influxdb/read_buffer/benches/database.rs

119 lines
3.4 KiB
Rust

use arrow::{
array::{ArrayRef, Int64Array, StringArray},
record_batch::RecordBatch,
};
use criterion::{criterion_group, criterion_main, BatchSize, Criterion};
use internal_types::schema::builder::SchemaBuilder;
use read_buffer::{BinaryExpr, ChunkMetrics, Predicate, RBChunk};
use std::sync::Arc;
const BASE_TIME: i64 = 1351700038292387000_i64;
const ONE_MS: i64 = 1_000_000;
fn satisfies_predicate(c: &mut Criterion) {
let rb = generate_row_group(500_000);
let chunk = RBChunk::new("table_a", rb, ChunkMetrics::new_unregistered());
// no predicate
benchmark_satisfies_predicate(
c,
"database_satisfies_predicate_all_tables",
&chunk,
Predicate::default(),
true,
);
// predicate but meta-data rules out matches
benchmark_satisfies_predicate(
c,
"database_satisfies_predicate_meta_pred_no_match",
&chunk,
Predicate::new(vec![BinaryExpr::from(("env", "=", "zoo"))]),
false,
);
// predicate - single expression matches at least one row
benchmark_satisfies_predicate(
c,
"database_satisfies_predicate_single_pred_match",
&chunk,
Predicate::new(vec![BinaryExpr::from(("env", "=", "prod"))]),
true,
);
// predicate - at least one row matches all expressions
benchmark_satisfies_predicate(
c,
"database_satisfies_predicate_multi_pred_match",
&chunk,
Predicate::new(vec![
BinaryExpr::from(("env", "=", "prod")),
BinaryExpr::from(("time", ">=", BASE_TIME)),
BinaryExpr::from(("time", "<", BASE_TIME + (ONE_MS * 10000))),
]),
true,
);
}
fn benchmark_satisfies_predicate(
c: &mut Criterion,
bench_name: &str,
chunk: &RBChunk,
predicate: Predicate,
satisfies: bool,
) {
c.bench_function(bench_name, |b| {
b.iter_batched(
|| predicate.clone(), // don't want to time predicate cloning
|predicate: Predicate| {
assert_eq!(chunk.satisfies_predicate(&predicate), satisfies);
},
BatchSize::SmallInput,
);
});
}
// generate a row group with three columns of varying cardinality.
fn generate_row_group(rows: usize) -> RecordBatch {
let schema = SchemaBuilder::new()
.non_null_tag("env")
.non_null_tag("container_id")
.timestamp()
.build()
.unwrap();
let container_ids = (0..rows)
.into_iter()
.map(|i| format!("my_container_{:?}", i))
.collect::<Vec<_>>();
let data: Vec<ArrayRef> = vec![
// sorted 2 cardinality column
Arc::new(StringArray::from(
(0..rows)
.into_iter()
.map(|i| if i < rows / 2 { "prod" } else { "dev" })
.collect::<Vec<_>>(),
)),
// completely unique cardinality column
Arc::new(StringArray::from(
container_ids
.iter()
.map(|id| id.as_str())
.collect::<Vec<_>>(),
)),
// ms increasing time column;
Arc::new(Int64Array::from(
(0..rows)
.into_iter()
.map(|i| BASE_TIME + (i as i64 * ONE_MS))
.collect::<Vec<_>>(),
)),
];
RecordBatch::try_new(schema.into(), data).unwrap()
}
criterion_group!(benches, satisfies_predicate);
criterion_main!(benches);