influxdb/influxql/ast.go

2437 lines
65 KiB
Go

package influxql
import (
"bytes"
"errors"
"fmt"
"regexp"
"strconv"
"strings"
"time"
)
// DataType represents the primitive data types available in InfluxQL.
type DataType string
const (
// Unknown primitive data type.
Unknown = DataType("")
// Number means the data type is an int or float.
Number = DataType("number")
// Boolean means the data type is a boolean.
Boolean = DataType("boolean")
// String means the data type is a string of text.
String = DataType("string")
// Time means the data type is a time.
Time = DataType("time")
// Duration means the data type is a duration of time.
Duration = DataType("duration")
)
// InspectDataType returns the data type of a given value.
func InspectDataType(v interface{}) DataType {
switch v.(type) {
case float64:
return Number
case int:
return Number
case bool:
return Boolean
case string:
return String
case time.Time:
return Time
case time.Duration:
return Duration
default:
return Unknown
}
}
// Node represents a node in the InfluxDB abstract syntax tree.
type Node interface {
node()
String() string
}
func (*Query) node() {}
func (Statements) node() {}
func (*AlterRetentionPolicyStatement) node() {}
func (*CreateContinuousQueryStatement) node() {}
func (*CreateDatabaseStatement) node() {}
func (*CreateRetentionPolicyStatement) node() {}
func (*CreateUserStatement) node() {}
func (*DeleteStatement) node() {}
func (*DropContinuousQueryStatement) node() {}
func (*DropDatabaseStatement) node() {}
func (*DropMeasurementStatement) node() {}
func (*DropRetentionPolicyStatement) node() {}
func (*DropSeriesStatement) node() {}
func (*DropUserStatement) node() {}
func (*GrantStatement) node() {}
func (*ShowContinuousQueriesStatement) node() {}
func (*ShowServersStatement) node() {}
func (*ShowDatabasesStatement) node() {}
func (*ShowFieldKeysStatement) node() {}
func (*ShowRetentionPoliciesStatement) node() {}
func (*ShowMeasurementsStatement) node() {}
func (*ShowSeriesStatement) node() {}
func (*ShowTagKeysStatement) node() {}
func (*ShowTagValuesStatement) node() {}
func (*ShowUsersStatement) node() {}
func (*RevokeStatement) node() {}
func (*SelectStatement) node() {}
func (*BinaryExpr) node() {}
func (*BooleanLiteral) node() {}
func (*Call) node() {}
func (*Dimension) node() {}
func (Dimensions) node() {}
func (*DurationLiteral) node() {}
func (*Field) node() {}
func (Fields) node() {}
func (*Join) node() {}
func (*Measurement) node() {}
func (Measurements) node() {}
func (*nilLiteral) node() {}
func (*Merge) node() {}
func (*NumberLiteral) node() {}
func (*ParenExpr) node() {}
func (*RegexLiteral) node() {}
func (*SortField) node() {}
func (SortFields) node() {}
func (*StringLiteral) node() {}
func (*Target) node() {}
func (*TimeLiteral) node() {}
func (*VarRef) node() {}
func (*Wildcard) node() {}
// Query represents a collection of ordered statements.
type Query struct {
Statements Statements
}
// String returns a string representation of the query.
func (q *Query) String() string { return q.Statements.String() }
// Statements represents a list of statements.
type Statements []Statement
// String returns a string representation of the statements.
func (a Statements) String() string {
var str []string
for _, stmt := range a {
str = append(str, stmt.String())
}
return strings.Join(str, ";\n")
}
// Statement represents a single command in InfluxQL.
type Statement interface {
Node
stmt()
RequiredPrivileges() ExecutionPrivileges
}
// ExecutionPrivilege is a privilege required for a user to execute
// a statement on a database or resource.
type ExecutionPrivilege struct {
// Name of the database or resource.
// If "", then the resource is the cluster.
Name string
// Privilege required.
Privilege Privilege
}
// ExecutionPrivileges is a list of privileges required to execute a statement.
type ExecutionPrivileges []ExecutionPrivilege
func (*AlterRetentionPolicyStatement) stmt() {}
func (*CreateContinuousQueryStatement) stmt() {}
func (*CreateDatabaseStatement) stmt() {}
func (*CreateRetentionPolicyStatement) stmt() {}
func (*CreateUserStatement) stmt() {}
func (*DeleteStatement) stmt() {}
func (*DropContinuousQueryStatement) stmt() {}
func (*DropDatabaseStatement) stmt() {}
func (*DropMeasurementStatement) stmt() {}
func (*DropRetentionPolicyStatement) stmt() {}
func (*DropSeriesStatement) stmt() {}
func (*DropUserStatement) stmt() {}
func (*GrantStatement) stmt() {}
func (*ShowContinuousQueriesStatement) stmt() {}
func (*ShowServersStatement) stmt() {}
func (*ShowDatabasesStatement) stmt() {}
func (*ShowFieldKeysStatement) stmt() {}
func (*ShowMeasurementsStatement) stmt() {}
func (*ShowRetentionPoliciesStatement) stmt() {}
func (*ShowSeriesStatement) stmt() {}
func (*ShowTagKeysStatement) stmt() {}
func (*ShowTagValuesStatement) stmt() {}
func (*ShowUsersStatement) stmt() {}
func (*RevokeStatement) stmt() {}
func (*SelectStatement) stmt() {}
// Expr represents an expression that can be evaluated to a value.
type Expr interface {
Node
expr()
}
func (*BinaryExpr) expr() {}
func (*BooleanLiteral) expr() {}
func (*Call) expr() {}
func (*DurationLiteral) expr() {}
func (*nilLiteral) expr() {}
func (*NumberLiteral) expr() {}
func (*ParenExpr) expr() {}
func (*RegexLiteral) expr() {}
func (*StringLiteral) expr() {}
func (*TimeLiteral) expr() {}
func (*VarRef) expr() {}
func (*Wildcard) expr() {}
// Source represents a source of data for a statement.
type Source interface {
Node
source()
}
func (*Join) source() {}
func (*Measurement) source() {}
func (*Merge) source() {}
// SortField represents a field to sort results by.
type SortField struct {
// Name of the field
Name string
// Sort order.
Ascending bool
}
// String returns a string representation of a sort field
func (field *SortField) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString(field.Name)
_, _ = buf.WriteString(" ")
_, _ = buf.WriteString(strconv.FormatBool(field.Ascending))
return buf.String()
}
// SortFields represents an ordered list of ORDER BY fields
type SortFields []*SortField
// String returns a string representation of sort fields
func (a SortFields) String() string {
fields := make([]string, 0, len(a))
for _, field := range a {
fields = append(fields, field.String())
}
return strings.Join(fields, ", ")
}
// CreateDatabaseStatement represents a command for creating a new database.
type CreateDatabaseStatement struct {
// Name of the database to be created.
Name string
}
// String returns a string representation of the create database statement.
func (s *CreateDatabaseStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE DATABASE ")
_, _ = buf.WriteString(s.Name)
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a CreateDatabaseStatement.
func (s *CreateDatabaseStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// DropDatabaseStatement represents a command to drop a database.
type DropDatabaseStatement struct {
// Name of the database to be dropped.
Name string
}
// String returns a string representation of the drop database statement.
func (s *DropDatabaseStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP DATABASE ")
_, _ = buf.WriteString(s.Name)
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DropDatabaseStatement.
func (s *DropDatabaseStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// DropRetentionPolicyStatement represents a command to drop a retention policy from a database.
type DropRetentionPolicyStatement struct {
// Name of the policy to drop.
Name string
// Name of the database to drop the policy from.
Database string
}
// String returns a string representation of the drop retention policy statement.
func (s *DropRetentionPolicyStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP RETENTION POLICY ")
_, _ = buf.WriteString(s.Name)
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(s.Database)
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DropRetentionPolicyStatement.
func (s *DropRetentionPolicyStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: s.Database, Privilege: WritePrivilege}}
}
// CreateUserStatement represents a command for creating a new user.
type CreateUserStatement struct {
// Name of the user to be created.
Name string
// User's password
Password string
// User's privilege level.
Privilege *Privilege
}
// String returns a string representation of the create user statement.
func (s *CreateUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE USER ")
_, _ = buf.WriteString(s.Name)
_, _ = buf.WriteString(" WITH PASSWORD ")
_, _ = buf.WriteString(s.Password)
if s.Privilege != nil {
_, _ = buf.WriteString(" WITH ")
_, _ = buf.WriteString(s.Privilege.String())
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a CreateUserStatement.
func (s *CreateUserStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// DropUserStatement represents a command for dropping a user.
type DropUserStatement struct {
// Name of the user to drop.
Name string
}
// String returns a string representation of the drop user statement.
func (s *DropUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP USER ")
_, _ = buf.WriteString(s.Name)
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a DropUserStatement.
func (s *DropUserStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// Privilege is a type of action a user can be granted the right to use.
type Privilege int
const (
// NoPrivileges means no privileges required / granted / revoked.
NoPrivileges Privilege = iota
// ReadPrivilege means read privilege required / granted / revoked.
ReadPrivilege
// WritePrivilege means write privilege required / granted / revoked.
WritePrivilege
// AllPrivileges means all privileges required / granted / revoked.
AllPrivileges
)
// NewPrivilege returns an initialized *Privilege.
func NewPrivilege(p Privilege) *Privilege { return &p }
// String returns a string representation of a Privilege.
func (p Privilege) String() string {
switch p {
case NoPrivileges:
return "NO PRIVILEGES"
case ReadPrivilege:
return "READ"
case WritePrivilege:
return "WRITE"
case AllPrivileges:
return "ALL PRIVILEGES"
}
return ""
}
// GrantStatement represents a command for granting a privilege.
type GrantStatement struct {
// The privilege to be granted.
Privilege Privilege
// Thing to grant privilege on (e.g., a DB).
On string
// Who to grant the privilege to.
User string
}
// String returns a string representation of the grant statement.
func (s *GrantStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("GRANT ")
_, _ = buf.WriteString(s.Privilege.String())
if s.On != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(s.On)
}
_, _ = buf.WriteString(" TO ")
_, _ = buf.WriteString(s.User)
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a GrantStatement.
func (s *GrantStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// RevokeStatement represents a command to revoke a privilege from a user.
type RevokeStatement struct {
// Privilege to be revoked.
Privilege Privilege
// Thing to revoke privilege to (e.g., a DB)
On string
// Who to revoke privilege from.
User string
}
// String returns a string representation of the revoke statement.
func (s *RevokeStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("REVOKE ")
_, _ = buf.WriteString(s.Privilege.String())
if s.On != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(s.On)
}
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.User)
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a RevokeStatement.
func (s *RevokeStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// CreateRetentionPolicyStatement represents a command to create a retention policy.
type CreateRetentionPolicyStatement struct {
// Name of policy to create.
Name string
// Name of database this policy belongs to.
Database string
// Duration data written to this policy will be retained.
Duration time.Duration
// Replication factor for data written to this policy.
Replication int
// Should this policy be set as default for the database?
Default bool
}
// String returns a string representation of the create retention policy.
func (s *CreateRetentionPolicyStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE RETENTION POLICY ")
_, _ = buf.WriteString(s.Name)
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(s.Database)
_, _ = buf.WriteString(" DURATION ")
_, _ = buf.WriteString(FormatDuration(s.Duration))
_, _ = buf.WriteString(" REPLICATION ")
_, _ = buf.WriteString(strconv.Itoa(s.Replication))
if s.Default {
_, _ = buf.WriteString(" DEFAULT")
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a CreateRetentionPolicyStatement.
func (s *CreateRetentionPolicyStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// AlterRetentionPolicyStatement represents a command to alter an existing retention policy.
type AlterRetentionPolicyStatement struct {
// Name of policy to alter.
Name string
// Name of the database this policy belongs to.
Database string
// Duration data written to this policy will be retained.
Duration *time.Duration
// Replication factor for data written to this policy.
Replication *int
// Should this policy be set as defalut for the database?
Default bool
}
// String returns a string representation of the alter retention policy statement.
func (s *AlterRetentionPolicyStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("ALTER RETENTION POLICY ")
_, _ = buf.WriteString(s.Name)
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(s.Database)
if s.Duration != nil {
_, _ = buf.WriteString(" DURATION ")
_, _ = buf.WriteString(FormatDuration(*s.Duration))
}
if s.Replication != nil {
_, _ = buf.WriteString(" REPLICATION ")
_, _ = buf.WriteString(strconv.Itoa(*s.Replication))
}
if s.Default {
_, _ = buf.WriteString(" DEFAULT")
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute an AlterRetentionPolicyStatement.
func (s *AlterRetentionPolicyStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
type FillOption int
const (
// NullFill means that empty aggregate windows will just have null values.
NullFill FillOption = iota
// NoFill means that empty aggregate windows will be purged from the result.
NoFill
// NumberFill means that empty aggregate windows will be filled with the given number
NumberFill
// PreviousFill means that empty aggregate windows will be filled with whatever the previous aggregate window had
PreviousFill
)
// SelectStatement represents a command for extracting data from the database.
type SelectStatement struct {
// Expressions returned from the selection.
Fields Fields
// Target (destination) for the result of the select.
Target *Target
// Expressions used for grouping the selection.
Dimensions Dimensions
// Data source that fields are extracted from.
Source Source
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned. Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
// Maxiumum number of series to be returned. Unlimited if zero.
SLimit int
// Returns series starting at an offset from the first one.
SOffset int
// memoize the group by interval
groupByInterval time.Duration
// if it's a query for raw data values (i.e. not an aggregate)
RawQuery bool
// What fill option the select statement uses, if any
Fill FillOption
// The value to fill empty aggregate buckets with, if any
FillValue interface{}
}
// Clone returns a deep copy of the statement.
func (s *SelectStatement) Clone() *SelectStatement {
other := &SelectStatement{
Fields: make(Fields, len(s.Fields)),
Dimensions: make(Dimensions, len(s.Dimensions)),
Source: cloneSource(s.Source),
SortFields: make(SortFields, len(s.SortFields)),
Condition: CloneExpr(s.Condition),
Limit: s.Limit,
Offset: s.Offset,
SLimit: s.SLimit,
SOffset: s.SOffset,
Fill: s.Fill,
FillValue: s.FillValue,
}
if s.Target != nil {
other.Target = &Target{Measurement: s.Target.Measurement, Database: s.Target.Database}
}
for i, f := range s.Fields {
other.Fields[i] = &Field{Expr: CloneExpr(f.Expr), Alias: f.Alias}
}
for i, d := range s.Dimensions {
other.Dimensions[i] = &Dimension{Expr: CloneExpr(d.Expr)}
}
// TODO: Copy sources.
for i, f := range s.SortFields {
other.SortFields[i] = &SortField{Name: f.Name, Ascending: f.Ascending}
}
return other
}
func cloneSource(s Source) Source {
if s == nil {
return nil
}
switch s := s.(type) {
case *Measurement:
return &Measurement{Name: s.Name}
case *Join:
other := &Join{Measurements: make(Measurements, len(s.Measurements))}
for i, m := range s.Measurements {
other.Measurements[i] = &Measurement{Name: m.Name}
}
return other
case *Merge:
other := &Merge{Measurements: make(Measurements, len(s.Measurements))}
for i, m := range s.Measurements {
other.Measurements[i] = &Measurement{Name: m.Name}
}
return other
default:
panic("unreachable")
}
}
// RewriteWildcards returns the re-written form of the select statement. Any wildcard query
// fields are replaced with the supplied fields, and any wildcard GROUP BY fields are replaced
// with the supplied dimensions.
func (s *SelectStatement) RewriteWildcards(fields Fields, dimensions Dimensions) *SelectStatement {
other := s.Clone()
// Rewrite all wildcard query fields
rwFields := make(Fields, 0, len(s.Fields))
for _, f := range s.Fields {
switch f.Expr.(type) {
case *Wildcard:
rwFields = append(rwFields, fields...)
default:
rwFields = append(rwFields, f)
}
}
other.Fields = rwFields
// Rewrite all wildcard GROUP BY fields
rwDimensions := make(Dimensions, 0, len(s.Dimensions))
for _, d := range s.Dimensions {
switch d.Expr.(type) {
case *Wildcard:
rwDimensions = append(rwDimensions, dimensions...)
default:
rwDimensions = append(rwDimensions, d)
}
}
other.Dimensions = rwDimensions
return other
}
// String returns a string representation of the select statement.
func (s *SelectStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SELECT ")
_, _ = buf.WriteString(s.Fields.String())
if s.Target != nil {
_, _ = buf.WriteString(" ")
_, _ = buf.WriteString(s.Target.String())
}
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Source.String())
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.Dimensions) > 0 {
_, _ = buf.WriteString(" GROUP BY ")
_, _ = buf.WriteString(s.Dimensions.String())
}
switch s.Fill {
case NoFill:
_, _ = buf.WriteString(" fill(none)")
case NumberFill:
_, _ = buf.WriteString(fmt.Sprintf(" fill(%v)", s.FillValue))
case PreviousFill:
_, _ = buf.WriteString(" fill(previous)")
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = fmt.Fprintf(&buf, " LIMIT %d", s.Limit)
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute the SelectStatement.
func (s *SelectStatement) RequiredPrivileges() ExecutionPrivileges {
ep := ExecutionPrivileges{{Name: "", Privilege: ReadPrivilege}}
if s.Target != nil {
p := ExecutionPrivilege{Name: s.Target.Database, Privilege: WritePrivilege}
ep = append(ep, p)
}
return ep
}
// Aggregated returns true if the statement uses aggregate functions.
func (s *SelectStatement) Aggregated() bool {
var v bool
WalkFunc(s.Fields, func(n Node) {
if _, ok := n.(*Call); ok {
v = true
}
})
return v
}
// OnlyTimeDimensions returns true if the statement has a where clause with only time constraints
func (s *SelectStatement) OnlyTimeDimensions() bool {
return s.walkForTime(s.Condition)
}
// walkForTime is called by the OnlyTimeDimensions method to walk the where clause to determine if
// the only things specified are based on time
func (s *SelectStatement) walkForTime(node Node) bool {
switch n := node.(type) {
case *BinaryExpr:
if n.Op == AND || n.Op == OR {
return s.walkForTime(n.LHS) && s.walkForTime(n.RHS)
}
if ref, ok := n.LHS.(*VarRef); ok && strings.ToLower(ref.Val) == "time" {
return true
}
return false
case *ParenExpr:
// walk down the tree
return s.walkForTime(n.Expr)
default:
return false
}
}
// HasWildcard returns whether or not the select statement has at least 1 wildcard
func (s *SelectStatement) HasWildcard() bool {
for _, f := range s.Fields {
_, ok := f.Expr.(*Wildcard)
if ok {
return true
}
}
for _, d := range s.Dimensions {
_, ok := d.Expr.(*Wildcard)
if ok {
return true
}
}
return false
}
// GroupByIterval extracts the time interval, if specified.
func (s *SelectStatement) GroupByInterval() (time.Duration, error) {
// return if we've already pulled it out
if s.groupByInterval != 0 {
return s.groupByInterval, nil
}
// Ignore if there are no dimensions.
if len(s.Dimensions) == 0 {
return 0, nil
}
for _, d := range s.Dimensions {
if call, ok := d.Expr.(*Call); ok && strings.ToLower(call.Name) == "time" {
// Make sure there is exactly one argument.
if len(call.Args) != 1 {
return 0, errors.New("time dimension expected one argument")
}
// Ensure the argument is a duration.
lit, ok := call.Args[0].(*DurationLiteral)
if !ok {
return 0, errors.New("time dimension must have one duration argument")
}
s.groupByInterval = lit.Val
return lit.Val, nil
}
}
return 0, nil
}
// SetTimeRange sets the start and end time of the select statement to [start, end). i.e. start inclusive, end exclusive.
// This is used commonly for continuous queries so the start and end are in buckets.
func (s *SelectStatement) SetTimeRange(start, end time.Time) error {
cond := fmt.Sprintf("time >= '%s' AND time < '%s'", start.UTC().Format(time.RFC3339Nano), end.UTC().Format(time.RFC3339Nano))
if s.Condition != nil {
cond = fmt.Sprintf("%s AND %s", s.rewriteWithoutTimeDimensions(), cond)
}
expr, err := NewParser(strings.NewReader(cond)).ParseExpr()
if err != nil {
return err
}
// fold out any previously replaced time dimensios and set the condition
s.Condition = Reduce(expr, nil)
return nil
}
// rewriteWithoutTimeDimensions will remove any WHERE time... clauses from the select statement
// This is necessary when setting an explicit time range to override any that previously existed.
func (s *SelectStatement) rewriteWithoutTimeDimensions() string {
n := RewriteFunc(s.Condition, func(n Node) Node {
switch n := n.(type) {
case *BinaryExpr:
if n.LHS.String() == "time" {
return &BooleanLiteral{Val: true}
}
return n
case *Call:
return &BooleanLiteral{Val: true}
default:
return n
}
})
return n.String()
}
/*
BinaryExpr
SELECT mean(xxx.value) + avg(yyy.value) FROM xxx JOIN yyy WHERE xxx.host = 123
from xxx where host = 123
select avg(value) from yyy where host = 123
SELECT xxx.value FROM xxx WHERE xxx.host = 123
SELECT yyy.value FROM yyy
---
SELECT MEAN(xxx.value) + MEAN(cpu.load.value)
FROM xxx JOIN yyy
GROUP BY host
WHERE (xxx.region == "uswest" OR yyy.region == "uswest") AND xxx.otherfield == "XXX"
select * from (
select mean + mean from xxx join yyy
group by time(5m), host
) (xxx.region == "uswest" OR yyy.region == "uswest") AND xxx.otherfield == "XXX"
(seriesIDS for xxx.region = 'uswest' union seriesIDs for yyy.regnion = 'uswest') | seriesIDS xxx.otherfield = 'XXX'
WHERE xxx.region == "uswest" AND xxx.otherfield == "XXX"
WHERE yyy.region == "uswest"
*/
// Substatement returns a single-series statement for a given variable reference.
func (s *SelectStatement) Substatement(ref *VarRef) (*SelectStatement, error) {
// Copy dimensions and properties to new statement.
other := &SelectStatement{
Fields: Fields{{Expr: ref}},
Dimensions: s.Dimensions,
Limit: s.Limit,
Offset: s.Offset,
SortFields: s.SortFields,
}
// If there is only one series source then return it with the whole condition.
if _, ok := s.Source.(*Measurement); ok {
other.Source = s.Source
other.Condition = s.Condition
return other, nil
}
// Find the matching source.
name := MatchSource(s.Source, ref.Val)
if name == "" {
return nil, fmt.Errorf("field source not found: %s", ref.Val)
}
other.Source = &Measurement{Name: name}
// Filter out conditions.
if s.Condition != nil {
other.Condition = filterExprBySource(name, s.Condition)
}
return other, nil
}
// NamesInWhere returns the field and tag names (idents) referenced in the where clause
func (s *SelectStatement) NamesInWhere() []string {
var a []string
if s.Condition != nil {
a = walkNames(s.Condition)
}
return a
}
// NamesInSelect returns the field and tag names (idents) in the select clause
func (s *SelectStatement) NamesInSelect() []string {
var a []string
for _, f := range s.Fields {
a = append(a, walkNames(f.Expr)...)
}
return a
}
// walkNames will walk the Expr and return the database fields
func walkNames(exp Expr) []string {
switch expr := exp.(type) {
case *VarRef:
return []string{expr.Val}
case *Call:
if len(expr.Args) == 0 {
return nil
}
lit, ok := expr.Args[0].(*VarRef)
if !ok {
return nil
}
return []string{lit.Val}
case *BinaryExpr:
var ret []string
ret = append(ret, walkNames(expr.LHS)...)
ret = append(ret, walkNames(expr.RHS)...)
return ret
case *ParenExpr:
return walkNames(expr.Expr)
}
return nil
}
// FunctionCalls returns the Call objects from the query
func (s *SelectStatement) FunctionCalls() []*Call {
var a []*Call
for _, f := range s.Fields {
a = append(a, walkFunctionCalls(f.Expr)...)
}
return a
}
// walkFunctionCalls walks the Field of a query for any function calls made
func walkFunctionCalls(exp Expr) []*Call {
switch expr := exp.(type) {
case *VarRef:
return nil
case *Call:
return []*Call{expr}
case *BinaryExpr:
var ret []*Call
ret = append(ret, walkFunctionCalls(expr.LHS)...)
ret = append(ret, walkFunctionCalls(expr.RHS)...)
return ret
case *ParenExpr:
return walkFunctionCalls(expr.Expr)
}
return nil
}
// filters an expression to exclude expressions unrelated to a source.
func filterExprBySource(name string, expr Expr) Expr {
switch expr := expr.(type) {
case *VarRef:
if !strings.HasPrefix(expr.Val, name) {
return nil
}
case *BinaryExpr:
lhs := filterExprBySource(name, expr.LHS)
rhs := filterExprBySource(name, expr.RHS)
// If an expr is logical then return either LHS/RHS or both.
// If an expr is arithmetic or comparative then require both sides.
if expr.Op == AND || expr.Op == OR {
if lhs == nil && rhs == nil {
return nil
} else if lhs != nil && rhs == nil {
return lhs
} else if lhs == nil && rhs != nil {
return rhs
}
} else {
if lhs == nil || rhs == nil {
return nil
}
}
return &BinaryExpr{Op: expr.Op, LHS: lhs, RHS: rhs}
case *ParenExpr:
exp := filterExprBySource(name, expr.Expr)
if exp == nil {
return nil
}
return &ParenExpr{Expr: exp}
}
return expr
}
// MatchSource returns the source name that matches a field name.
// Returns a blank string if no sources match.
func MatchSource(src Source, name string) string {
switch src := src.(type) {
case *Measurement:
if strings.HasPrefix(name, src.Name) {
return src.Name
}
case *Join:
for _, m := range src.Measurements {
if strings.HasPrefix(name, m.Name) {
return m.Name
}
}
case *Merge:
for _, m := range src.Measurements {
if strings.HasPrefix(name, m.Name) {
return m.Name
}
}
}
return ""
}
// TODO pauldix: Target should actually have a Database, RetentionPolicy, and Measurement. These should be set based on the ON part of the query, and the SplitIdent of the INTO name
// Target represents a target (destination) policy, measurment, and DB.
type Target struct {
// Measurement to write into.
Measurement string
// Database to write into.
Database string
}
// String returns a string representation of the Target.
func (t *Target) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("INTO ")
_, _ = buf.WriteString(t.Measurement)
if t.Database != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(t.Database)
}
return buf.String()
}
// DeleteStatement represents a command for removing data from the database.
type DeleteStatement struct {
// Data source that values are removed from.
Source Source
// An expression evaluated on data point.
Condition Expr
}
// String returns a string representation of the delete statement.
func (s *DeleteStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DELETE ")
_, _ = buf.WriteString(s.Source.String())
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
return s.String()
}
// RequiredPrivileges returns the privilege required to execute a DeleteStatement.
func (s *DeleteStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: WritePrivilege}}
}
// ShowSeriesStatement represents a command for listing series in the database.
type ShowSeriesStatement struct {
// Measurement(s) the series are listed for.
Source Source
// An expression evaluated on a series name or tag.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the list series statement.
func (s *ShowSeriesStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW SERIES")
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a ShowSeriesStatement.
func (s *ShowSeriesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: ReadPrivilege}}
}
// DropSeriesStatement represents a command for removing a series from the database.
type DropSeriesStatement struct {
// The Id of the series being dropped (optional)
SeriesID uint32
// Data source that fields are extracted from (optional)
Source Source
// An expression evaluated on data point (optional)
Condition Expr
}
// String returns a string representation of the drop series statement.
func (s *DropSeriesStatement) String() string {
var buf bytes.Buffer
i, _ := buf.WriteString("DROP SERIES")
if s.Source != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Source.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
// If we haven't written any data since the initial statement, then this was a SeriesID statement
if len(buf.String()) == i {
_, _ = buf.WriteString(fmt.Sprintf(" %d", s.SeriesID))
}
return buf.String()
}
// RequiredPrivileges returns the privilige reqired to execute a DropSeriesStatement.
func (s DropSeriesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: WritePrivilege}}
}
// ShowContinuousQueriesStatement represents a command for listing continuous queries.
type ShowContinuousQueriesStatement struct{}
// String returns a string representation of the list continuous queries statement.
func (s *ShowContinuousQueriesStatement) String() string { return "SHOW CONTINUOUS QUERIES" }
// RequiredPrivileges returns the privilege required to execute a ShowContinuousQueriesStatement.
func (s *ShowContinuousQueriesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: ReadPrivilege}}
}
// ShowServersStatement represents a command for listing all servers.
type ShowServersStatement struct{}
// String returns a string representation of the show servers command.
func (s *ShowServersStatement) String() string { return "SHOW SERVERS" }
// RequiredPrivileges returns the privilege required to execute a ShowServersStatement
func (s *ShowServersStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// ShowDatabasesStatement represents a command for listing all databases in the cluster.
type ShowDatabasesStatement struct{}
// String returns a string representation of the list databases command.
func (s *ShowDatabasesStatement) String() string { return "SHOW DATABASES" }
// RequiredPrivileges returns the privilege required to execute a ShowDatabasesStatement
func (s *ShowDatabasesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// CreateContinuousQueryStatement represents a command for creating a continuous query.
type CreateContinuousQueryStatement struct {
// Name of the continuous query to be created.
Name string
// Name of the database to create the continuous query on.
Database string
// Source of data (SELECT statement).
Source *SelectStatement
}
// String returns a string representation of the statement.
func (s *CreateContinuousQueryStatement) String() string {
return fmt.Sprintf("CREATE CONTINUOUS QUERY %s ON %s BEGIN %s END", s.Name, s.Database, s.Source.String())
}
// RequiredPrivileges returns the privilege required to execute a CreateContinuousQueryStatement.
func (s *CreateContinuousQueryStatement) RequiredPrivileges() ExecutionPrivileges {
ep := ExecutionPrivileges{{Name: s.Database, Privilege: ReadPrivilege}}
// Selecting into a database that's different from the source?
if s.Source.Target.Database != "" {
// Change source database privilege requirement to read.
ep[0].Privilege = ReadPrivilege
// Add destination database privilege requirement and set it to write.
p := ExecutionPrivilege{
Name: s.Source.Target.Database,
Privilege: WritePrivilege,
}
ep = append(ep, p)
}
return ep
}
// DropContinuousQueryStatement represents a command for removing a continuous query.
type DropContinuousQueryStatement struct {
Name string
}
// String returns a string representation of the statement.
func (s *DropContinuousQueryStatement) String() string {
return fmt.Sprintf("DROP CONTINUOUS QUERY %s", s.Name)
}
// RequiredPrivileges returns the privilege(s) required to execute a DropContinuousQueryStatement
func (s *DropContinuousQueryStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: WritePrivilege}}
}
// ShowMeasurementsStatement represents a command for listing measurements.
type ShowMeasurementsStatement struct {
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowMeasurementsStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW MEASUREMENTS")
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowMeasurementsStatement
func (s *ShowMeasurementsStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: ReadPrivilege}}
}
// DropMeasurmentStatement represents a command to drop a measurement.
type DropMeasurementStatement struct {
// Name of the measurement to be dropped.
Name string
}
// String returns a string representation of the drop measurement statement.
func (s *DropMeasurementStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP MEASUREMENT ")
_, _ = buf.WriteString(s.Name)
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a DropMeasurementStatement
func (s *DropMeasurementStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// ShowRetentionPoliciesStatement represents a command for listing retention policies.
type ShowRetentionPoliciesStatement struct {
// Name of the database to list policies for.
Database string
}
// String returns a string representation of a ShowRetentionPoliciesStatement.
func (s *ShowRetentionPoliciesStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW RETENTION POLICIES ")
_, _ = buf.WriteString(s.Database)
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowRetentionPoliciesStatement
func (s *ShowRetentionPoliciesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: ReadPrivilege}}
}
// ShowTagKeysStatement represents a command for listing tag keys.
type ShowTagKeysStatement struct {
// Data source that fields are extracted from.
Source Source
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowTagKeysStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW TAG KEYS")
if s.Source != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Source.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowTagKeysStatement
func (s *ShowTagKeysStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: ReadPrivilege}}
}
// ShowTagValuesStatement represents a command for listing tag values.
type ShowTagValuesStatement struct {
// Data source that fields are extracted from.
Source Source
// Tag key(s) to pull values from.
TagKeys []string
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowTagValuesStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW TAG VALUES")
if s.Source != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Source.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowTagValuesStatement
func (s *ShowTagValuesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: ReadPrivilege}}
}
// ShowUsersStatement represents a command for listing users.
type ShowUsersStatement struct{}
// String retuns a string representation of the ShowUsersStatement.
func (s *ShowUsersStatement) String() string {
return "SHOW USERS"
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowUsersStatement
func (s *ShowUsersStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// ShowFieldKeysStatement represents a command for listing field keys.
type ShowFieldKeysStatement struct {
// Data source that fields are extracted from.
Source Source
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowFieldKeysStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW FIELD KEYS")
if s.Source != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Source.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowFieldKeysStatement
func (s *ShowFieldKeysStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: ReadPrivilege}}
}
// Fields represents a list of fields.
type Fields []*Field
// String returns a string representation of the fields.
func (a Fields) String() string {
var str []string
for _, f := range a {
str = append(str, f.String())
}
return strings.Join(str, ", ")
}
// Field represents an expression retrieved from a select statement.
type Field struct {
Expr Expr
Alias string
}
// Name returns the name of the field. Returns alias, if set.
// Otherwise uses the function name or variable name.
func (f *Field) Name() string {
// Return alias, if set.
if f.Alias != "" {
return f.Alias
}
// Return the function name or variable name, if available.
switch expr := f.Expr.(type) {
case *Call:
return expr.Name
case *VarRef:
return expr.Val
}
// Otherwise return a blank name.
return ""
}
// String returns a string representation of the field.
func (f *Field) String() string {
if f.Alias == "" {
return f.Expr.String()
}
return fmt.Sprintf("%s AS %s", f.Expr.String(), f.Alias)
}
// Dimensions represents a list of dimensions.
type Dimensions []*Dimension
// String returns a string representation of the dimensions.
func (a Dimensions) String() string {
var str []string
for _, d := range a {
str = append(str, d.String())
}
return strings.Join(str, ", ")
}
// Normalize returns the interval and tag dimensions separately.
// Returns 0 if no time interval is specified.
// Returns an error if multiple time dimensions exist or if non-VarRef dimensions are specified.
func (a Dimensions) Normalize() (time.Duration, []string, error) {
var dur time.Duration
var tags []string
for _, dim := range a {
switch expr := dim.Expr.(type) {
case *Call:
// Ensure the call is time() and it only has one duration argument.
// If we already have a duration
if strings.ToLower(expr.Name) != "time" {
return 0, nil, errors.New("only time() calls allowed in dimensions")
} else if len(expr.Args) != 1 {
return 0, nil, errors.New("time dimension expected one argument")
} else if lit, ok := expr.Args[0].(*DurationLiteral); !ok {
return 0, nil, errors.New("time dimension must have one duration argument")
} else if dur != 0 {
return 0, nil, errors.New("multiple time dimensions not allowed")
} else {
dur = lit.Val
}
case *VarRef:
tags = append(tags, expr.Val)
default:
return 0, nil, errors.New("only time and tag dimensions allowed")
}
}
return dur, tags, nil
}
// Dimension represents an expression that a select statement is grouped by.
type Dimension struct {
Expr Expr
}
// String returns a string representation of the dimension.
func (d *Dimension) String() string { return d.Expr.String() }
// Measurements represents a list of measurements.
type Measurements []*Measurement
// String returns a string representation of the measurements.
func (a Measurements) String() string {
var str []string
for _, m := range a {
str = append(str, m.String())
}
return strings.Join(str, ", ")
}
// Measurement represents a single measurement used as a datasource.
type Measurement struct {
Name string
}
// String returns a string representation of the measurement.
func (m *Measurement) String() string { return m.Name }
// Join represents two datasources joined together.
type Join struct {
Measurements Measurements
}
// String returns a string representation of the join.
func (j *Join) String() string {
return fmt.Sprintf("join(%s)", j.Measurements.String())
}
// Merge represents a datasource created by merging two datasources.
type Merge struct {
Measurements Measurements
}
// String returns a string representation of the merge.
func (m *Merge) String() string {
return fmt.Sprintf("merge(%s)", m.Measurements.String())
}
// VarRef represents a reference to a variable.
type VarRef struct {
Val string
}
// String returns a string representation of the variable reference.
func (r *VarRef) String() string { return r.Val }
// Call represents a function call.
type Call struct {
Name string
Args []Expr
}
// String returns a string representation of the call.
func (c *Call) String() string {
// Join arguments.
var str []string
for _, arg := range c.Args {
str = append(str, arg.String())
}
// Write function name and args.
return fmt.Sprintf("%s(%s)", c.Name, strings.Join(str, ", "))
}
// NumberLiteral represents a numeric literal.
type NumberLiteral struct {
Val float64
}
// String returns a string representation of the literal.
func (l *NumberLiteral) String() string { return strconv.FormatFloat(l.Val, 'f', 3, 64) }
// BooleanLiteral represents a boolean literal.
type BooleanLiteral struct {
Val bool
}
// String returns a string representation of the literal.
func (l *BooleanLiteral) String() string {
if l.Val {
return "true"
}
return "false"
}
// isTrueLiteral returns true if the expression is a literal "true" value.
func isTrueLiteral(expr Expr) bool {
if expr, ok := expr.(*BooleanLiteral); ok {
return expr.Val == true
}
return false
}
// isFalseLiteral returns true if the expression is a literal "false" value.
func isFalseLiteral(expr Expr) bool {
if expr, ok := expr.(*BooleanLiteral); ok {
return expr.Val == false
}
return false
}
// StringLiteral represents a string literal.
type StringLiteral struct {
Val string
}
// String returns a string representation of the literal.
func (l *StringLiteral) String() string { return QuoteString(l.Val) }
// TimeLiteral represents a point-in-time literal.
type TimeLiteral struct {
Val time.Time
}
// String returns a string representation of the literal.
func (l *TimeLiteral) String() string {
return `"` + l.Val.UTC().Format(DateTimeFormat) + `"`
}
// DurationLiteral represents a duration literal.
type DurationLiteral struct {
Val time.Duration
}
// String returns a string representation of the literal.
func (l *DurationLiteral) String() string { return FormatDuration(l.Val) }
// nilLiteral represents a nil literal.
// This is not available to the query language itself. It's only used internally.
type nilLiteral struct{}
// String returns a string representation of the literal.
func (l *nilLiteral) String() string { return `nil` }
// BinaryExpr represents an operation between two expressions.
type BinaryExpr struct {
Op Token
LHS Expr
RHS Expr
}
// String returns a string representation of the binary expression.
func (e *BinaryExpr) String() string {
return fmt.Sprintf("%s %s %s", e.LHS.String(), e.Op.String(), e.RHS.String())
}
// ParenExpr represents a parenthesized expression.
type ParenExpr struct {
Expr Expr
}
// String returns a string representation of the parenthesized expression.
func (e *ParenExpr) String() string { return fmt.Sprintf("(%s)", e.Expr.String()) }
// RegexLiteral represents a regular expression.
type RegexLiteral struct {
Val *regexp.Regexp
}
// String returns a string representation of the literal.
func (r *RegexLiteral) String() string { return r.Val.String() }
// Wildcard represents a wild card expression.
type Wildcard struct{}
// String returns a string representation of the wildcard.
func (e *Wildcard) String() string { return "*" }
// CloneExpr returns a deep copy of the expression.
func CloneExpr(expr Expr) Expr {
if expr == nil {
return nil
}
switch expr := expr.(type) {
case *BinaryExpr:
return &BinaryExpr{Op: expr.Op, LHS: CloneExpr(expr.LHS), RHS: CloneExpr(expr.RHS)}
case *BooleanLiteral:
return &BooleanLiteral{Val: expr.Val}
case *Call:
args := make([]Expr, len(expr.Args))
for i, arg := range expr.Args {
args[i] = CloneExpr(arg)
}
return &Call{Name: expr.Name, Args: args}
case *DurationLiteral:
return &DurationLiteral{Val: expr.Val}
case *NumberLiteral:
return &NumberLiteral{Val: expr.Val}
case *ParenExpr:
return &ParenExpr{Expr: CloneExpr(expr.Expr)}
case *RegexLiteral:
return &RegexLiteral{Val: expr.Val}
case *StringLiteral:
return &StringLiteral{Val: expr.Val}
case *TimeLiteral:
return &TimeLiteral{Val: expr.Val}
case *VarRef:
return &VarRef{Val: expr.Val}
case *Wildcard:
return &Wildcard{}
}
panic("unreachable")
}
// TimeRange returns the minimum and maximum times specified by an expression.
// Returns zero times if there is no bound.
func TimeRange(expr Expr) (min, max time.Time) {
WalkFunc(expr, func(n Node) {
if n, ok := n.(*BinaryExpr); ok {
// Extract literal expression & operator on LHS.
// Check for "time" on the left-hand side first.
// Otherwise check for for the right-hand side and flip the operator.
value, op := timeExprValue(n.LHS, n.RHS), n.Op
if value.IsZero() {
if value = timeExprValue(n.RHS, n.LHS); value.IsZero() {
return
} else if op == LT {
op = GT
} else if op == LTE {
op = GTE
} else if op == GT {
op = LT
} else if op == GTE {
op = LTE
}
}
// Update the min/max depending on the operator.
// The GT & LT update the value by +/- 1µs not make them "not equal".
switch op {
case GT:
if min.IsZero() || value.After(min) {
min = value.Add(time.Microsecond)
}
case GTE:
if min.IsZero() || value.After(min) {
min = value
}
case LT:
if max.IsZero() || value.Before(max) {
max = value.Add(-time.Microsecond)
}
case LTE:
if max.IsZero() || value.Before(max) {
max = value
}
case EQ:
if min.IsZero() || value.After(min) {
min = value
}
if max.IsZero() || value.Before(max) {
max = value
}
}
}
})
return
}
// timeExprValue returns the time literal value of a "time == <TimeLiteral>" expression.
// Returns zero time if the expression is not a time expression.
func timeExprValue(ref Expr, lit Expr) time.Time {
if ref, ok := ref.(*VarRef); ok && strings.ToLower(ref.Val) == "time" {
switch lit := lit.(type) {
case *TimeLiteral:
return lit.Val
case *DurationLiteral:
return time.Unix(0, int64(lit.Val)).UTC()
}
}
return time.Time{}
}
// Visitor can be called by Walk to traverse an AST hierarchy.
// The Visit() function is called once per node.
type Visitor interface {
Visit(Node) Visitor
}
// Walk traverses a node hierarchy in depth-first order.
func Walk(v Visitor, node Node) {
if v = v.Visit(node); v == nil {
return
}
switch n := node.(type) {
case *Query:
Walk(v, n.Statements)
case Statements:
for _, s := range n {
Walk(v, s)
}
case *SelectStatement:
Walk(v, n.Fields)
Walk(v, n.Dimensions)
Walk(v, n.Source)
Walk(v, n.Condition)
case *ShowSeriesStatement:
Walk(v, n.Source)
Walk(v, n.Condition)
case *ShowTagKeysStatement:
Walk(v, n.Source)
Walk(v, n.Condition)
Walk(v, n.SortFields)
case *ShowTagValuesStatement:
Walk(v, n.Source)
Walk(v, n.Condition)
Walk(v, n.SortFields)
case Fields:
for _, c := range n {
Walk(v, c)
}
case *Field:
Walk(v, n.Expr)
case Dimensions:
for _, c := range n {
Walk(v, c)
}
case *Dimension:
Walk(v, n.Expr)
case *BinaryExpr:
Walk(v, n.LHS)
Walk(v, n.RHS)
case *ParenExpr:
Walk(v, n.Expr)
case *Call:
for _, expr := range n.Args {
Walk(v, expr)
}
}
}
// WalkFunc traverses a node hierarchy in depth-first order.
func WalkFunc(node Node, fn func(Node)) {
Walk(walkFuncVisitor(fn), node)
}
type walkFuncVisitor func(Node)
func (fn walkFuncVisitor) Visit(n Node) Visitor { fn(n); return fn }
// Rewriter can be called by Rewrite to replace nodes in the AST hierarchy.
// The Rewrite() function is called once per node.
type Rewriter interface {
Rewrite(Node) Node
}
// Rewrite recursively invokes the rewriter to replace each node.
// Nodes are traversed depth-first and rewritten from leaf to root.
func Rewrite(r Rewriter, node Node) Node {
switch n := node.(type) {
case *Query:
n.Statements = Rewrite(r, n.Statements).(Statements)
case Statements:
for i, s := range n {
n[i] = Rewrite(r, s).(Statement)
}
case *SelectStatement:
n.Fields = Rewrite(r, n.Fields).(Fields)
n.Dimensions = Rewrite(r, n.Dimensions).(Dimensions)
n.Source = Rewrite(r, n.Source).(Source)
n.Condition = Rewrite(r, n.Condition).(Expr)
case Fields:
for i, f := range n {
n[i] = Rewrite(r, f).(*Field)
}
case *Field:
n.Expr = Rewrite(r, n.Expr).(Expr)
case Dimensions:
for i, d := range n {
n[i] = Rewrite(r, d).(*Dimension)
}
case *Dimension:
n.Expr = Rewrite(r, n.Expr).(Expr)
case *BinaryExpr:
n.LHS = Rewrite(r, n.LHS).(Expr)
n.RHS = Rewrite(r, n.RHS).(Expr)
case *ParenExpr:
n.Expr = Rewrite(r, n.Expr).(Expr)
case *Call:
for i, expr := range n.Args {
n.Args[i] = Rewrite(r, expr).(Expr)
}
}
return r.Rewrite(node)
}
// RewriteFunc rewrites a node hierarchy.
func RewriteFunc(node Node, fn func(Node) Node) Node {
return Rewrite(rewriterFunc(fn), node)
}
type rewriterFunc func(Node) Node
func (fn rewriterFunc) Rewrite(n Node) Node { return fn(n) }
// Eval evaluates expr against a map.
func Eval(expr Expr, m map[string]interface{}) interface{} {
if expr == nil {
return nil
}
switch expr := expr.(type) {
case *BinaryExpr:
return evalBinaryExpr(expr, m)
case *BooleanLiteral:
return expr.Val
case *NumberLiteral:
return expr.Val
case *ParenExpr:
return Eval(expr.Expr, m)
case *StringLiteral:
return expr.Val
case *VarRef:
return m[expr.Val]
default:
return nil
}
}
func evalBinaryExpr(expr *BinaryExpr, m map[string]interface{}) interface{} {
lhs := Eval(expr.LHS, m)
rhs := Eval(expr.RHS, m)
// Evaluate if both sides are simple types.
switch lhs := lhs.(type) {
case bool:
rhs, _ := rhs.(bool)
switch expr.Op {
case AND:
return lhs && rhs
case OR:
return lhs || rhs
}
case float64:
rhs, _ := rhs.(float64)
switch expr.Op {
case EQ:
return lhs == rhs
case NEQ:
return lhs != rhs
case LT:
return lhs < rhs
case LTE:
return lhs <= rhs
case GT:
return lhs > rhs
case GTE:
return lhs >= rhs
case ADD:
return lhs + rhs
case SUB:
return lhs - rhs
case MUL:
return lhs * rhs
case DIV:
if rhs == 0 {
return float64(0)
}
return lhs / rhs
}
case string:
rhs, _ := rhs.(string)
switch expr.Op {
case EQ:
return lhs == rhs
case NEQ:
return lhs != rhs
}
}
return nil
}
// Reduce evaluates expr using the available values in valuer.
// References that don't exist in valuer are ignored.
func Reduce(expr Expr, valuer Valuer) Expr {
expr = reduce(expr, valuer)
// Unwrap parens at top level.
if expr, ok := expr.(*ParenExpr); ok {
return expr.Expr
}
return expr
}
func reduce(expr Expr, valuer Valuer) Expr {
if expr == nil {
return nil
}
switch expr := expr.(type) {
case *BinaryExpr:
return reduceBinaryExpr(expr, valuer)
case *Call:
return reduceCall(expr, valuer)
case *ParenExpr:
return reduceParenExpr(expr, valuer)
case *VarRef:
return reduceVarRef(expr, valuer)
default:
return CloneExpr(expr)
}
}
func reduceBinaryExpr(expr *BinaryExpr, valuer Valuer) Expr {
// Reduce both sides first.
op := expr.Op
lhs := reduce(expr.LHS, valuer)
rhs := reduce(expr.RHS, valuer)
// Do not evaluate if one side is nil.
if lhs == nil || rhs == nil {
return &BinaryExpr{LHS: lhs, RHS: rhs, Op: expr.Op}
}
// If we have a logical operator (AND, OR) and one side is a boolean literal
// then we need to have special handling.
if op == AND {
if isFalseLiteral(lhs) || isFalseLiteral(rhs) {
return &BooleanLiteral{Val: false}
} else if isTrueLiteral(lhs) {
return rhs
} else if isTrueLiteral(rhs) {
return lhs
}
} else if op == OR {
if isTrueLiteral(lhs) || isTrueLiteral(rhs) {
return &BooleanLiteral{Val: true}
} else if isFalseLiteral(lhs) {
return rhs
} else if isFalseLiteral(rhs) {
return lhs
}
}
// Evaluate if both sides are simple types.
switch lhs := lhs.(type) {
case *BooleanLiteral:
return reduceBinaryExprBooleanLHS(op, lhs, rhs)
case *DurationLiteral:
return reduceBinaryExprDurationLHS(op, lhs, rhs)
case *nilLiteral:
return reduceBinaryExprNilLHS(op, lhs, rhs)
case *NumberLiteral:
return reduceBinaryExprNumberLHS(op, lhs, rhs)
case *StringLiteral:
return reduceBinaryExprStringLHS(op, lhs, rhs)
case *TimeLiteral:
return reduceBinaryExprTimeLHS(op, lhs, rhs)
default:
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
}
func reduceBinaryExprBooleanLHS(op Token, lhs *BooleanLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *BooleanLiteral:
switch op {
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case AND:
return &BooleanLiteral{Val: lhs.Val && rhs.Val}
case OR:
return &BooleanLiteral{Val: lhs.Val || rhs.Val}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprDurationLHS(op Token, lhs *DurationLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *DurationLiteral:
switch op {
case ADD:
return &DurationLiteral{Val: lhs.Val + rhs.Val}
case SUB:
return &DurationLiteral{Val: lhs.Val - rhs.Val}
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case GT:
return &BooleanLiteral{Val: lhs.Val > rhs.Val}
case GTE:
return &BooleanLiteral{Val: lhs.Val >= rhs.Val}
case LT:
return &BooleanLiteral{Val: lhs.Val < rhs.Val}
case LTE:
return &BooleanLiteral{Val: lhs.Val <= rhs.Val}
}
case *NumberLiteral:
switch op {
case MUL:
return &DurationLiteral{Val: lhs.Val * time.Duration(rhs.Val)}
case DIV:
if rhs.Val == 0 {
return &DurationLiteral{Val: 0}
}
return &DurationLiteral{Val: lhs.Val / time.Duration(rhs.Val)}
}
case *TimeLiteral:
switch op {
case ADD:
return &TimeLiteral{Val: rhs.Val.Add(lhs.Val)}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprNilLHS(op Token, lhs *nilLiteral, rhs Expr) Expr {
switch op {
case EQ, NEQ:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprNumberLHS(op Token, lhs *NumberLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *NumberLiteral:
switch op {
case ADD:
return &NumberLiteral{Val: lhs.Val + rhs.Val}
case SUB:
return &NumberLiteral{Val: lhs.Val - rhs.Val}
case MUL:
return &NumberLiteral{Val: lhs.Val * rhs.Val}
case DIV:
if rhs.Val == 0 {
return &NumberLiteral{Val: 0}
}
return &NumberLiteral{Val: lhs.Val / rhs.Val}
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case GT:
return &BooleanLiteral{Val: lhs.Val > rhs.Val}
case GTE:
return &BooleanLiteral{Val: lhs.Val >= rhs.Val}
case LT:
return &BooleanLiteral{Val: lhs.Val < rhs.Val}
case LTE:
return &BooleanLiteral{Val: lhs.Val <= rhs.Val}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprStringLHS(op Token, lhs *StringLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *StringLiteral:
switch op {
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case ADD:
return &StringLiteral{Val: lhs.Val + rhs.Val}
}
case *nilLiteral:
switch op {
case EQ, NEQ:
return &BooleanLiteral{Val: false}
}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprTimeLHS(op Token, lhs *TimeLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *DurationLiteral:
switch op {
case ADD:
return &TimeLiteral{Val: lhs.Val.Add(rhs.Val)}
case SUB:
return &TimeLiteral{Val: lhs.Val.Add(-rhs.Val)}
}
case *TimeLiteral:
switch op {
case SUB:
return &DurationLiteral{Val: lhs.Val.Sub(rhs.Val)}
case EQ:
return &BooleanLiteral{Val: lhs.Val.Equal(rhs.Val)}
case NEQ:
return &BooleanLiteral{Val: !lhs.Val.Equal(rhs.Val)}
case GT:
return &BooleanLiteral{Val: lhs.Val.After(rhs.Val)}
case GTE:
return &BooleanLiteral{Val: lhs.Val.After(rhs.Val) || lhs.Val.Equal(rhs.Val)}
case LT:
return &BooleanLiteral{Val: lhs.Val.Before(rhs.Val)}
case LTE:
return &BooleanLiteral{Val: lhs.Val.Before(rhs.Val) || lhs.Val.Equal(rhs.Val)}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceCall(expr *Call, valuer Valuer) Expr {
// Evaluate "now()" if valuer is set.
if strings.ToLower(expr.Name) == "now" && len(expr.Args) == 0 && valuer != nil {
if v, ok := valuer.Value("now()"); ok {
v, _ := v.(time.Time)
return &TimeLiteral{Val: v}
}
}
// Otherwise reduce arguments.
args := make([]Expr, len(expr.Args))
for i, arg := range expr.Args {
args[i] = reduce(arg, valuer)
}
return &Call{Name: expr.Name, Args: args}
}
func reduceParenExpr(expr *ParenExpr, valuer Valuer) Expr {
subexpr := reduce(expr.Expr, valuer)
if subexpr, ok := subexpr.(*BinaryExpr); ok {
return &ParenExpr{Expr: subexpr}
}
return subexpr
}
func reduceVarRef(expr *VarRef, valuer Valuer) Expr {
// Ignore if there is no valuer.
if valuer == nil {
return &VarRef{Val: expr.Val}
}
// Retrieve the value of the ref.
// Ignore if the value doesn't exist.
v, ok := valuer.Value(expr.Val)
if !ok {
return &VarRef{Val: expr.Val}
}
// Return the value as a literal.
switch v := v.(type) {
case bool:
return &BooleanLiteral{Val: v}
case time.Duration:
return &DurationLiteral{Val: v}
case float64:
return &NumberLiteral{Val: v}
case string:
return &StringLiteral{Val: v}
case time.Time:
return &TimeLiteral{Val: v}
default:
return &nilLiteral{}
}
}
// Valuer is the interface that wraps the Value() method.
//
// Value returns the value and existence flag for a given key.
type Valuer interface {
Value(key string) (interface{}, bool)
}
// nowValuer returns only the value for "now()".
type nowValuer struct {
Now time.Time
}
func (v *nowValuer) Value(key string) (interface{}, bool) {
if key == "now()" {
return v.Now, true
}
return nil, false
}