt, b.selector, false)
if err != nil {
return nil, err
}
input, err = NewDistinctIterator(input, opt)
if err != nil {
return nil, err
}
return NewIntervalIterator(input, opt), nil
case "sample":
opt.Ordered = true
input, err := buildExprIterator(ctx, expr.Args[0], b.ic, b.sources, opt, b.selector, false)
if err != nil {
return nil, err
}
size := expr.Args[1].(*influxql.IntegerLiteral)
return newSampleIterator(input, opt, int(size.Val))
case "holt_winters", "holt_winters_with_fit":
opt.Ordered = true
input, err := buildExprIterator(ctx, expr.Args[0], b.ic, b.sources, opt, b.selector, false)
if err != nil {
return nil, err
}
h := expr.Args[1].(*influxql.IntegerLiteral)
m := expr.Args[2].(*influxql.IntegerLiteral)
includeFitData := "holt_winters_with_fit" == expr.Name
interval := opt.Interval.Duration
// Redefine interval to be unbounded to capture all aggregate results
opt.StartTime = influxql.MinTime
opt.EndTime = influxql.MaxTime
opt.Interval = Interval{}
return newHoltWintersIterator(input, opt, int(h.Val), int(m.Val), includeFitData, interval)
case "derivative", "non_negative_derivative", "difference", "non_negative_difference", "moving_average", "exponential_moving_average", "double_exponential_moving_average", "triple_exponential_moving_average", "relative_strength_index", "triple_exponential_derivative", "kaufmans_efficiency_ratio", "kaufmans_adaptive_moving_average", "chande_momentum_oscillator", "elapsed":
if !opt.Interval.IsZero() {
if opt.Ascending {
opt.StartTime -= int64(opt.Interval.Duration)
} else {
opt.EndTime += int64(opt.Interval.Duration)
}
}
opt.Ordered = true
input, err := buildExprIterator(ctx, expr.Args[0], b.ic, b.sources, opt, b.selector, false)
if err != nil {
return nil, err
}
switch expr.Name {
case "derivative", "non_negative_derivative":
interval := opt.DerivativeInterval()
isNonNegative := (expr.Name == "non_negative_derivative")
return newDerivativeIterator(input, opt, interval, isNonNegative)
case "elapsed":
interval := opt.ElapsedInterval()
return newElapsedIterator(input, opt, interval)
case "difference", "non_negative_difference":
isNonNegative := (expr.Name == "non_negative_difference")
return newDifferenceIterator(input, opt, isNonNegative)
case "moving_average":
n := expr.Args[1].(*influxql.IntegerLiteral)
if n.Val > 1 && !opt.Interval.IsZero() {
if opt.Ascending {
opt.StartTime -= int64(opt.Interval.Duration) * (n.Val - 1)
} else {
opt.EndTime += int64(opt.Interval.Duration) * (n.Val - 1)
}
}
return newMovingAverageIterator(input, int(n.Val), opt)
case "exponential_moving_average", "double_exponential_moving_average", "triple_exponential_moving_average", "relative_strength_index", "triple_exponential_derivative":
n := expr.Args[1].(*influxql.IntegerLiteral)
if n.Val > 1 && !opt.Interval.IsZero() {
if opt.Ascending {
opt.StartTime -= int64(opt.Interval.Duration) * (n.Val - 1)
} else {
opt.EndTime += int64(opt.Interval.Duration) * (n.Val - 1)
}
}
nHold := -1
if len(expr.Args) >= 3 {
nHold = int(expr.Args[2].(*influxql.IntegerLiteral).Val)
}
warmupType := gota.WarmEMA
if len(expr.Args) >= 4 {
if warmupType, err = gota.ParseWarmupType(expr.Args[3].(*influxql.StringLiteral).Val); err != nil {
return nil, err
}
}
switch expr.Name {
case "exponential_moving_average":
return newExponentialMovingAverageIterator(input, int(n.Val), nHold, warmupType, opt)
case "double_exponential_moving_average":
return newDoubleExponentialMovingAverageIterator(input, int(n.Val), nHold, warmupType, opt)
case "triple_exponential_moving_average":
return newTripleExponentialMovingAverageIterator(input, int(n.Val), nHold, warmupType, opt)
case "relative_strength_index":
return newRelativeStrengthIndexIterator(input, int(n.Val), nHold, warmupType, opt)
case "triple_exponential_derivative":
return newTripleExponentialDerivativeIterator(input, int(n.Val), nHold, warmupType, opt)
}
case "kaufmans_efficiency_ratio", "kaufmans_adaptive_moving_average":
n := expr.Args[1].(*influxql.IntegerLiteral)
if n.Val > 1 && !opt.Interval.IsZero() {
if opt.Ascending {
opt.StartTime -= int64(opt.Interval.Duration) * (n.Val - 1)
} else {
opt.EndTime += int64(opt.Interval.Duration) * (n.Val - 1)
}
}
nHold := -1
if len(expr.Args) >= 3 {
nHold = int(expr.Args[2].(*influxql.IntegerLiteral).Val)
}
switch expr.Name {
case "kaufmans_efficiency_ratio":
return newKaufmansEfficiencyRatioIterator(input, int(n.Val), nHold, opt)
case "kaufmans_adaptive_moving_average":
return newKaufmansAdaptiveMovingAverageIterator(input, int(n.Val), nHold, opt)
}
case "chande_momentum_oscillator":
n := expr.Args[1].(*influxql.IntegerLiteral)
if n.Val > 1 && !opt.Interval.IsZero() {
if opt.Ascending {
opt.StartTime -= int64(opt.Interval.Duration) * (n.Val - 1)
} else {
opt.EndTime += int64(opt.Interval.Duration) * (n.Val - 1)
}
}
nHold := -1
if len(expr.Args) >= 3 {
nHold = int(expr.Args[2].(*influxql.IntegerLiteral).Val)
}
warmupType := gota.WarmupType(-1)
if len(expr.Args) >= 4 {
wt := expr.Args[3].(*influxql.StringLiteral).Val
if wt != "none" {
if warmupType, err = gota.ParseWarmupType(wt); err != nil {
return nil, err
}
}
}
return newChandeMomentumOscillatorIterator(input, int(n.Val), nHold, warmupType, opt)
}
panic(fmt.Sprintf("invalid series aggregate function: %s", expr.Name))
case "cumulative_sum":
opt.Ordered = true
input, err := buildExprIterator(ctx, expr.Args[0], b.ic, b.sources, opt, b.selector, false)
if err != nil {
return nil, err
}
return newCumulativeSumIterator(input, opt)
case "integral":
opt.Ordered = true
input, err := buildExprIterator(ctx, expr.Args[0].(*influxql.VarRef), b.ic, b.sources, opt, false, false)
if err != nil {
return nil, err
}
interval := opt.IntegralInterval()
return newIntegralIterator(input, opt, interval)
case "top":
if len(expr.Args) < 2 {
return nil, fmt.Errorf("top() requires 2 or more arguments, got %d", len(expr.Args))
}
var input Iterator
if len(expr.Args) > 2 {
// Create a max iterator using the groupings in the arguments.
dims := make(map[string]struct{}, len(expr.Args)-2+len(opt.GroupBy))
for i := 1; i < len(expr.Args)-1; i++ {
ref := expr.Args[i].(*influxql.VarRef)
dims[ref.Val] = struct{}{}
}
for dim := range opt.GroupBy {
dims[dim] = struct{}{}
}
call := &influxql.Call{
Name: "max",
Args: expr.Args[:1],
}
callOpt := opt
callOpt.Expr = call
callOpt.GroupBy = dims
callOpt.Fill = influxql.NoFill
builder := *b
builder.opt = callOpt
builder.selector = true
builder.writeMode = false
i, err := builder.callIterator(ctx, call, callOpt)
if err != nil {
return nil, err
}
input = i
} else {
// There are no arguments so do not organize the points by tags.
builder := *b
builder.opt.Expr = expr.Args[0]
builder.selector = true
builder.writeMode = false
ref := expr.Args[0].(*influxql.VarRef)
i, err := builder.buildVarRefIterator(ctx, ref)
if err != nil {
return nil, err
}
input = i
}
n := expr.Args[len(expr.Args)-1].(*influxql.IntegerLiteral)
return newTopIterator(input, opt, int(n.Val), b.writeMode)
case "bottom":
if len(expr.Args) < 2 {
return nil, fmt.Errorf("bottom() requires 2 or more arguments, got %d", len(expr.Args))
}
var input Iterator
if len(expr.Args) > 2 {
// Create a max iterator using the groupings in the arguments.
dims := make(map[string]struct{}, len(expr.Args)-2)
for i := 1; i < len(expr.Args)-1; i++ {
ref := expr.Args[i].(*influxql.VarRef)
dims[ref.Val] = struct{}{}
}
for dim := range opt.GroupBy {
dims[dim] = struct{}{}
}
call := &influxql.Call{
Name: "min",
Args: expr.Args[:1],
}
callOpt := opt
callOpt.Expr = call
callOpt.GroupBy = dims
callOpt.Fill = influxql.NoFill
builder := *b
builder.opt = callOpt
builder.selector = true
builder.writeMode = false
i, err := builder.callIterator(ctx, call, callOpt)
if err != nil {
return nil, err
}
input = i
} else {
// There are no arguments so do not organize the points by tags.
builder := *b
builder.opt.Expr = expr.Args[0]
builder.selector = true
builder.writeMode = false
ref := expr.Args[0].(*influxql.VarRef)
i, err := builder.buildVarRefIterator(ctx, ref)
if err != nil {
return nil, err
}
input = i
}
n := expr.Args[len(expr.Args)-1].(*influxql.IntegerLiteral)
return newBottomIterator(input, b.opt, int(n.Val), b.writeMode)
}
itr, err := func() (Iterator, error) {
switch expr.Name {
case "count":
switch arg0 := expr.Args[0].(type) {
case *influxql.Call:
if arg0.Name == "distinct" {
input, err := buildExprIterator(ctx, arg0, b.ic, b.sources, opt, b.selector, false)
if err != nil {
return nil, err
}
return newCountIterator(input, opt)
}
}
fallthrough
case "min", "max", "sum", "first", "last", "mean":
return b.callIterator(ctx, expr, opt)
case "median":
opt.Ordered = true
input, err := buildExprIterator(ctx, expr.Args[0].(*influxql.VarRef), b.ic, b.sources, opt, false, false)
if err != nil {
return nil, err
}
return newMedianIterator(input, opt)
case "mode":
input, err := buildExprIterator(ctx, expr.Args[0].(*influxql.VarRef), b.ic, b.sources, opt, false, false)
if err != nil {
return nil, err
}
return NewModeIterator(input, opt)
case "stddev":
input, err := buildExprIterator(ctx, expr.Args[0].(*influxql.VarRef), b.ic, b.sources, opt, false, false)
if err != nil {
return nil, err
}
return newStddevIterator(input, opt)
case "spread":
// OPTIMIZE(benbjohnson): convert to map/reduce
input, err := buildExprIterator(ctx, expr.Args[0].(*influxql.VarRef), b.ic, b.sources, opt, false, false)
if err != nil {
return nil, err
}
return newSpreadIterator(input, opt)
case "percentile":
opt.Ordered = true
input, err := buildExprIterator(ctx, expr.Args[0].(*influxql.VarRef), b.ic, b.sources, opt, false, false)
if err != nil {
return nil, err
}
var percentile float64
switch arg := expr.Args[1].(type) {
case *influxql.NumberLiteral:
percentile = arg.Val
case *influxql.IntegerLiteral:
percentile = float64(arg.Val)
}
return newPercentileIterator(input, opt, percentile)
default:
return nil, fmt.Errorf("unsupported call: %s", expr.Name)
}
}()
if err != nil {
return nil, err
}
if !b.selector || !opt.Interval.IsZero() {
itr = NewIntervalIterator(itr, opt)
if !opt.Interval.IsZero() && opt.Fill != influxql.NoFill {
itr = NewFillIterator(itr, expr, opt)
}
}
if opt.InterruptCh != nil {
itr = NewInterruptIterator(itr, opt.InterruptCh)
}
return itr, nil
}
func (b *exprIteratorBuilder) callIterator(ctx context.Context, expr *influxql.Call, opt IteratorOptions) (Iterator, error) {
inputs := make([]Iterator, 0, len(b.sources))
if err := func() error {
for _, source := range b.sources {
switch source := source.(type) {
case *influxql.Measurement:
input, err := b.ic.CreateIterator(ctx, source, opt)
if err != nil {
return err
}
inputs = append(inputs, input)
case *influxql.SubQuery:
// Identify the name of the field we are using.
arg0 := expr.Args[0].(*influxql.VarRef)
input, err := buildExprIterator(ctx, arg0, b.ic, []influxql.Source{source}, opt, b.selector, false)
if err != nil {
return err
}
// Wrap the result in a call iterator.
i, err := NewCallIterator(input, opt)
if err != nil {
input.Close()
return err
}
inputs = append(inputs, i)
}
}
return nil
}(); err != nil {
Iterators(inputs).Close()
return nil, err
}
itr, err := Iterators(inputs).Merge(opt)
if err != nil {
Iterators(inputs).Close()
return nil, err
} else if itr == nil {
itr = &nilFloatIterator{}
}
return itr, nil
}
func buildCursor(ctx context.Context, stmt *influxql.SelectStatement, ic IteratorCreator, opt IteratorOptions) (Cursor, error) {
span := tracing.SpanFromContext(ctx)
if span != nil {
span = span.StartSpan("build_cursor")
defer span.Finish()
span.SetLabels("statement", stmt.String())
ctx = tracing.NewContextWithSpan(ctx, span)
}
switch opt.Fill {
case influxql.NumberFill:
if v, ok := opt.FillValue.(int); ok {
opt.FillValue = int64(v)
}
case influxql.PreviousFill:
opt.FillValue = SkipDefault
}
fields := make([]*influxql.Field, 0, len(stmt.Fields)+1)
if !stmt.OmitTime {
// Add a field with the variable "time" if we have not omitted time.
fields = append(fields, &influxql.Field{
Expr: &influxql.VarRef{
Val: "time",
Type: influxql.Time,
},
})
}
// Iterate through each of the fields to add them to the value mapper.
valueMapper := newValueMapper()
for _, f := range stmt.Fields {
fields = append(fields, valueMapper.Map(f))
// If the field is a top() or bottom() call, we need to also add
// the extra variables if we are not writing into a target.
if stmt.Target != nil {
continue
}
switch expr := f.Expr.(type) {
case *influxql.Call:
if expr.Name == "top" || expr.Name == "bottom" {
for i := 1; i < len(expr.Args)-1; i++ {
nf := influxql.Field{Expr: expr.Args[i]}
fields = append(fields, valueMapper.Map(&nf))
}
}
}
}
// Set the aliases on each of the columns to what the final name should be.
columns := stmt.ColumnNames()
for i, f := range fields {
f.Alias = columns[i]
}
// Retrieve the refs to retrieve the auxiliary fields.
var auxKeys []influxql.VarRef
if len(valueMapper.refs) > 0 {
opt.Aux = make([]influxql.VarRef, 0, len(valueMapper.refs))
for ref := range valueMapper.refs {
opt.Aux = append(opt.Aux, *ref)
}
sort.Sort(influxql.VarRefs(opt.Aux))
auxKeys = make([]influxql.VarRef, len(opt.Aux))
for i, ref := range opt.Aux {
auxKeys[i] = valueMapper.symbols[ref.String()]
}
}
// If there are no calls, then produce an auxiliary cursor.
if len(valueMapper.calls) == 0 {
// If all of the auxiliary keys are of an unknown type,
// do not construct the iterator and return a null cursor.
if !hasValidType(auxKeys) {
return newNullCursor(fields), nil
}
itr, err := buildAuxIterator(ctx, ic, stmt.Sources, opt)
if err != nil {
return nil, err
}
// Create a slice with an empty first element.
keys := []influxql.VarRef{{}}
keys = append(keys, auxKeys...)
scanner := NewIteratorScanner(itr, keys, opt.FillValue)
return newScannerCursor(scanner, fields, opt), nil
}
// Check to see if this is a selector statement.
// It is a selector if it is the only selector call and the call itself
// is a selector.
selector := len(valueMapper.calls) == 1
if selector {
for call := range valueMapper.calls {
if !influxql.IsSelector(call) {
selector = false
}
}
}
// Produce an iterator for every single call and create an iterator scanner
// associated with it.
scanners := make([]IteratorScanner, 0, len(valueMapper.calls))
for call := range valueMapper.calls {
driver := valueMapper.table[call]
if driver.Type == influxql.Unknown {
// The primary driver of this call is of unknown type, so skip this.
continue
}
itr, err := buildFieldIterator(ctx, call, ic, stmt.Sources, opt, selector, stmt.Target != nil)
if err != nil {
for _, s := range scanners {
s.Close()
}
return nil, err
}
keys := make([]influxql.VarRef, 0, len(auxKeys)+1)
keys = append(keys, driver)
keys = append(keys, auxKeys...)
scanner := NewIteratorScanner(itr, keys, opt.FillValue)
scanners = append(scanners, scanner)
}
if len(scanners) == 0 {
return newNullCursor(fields), nil
} else if len(scanners) == 1 {
return newScannerCursor(scanners[0], fields, opt), nil
}
return newMultiScannerCursor(scanners, fields, opt), nil
}
func buildAuxIterator(ctx context.Context, ic IteratorCreator, sources influxql.Sources, opt IteratorOptions) (Iterator, error) {
span := tracing.SpanFromContext(ctx)
if span != nil {
span = span.StartSpan("iterator_scanner")
defer span.Finish()
auxFieldNames := make([]string, len(opt.Aux))
for i, ref := range opt.Aux {
auxFieldNames[i] = ref.String()
}
span.SetLabels("auxiliary_fields", strings.Join(auxFieldNames, ", "))
ctx = tracing.NewContextWithSpan(ctx, span)
}
inputs := make([]Iterator, 0, len(sources))
if err := func() error {
for _, source := range sources {
switch source := source.(type) {
case *influxql.Measurement:
input, err := ic.CreateIterator(ctx, source, opt)
if err != nil {
return err
}
inputs = append(inputs, input)
case *influxql.SubQuery:
b := subqueryBuilder{
ic: ic,
stmt: source.Statement,
}
input, err := b.buildAuxIterator(ctx, opt)
if err != nil {
return err
} else if input != nil {
inputs = append(inputs, input)
}
}
}
return nil
}(); err != nil {
Iterators(inputs).Close()
return nil, err
}
// Merge iterators to read auxiliary fields.
input, err := Iterators(inputs).Merge(opt)
if err != nil {
Iterators(inputs).Close()
return nil, err
} else if input == nil {
input = &nilFloatIterator{}
}
// Filter out duplicate rows, if required.
if opt.Dedupe {
// If there is no group by and it is a float iterator, see if we can use a fast dedupe.
if itr, ok := input.(FloatIterator); ok && len(opt.Dimensions) == 0 {
if sz := len(opt.Aux); sz > 0 && sz < 3 {
input = newFloatFastDedupeIterator(itr)
} else {
input = NewDedupeIterator(itr)
}
} else {
input = NewDedupeIterator(input)
}
}
// Apply limit & offset.
if opt.Limit > 0 || opt.Offset > 0 {
input = NewLimitIterator(input, opt)
}
return input, nil
}
func buildFieldIterator(ctx context.Context, expr influxql.Expr, ic IteratorCreator, sources influxql.Sources, opt IteratorOptions, selector, writeMode bool) (Iterator, error) {
span := tracing.SpanFromContext(ctx)
if span != nil {
span = span.StartSpan("iterator_scanner")
defer span.Finish()
labels := []string{"expr", expr.String()}
if len(opt.Aux) > 0 {
auxFieldNames := make([]string, len(opt.Aux))
for i, ref := range opt.Aux {
auxFieldNames[i] = ref.String()
}
labels = append(labels, "auxiliary_fields", strings.Join(auxFieldNames, ", "))
}
span.SetLabels(labels...)
ctx = tracing.NewContextWithSpan(ctx, span)
}
input, err := buildExprIterator(ctx, expr, ic, sources, opt, selector, writeMode)
if err != nil {
return nil, err
}
// Apply limit & offset.
if opt.Limit > 0 || opt.Offset > 0 {
input = NewLimitIterator(input, opt)
}
return input, nil
}
type valueMapper struct {
// An index that maps a node's string output to its symbol so that all
// nodes with the same signature are mapped the same.
symbols map[string]influxql.VarRef
// An index that maps a specific expression to a symbol. This ensures that
// only expressions that were mapped get symbolized.
table map[influxql.Expr]influxql.VarRef
// A collection of all of the calls in the table.
calls map[*influxql.Call]struct{}
// A collection of all of the calls in the table.
refs map[*influxql.VarRef]struct{}
i int
}
func newValueMapper() *valueMapper {
return &valueMapper{
symbols: make(map[string]influxql.VarRef),
table: make(map[influxql.Expr]influxql.VarRef),
calls: make(map[*influxql.Call]struct{}),
refs: make(map[*influxql.VarRef]struct{}),
}
}
func (v *valueMapper) Map(field *influxql.Field) *influxql.Field {
clone := *field
clone.Expr = influxql.CloneExpr(field.Expr)
influxql.Walk(v, clone.Expr)
clone.Expr = influxql.RewriteExpr(clone.Expr, v.rewriteExpr)
return &clone
}
func (v *valueMapper) Visit(n influxql.Node) influxql.Visitor {
expr, ok := n.(influxql.Expr)
if !ok {
return v
}
key := expr.String()
symbol, ok := v.symbols[key]
if !ok {
// This symbol has not been assigned yet.
// If this is a call or expression, mark the node
// as stored in the symbol table.
switch n := n.(type) {
case *influxql.Call:
if isMathFunction(n) {
return v
}
v.calls[n] = struct{}{}
case *influxql.VarRef:
v.refs[n] = struct{}{}
default:
return v
}
// Determine the symbol name and the symbol type.
symbolName := fmt.Sprintf("val%d", v.i)
valuer := influxql.TypeValuerEval{
TypeMapper: DefaultTypeMapper,
}
typ, _ := valuer.EvalType(expr)
symbol = influxql.VarRef{
Val: symbolName,
Type: typ,
}
// Assign this symbol to the symbol table if it is not presently there
// and increment the value index number.
v.symbols[key] = symbol
v.i++
}
// Store the symbol for this expression so we can later rewrite
// the query correctly.
v.table[expr] = symbol
return nil
}
func (v *valueMapper) rewriteExpr(expr influxql.Expr) influxql.Expr {
symbol, ok := v.table[expr]
if !ok {
return expr
}
return &symbol
}
func validateTypes(stmt *influxql.SelectStatement) error {
valuer := influxql.TypeValuerEval{
TypeMapper: influxql.MultiTypeMapper(
FunctionTypeMapper{},
MathTypeMapper{},
),
}
for _, f := range stmt.Fields {
if _, err := valuer.EvalType(f.Expr); err != nil {
return err
}
}
return nil
}
// hasValidType returns true if there is at least one non-unknown type
// in the slice.
func hasValidType(refs []influxql.VarRef) bool {
for _, ref := range refs {
if ref.Type != influxql.Unknown {
return true
}
}
return false
}