influxdb/server.go

1041 lines
25 KiB
Go

package raft
import (
"encoding/json"
"errors"
"fmt"
"io/ioutil"
"os"
"path"
"sort"
"sync"
"time"
)
//------------------------------------------------------------------------------
//
// Constants
//
//------------------------------------------------------------------------------
const (
Stopped = "stopped"
Follower = "follower"
Candidate = "candidate"
Leader = "leader"
)
const (
DefaultHeartbeatTimeout = 50 * time.Millisecond
DefaultElectionTimeout = 150 * time.Millisecond
)
//------------------------------------------------------------------------------
//
// Errors
//
//------------------------------------------------------------------------------
var NotLeaderError = errors.New("raft.Server: Not current leader")
var DuplicatePeerError = errors.New("raft.Server: Duplicate peer")
//------------------------------------------------------------------------------
//
// Typedefs
//
//------------------------------------------------------------------------------
// A server is involved in the consensus protocol and can act as a follower,
// candidate or a leader.
type Server struct {
name string
path string
state string
transporter Transporter
context interface{}
currentTerm uint64
votedFor string
log *Log
leader string
peers map[string]*Peer
mutex sync.Mutex
electionTimer *Timer
heartbeatTimeout time.Duration
response chan FlushResponse
stepDown chan uint64
currentSnapshot *Snapshot
lastSnapshot *Snapshot
stateMachine StateMachine
}
//------------------------------------------------------------------------------
//
// Constructor
//
//------------------------------------------------------------------------------
// Creates a new server with a log at the given path.
func NewServer(name string, path string, transporter Transporter, stateMachine StateMachine, context interface{}) (*Server, error) {
if name == "" {
return nil, errors.New("raft.Server: Name cannot be blank")
}
if transporter == nil {
panic("raft: Transporter required")
}
s := &Server{
name: name,
path: path,
transporter: transporter,
stateMachine: stateMachine,
context: context,
state: Stopped,
peers: make(map[string]*Peer),
log: NewLog(),
electionTimer: NewTimer(DefaultElectionTimeout, DefaultElectionTimeout*2),
heartbeatTimeout: DefaultHeartbeatTimeout,
}
// Setup apply function.
s.log.ApplyFunc = func(c Command) (interface{}, error) {
result, err := c.Apply(s)
return result, err
}
return s, nil
}
//------------------------------------------------------------------------------
//
// Accessors
//
//------------------------------------------------------------------------------
//--------------------------------------
// General
//--------------------------------------
// Retrieves the name of the server.
func (s *Server) Name() string {
return s.name
}
// Retrieves the storage path for the server.
func (s *Server) Path() string {
return s.path
}
func (s *Server) Leader() string {
s.mutex.Lock()
defer s.mutex.Unlock()
return s.leader
}
// Retrieves a copy of the peer data.
func (s *Server) Peers() map[string]*Peer {
s.mutex.Lock()
defer s.mutex.Unlock()
peers := make(map[string]*Peer)
for name, peer := range s.peers {
peers[name] = peer.clone()
}
return peers
}
// Retrieves the object that transports requests.
func (s *Server) Transporter() Transporter {
return s.transporter
}
func (s *Server) SetTransporter(t Transporter) {
s.transporter = t
}
// Retrieves the context passed into the constructor.
func (s *Server) Context() interface{} {
return s.context
}
// Retrieves the log path for the server.
func (s *Server) LogPath() string {
return fmt.Sprintf("%s/log", s.path)
}
// Retrieves the current state of the server.
func (s *Server) State() string {
return s.state
}
// Retrieves the current term of the server.
func (s *Server) Term() uint64 {
return s.currentTerm
}
// Retrieves the name of the candidate this server voted for in this term.
func (s *Server) VotedFor() string {
return s.votedFor
}
// Retrieves whether the server's log has no entries.
func (s *Server) IsLogEmpty() bool {
s.mutex.Lock()
defer s.mutex.Unlock()
return s.log.IsEmpty()
}
// A list of all the log entries. This should only be used for debugging purposes.
func (s *Server) LogEntries() []*LogEntry {
s.mutex.Lock()
defer s.mutex.Unlock()
if s.log != nil {
return s.log.entries
}
return nil
}
// A reference to the command name of the last entry.
func (s *Server) LastCommandName() string {
s.mutex.Lock()
defer s.mutex.Unlock()
if s.log != nil {
return s.log.LastCommandName()
}
return ""
}
//--------------------------------------
// Membership
//--------------------------------------
// Retrieves the number of member servers in the consensus.
func (s *Server) MemberCount() int {
s.mutex.Lock()
defer s.mutex.Unlock()
return len(s.peers) + 1
}
// Retrieves the number of servers required to make a quorum.
func (s *Server) QuorumSize() int {
return (s.MemberCount() / 2) + 1
}
//--------------------------------------
// Election timeout
//--------------------------------------
// Retrieves the election timeout.
func (s *Server) ElectionTimeout() time.Duration {
return s.electionTimer.MinDuration()
}
// Sets the election timeout.
func (s *Server) SetElectionTimeout(duration time.Duration) {
s.electionTimer.SetMinDuration(duration)
s.electionTimer.SetMaxDuration(duration * 2)
}
func (s *Server) StartElectionTimeout() {
s.electionTimer.Reset()
}
func (s *Server) StartHeartbeatTimeout() {
for _, peer := range s.peers {
peer.StartHeartbeatTimeout()
}
}
//--------------------------------------
// Heartbeat timeout
//--------------------------------------
// Retrieves the heartbeat timeout.
func (s *Server) HeartbeatTimeout() time.Duration {
return s.heartbeatTimeout
}
// Sets the heartbeat timeout.
func (s *Server) SetHeartbeatTimeout(duration time.Duration) {
s.mutex.Lock()
defer s.mutex.Unlock()
s.heartbeatTimeout = duration
for _, peer := range s.peers {
peer.SetHeartbeatTimeout(duration)
}
}
//------------------------------------------------------------------------------
//
// Methods
//
//------------------------------------------------------------------------------
//--------------------------------------
// Initialization
//--------------------------------------
// Starts the server with a log at the given path.
func (s *Server) Initialize() error {
s.mutex.Lock()
defer s.mutex.Unlock()
// Exit if the server is already running.
if s.Running() {
return errors.New("raft.Server: Server already running")
}
// Initialize response channel
s.response = make(chan FlushResponse, 128)
// Create snapshot directory if not exist
os.Mkdir(s.path+"/snapshot", 0700)
// Initialize the log and load it up.
if err := s.log.Open(s.LogPath()); err != nil {
debugln("log error")
s.unload()
return fmt.Errorf("raft.Server: %v", err)
}
// Update the term to the last term in the log.
s.currentTerm = s.log.CurrentTerm()
return nil
}
// Start the sever as a follower
func (s *Server) StartFollower() {
// Update the state.
s.state = Follower
// Start the election timeout.
c := make(chan bool)
s.electionTimer.Reset()
go s.electionTimeoutFunc(c)
<-c
}
// Start the sever as a leader
func (s *Server) StartLeader() error {
s.mutex.Lock()
defer s.mutex.Unlock()
// Start as leader.
s.currentTerm++
s.state = Leader
s.leader = s.name
s.electionTimer.Pause()
// Leader need to collect appendLog response
go s.commitCenter()
return nil
}
// Collect response from followers. If more than the
// majority of the followers append a log entry, the
// leader will commit the log entry
func (s *Server) commitCenter() {
debugln("collecting data")
for {
var response FlushResponse
select {
case response = <-s.response:
case term := <-s.stepDown:
s.setCurrentTerm(term)
return
}
if response.peer != nil {
debugln("[CommitCenter] Receive response from ", response.peer.Name(), response.success)
}
// Determine the committed index that a majority has.
var indices []uint64
indices = append(indices, s.log.CurrentIndex())
for _, peer := range s.peers {
indices = append(indices, peer.prevLogIndex)
}
sort.Sort(Uint64Slice(indices))
// We can commit upto the index which the mojarity
// of the members have appended.
commitIndex := indices[s.QuorumSize()-1]
committedIndex := s.log.CommitIndex()
if commitIndex > committedIndex {
debugln("[CommitCenter] Going to Commit ", commitIndex)
s.log.SetCommitIndex(commitIndex)
debugln("[CommitCenter] Commit ", commitIndex)
}
}
}
// Shuts down the server.
func (s *Server) Stop() {
s.mutex.Lock()
defer s.mutex.Unlock()
s.unload()
}
// Unloads the server.
func (s *Server) unload() {
// Kill the election timer.
if s.electionTimer != nil {
s.electionTimer.Stop()
s.electionTimer = nil
}
// Remove peers.
for _, peer := range s.peers {
peer.stop()
}
// wait for all previous flush ends
time.Sleep(100 * time.Millisecond)
s.peers = make(map[string]*Peer)
// Close the log.
if s.log != nil {
s.log.Close()
s.log = nil
}
s.state = Stopped
}
// Checks if the server is currently running.
func (s *Server) Running() bool {
return s.state != Stopped
}
//--------------------------------------
// Commands
//--------------------------------------
// Attempts to execute a command and replicate it. The function will return
// when the command has been successfully committed or an error has occurred.
func (s *Server) Do(command Command) (interface{}, error) {
if s.state != Leader {
return nil, NotLeaderError
}
entry := s.log.CreateEntry(s.currentTerm, command)
if err := s.log.AppendEntry(entry); err != nil {
return nil, err
}
s.response <- FlushResponse{s.currentTerm, true, nil, nil}
// to speed up the response time
for _, peer := range s.peers {
peer.heartbeatTimer.fire()
}
debugln("[Do] join!")
// timeout here
select {
case <-entry.commit:
debugln("[Do] finish!")
result := entry.result
entry.result = nil
return result, nil
case <-time.After(time.Second):
debugln("[Do] fail!")
return nil, errors.New("Command commit fails")
}
}
// Appends a log entry from the leader to this server.
func (s *Server) AppendEntries(req *AppendEntriesRequest) (*AppendEntriesResponse, error) {
s.mutex.Lock()
defer s.mutex.Unlock()
// If the server is stopped then reject it.
if !s.Running() {
return NewAppendEntriesResponse(s.currentTerm, false, 0), fmt.Errorf("raft.Server: Server stopped")
}
// If the request is coming from an old term then reject it.
if req.Term < s.currentTerm {
return NewAppendEntriesResponse(s.currentTerm, false, s.log.CommitIndex()), fmt.Errorf("raft.Server: Stale request term")
}
debugln("Peer ", s.Name(), "received heartbeat from ", req.LeaderName,
" ", req.Term, " ", s.currentTerm, " ", time.Now())
s.setCurrentTerm(req.Term)
// Update the current leader.
s.leader = req.LeaderName
// Reset election timeout.
if s.electionTimer != nil {
s.electionTimer.Reset()
}
// Reject if log doesn't contain a matching previous entry.
if err := s.log.Truncate(req.PrevLogIndex, req.PrevLogTerm); err != nil {
return NewAppendEntriesResponse(s.currentTerm, false, s.log.CommitIndex()), err
}
debugln("Peer ", s.Name(), "after truncate ")
// Append entries to the log.
if err := s.log.AppendEntries(req.Entries); err != nil {
return NewAppendEntriesResponse(s.currentTerm, false, s.log.CommitIndex()), err
}
debugln("Peer ", s.Name(), "after append ")
// Commit up to the commit index.
if err := s.log.SetCommitIndex(req.CommitIndex); err != nil {
return NewAppendEntriesResponse(s.currentTerm, false, s.log.CommitIndex()), err
}
debugln("Peer ", s.Name(), "after commit ")
debugln("Peer ", s.Name(), "reply heartbeat from ", req.LeaderName,
" ", req.Term, " ", s.currentTerm, " ", time.Now())
return NewAppendEntriesResponse(s.currentTerm, true, s.log.CommitIndex()), nil
}
// Creates an AppendEntries request. Can return a nil request object if the
// index doesn't exist because of a snapshot.
func (s *Server) createAppendEntriesRequest(prevLogIndex uint64) *AppendEntriesRequest {
if s.log == nil {
return nil
}
entries, prevLogTerm := s.log.GetEntriesAfter(prevLogIndex)
if entries != nil {
return NewAppendEntriesRequest(s.currentTerm, s.name, prevLogIndex, prevLogTerm, entries, s.log.CommitIndex())
} else {
return nil
}
}
//--------------------------------------
// Promotion
//--------------------------------------
// Promotes the server to a candidate and then requests votes from peers. If
// enough votes are received then the server becomes the leader. If this
// server is elected then true is returned. If another server is elected then
// false is returned.
func (s *Server) promote() (bool, error) {
for {
// Start a new election.
term, lastLogIndex, lastLogTerm, err := s.promoteToCandidate()
if err != nil {
return false, err
}
// Request votes from each of our peers.
c := make(chan *RequestVoteResponse, len(s.peers))
for _, _peer := range s.peers {
peer := _peer
go func() {
req := NewRequestVoteRequest(term, s.name, lastLogIndex, lastLogTerm)
req.peer = peer
debugln(s.Name(), "Send Vote Request to ", peer.Name())
if resp, _ := s.transporter.SendVoteRequest(s, peer, req); resp != nil {
resp.peer = peer
c <- resp
}
}()
}
// Collect votes until we have a quorum.
votes := map[string]bool{}
elected := false
timeout := false
for {
// if timeout happened, restart the promotion
if timeout {
break
}
// Add up all our votes.
votesGranted := 1
for _, value := range votes {
if value {
votesGranted++
}
}
// If we received enough votes then stop waiting for more votes.
if votesGranted >= s.QuorumSize() {
elected = true
break
}
// Collect votes from peers.
select {
case resp := <-c:
if resp != nil {
// Step down if we discover a higher term.
if resp.Term > term {
s.mutex.Lock()
s.setCurrentTerm(term)
if s.electionTimer != nil {
s.electionTimer.Reset()
}
s.mutex.Unlock()
return false, fmt.Errorf("raft.Server: Higher term discovered, stepping down: (%v > %v)", resp.Term, term)
}
votes[resp.peer.Name()] = resp.VoteGranted
}
case <-afterBetween(s.ElectionTimeout(), s.ElectionTimeout()*2):
timeout = true
}
}
// If we received enough votes then promote to leader and stop this election.
if elected && s.promoteToLeader(term, lastLogIndex, lastLogTerm) {
break
}
// If we are no longer in the same term then another server must have been elected.
s.mutex.Lock()
if s.currentTerm != term {
s.mutex.Unlock()
return false, fmt.Errorf("raft.Server: Term changed during election, stepping down: (%v > %v)", s.currentTerm, term)
}
s.mutex.Unlock()
}
return true, nil
}
// Promotes the server to a candidate and increases the election term. The
// term and log state are returned for use in the RPCs.
func (s *Server) promoteToCandidate() (uint64, uint64, uint64, error) {
s.mutex.Lock()
defer s.mutex.Unlock()
// Ignore promotion if the server is not a follower.
if s.state != Follower && s.state != Candidate {
return 0, 0, 0, fmt.Errorf("raft: Invalid promotion state: %s", s.state)
}
// Move server to become a candidate, increase our term & vote for ourself.
s.state = Candidate
s.currentTerm++
s.votedFor = s.name
s.leader = ""
// Pause the election timer while we're a candidate.
s.electionTimer.Pause()
// Return server state so we can check for it during leader promotion.
lastLogIndex, lastLogTerm := s.log.LastInfo()
debugln("[PromoteToCandidate] Follower ", s.Name(),
"promote to candidate[", lastLogIndex, ",", lastLogTerm, "]")
return s.currentTerm, lastLogIndex, lastLogTerm, nil
}
// Promotes the server from a candidate to a leader. This can only occur if
// the server is in the state that it assumed when the candidate election
// began. This is because another server may have won the election and caused
// the state to change.
func (s *Server) promoteToLeader(term uint64, lastLogIndex uint64, lastLogTerm uint64) bool {
s.mutex.Lock()
defer s.mutex.Unlock()
// Ignore promotion if we are not a candidate.
if s.state != Candidate {
panic("promote to leader but not candidate")
}
// TODO: should panic or just a false?
// Disallow promotion if the term or log does not match what we currently have.
logIndex, logTerm := s.log.LastInfo()
if s.currentTerm != term || logIndex != lastLogIndex || logTerm != lastLogTerm {
return false
}
// Move server to become a leader and begin peer heartbeats.
s.state = Leader
s.leader = s.name
// Begin to collect response from followers
go s.commitCenter()
// Update the peers prevLogIndex to leader's lastLogIndex
// Start heartbeat
for _, peer := range s.peers {
debugln("[Leader] Set ", peer.Name(), "Prev to", lastLogIndex)
peer.prevLogIndex = lastLogIndex
peer.resume()
}
return true
}
//--------------------------------------
// Request Vote
//--------------------------------------
// Requests a vote from a server. A vote can be obtained if the vote's term is
// at the server's current term and the server has not made a vote yet. A vote
// can also be obtained if the term is greater than the server's current term.
func (s *Server) RequestVote(req *RequestVoteRequest) (*RequestVoteResponse, error) {
s.mutex.Lock()
defer s.mutex.Unlock()
debugln("Peer ", s.Name(), "receive vote request from ", req.CandidateName)
//debugln("[RequestVote] got the lock")
// Fail if the server is not running.
if !s.Running() {
return NewRequestVoteResponse(s.currentTerm, false), fmt.Errorf("raft.Server: Server is stopped")
}
// If the request is coming from an old term then reject it.
if req.Term < s.currentTerm {
return NewRequestVoteResponse(s.currentTerm, false), fmt.Errorf("raft.Server: Stale term: %v < %v", req.Term, s.currentTerm)
}
s.setCurrentTerm(req.Term)
// If we've already voted for a different candidate then don't vote for this candidate.
if s.votedFor != "" && s.votedFor != req.CandidateName {
return NewRequestVoteResponse(s.currentTerm, false), fmt.Errorf("raft.Server: Already voted for %v", s.votedFor)
}
// If the candidate's log is not at least as up-to-date as
// our last log then don't vote.
lastIndex, lastTerm := s.log.LastInfo()
if lastIndex > req.LastLogIndex || lastTerm > req.LastLogTerm {
return NewRequestVoteResponse(s.currentTerm, false), fmt.Errorf("raft.Server: Out-of-date log: [%v/%v] > [%v/%v]", lastIndex, lastTerm, req.LastLogIndex, req.LastLogTerm)
}
// If we made it this far then cast a vote and reset our election time out.
s.votedFor = req.CandidateName
debugln(s.Name(), "Vote for ", req.CandidateName)
if s.electionTimer != nil {
s.electionTimer.Reset()
}
return NewRequestVoteResponse(s.currentTerm, true), nil
}
// Updates the current term on the server if the term is greater than the
// server's current term. When the term is changed then the server's vote is
// cleared and its state is changed to be a follower.
func (s *Server) setCurrentTerm(term uint64) {
if term > s.currentTerm {
s.votedFor = ""
if s.state == Leader {
debugln(s.Name(), " step down to a follower")
// stop heartbeats
for _, peer := range s.peers {
peer.pause()
}
select {
case s.stepDown <- term:
default:
}
}
s.state = Follower
// update term after stop all the peer
s.currentTerm = term
}
}
// Listens to the election timeout and kicks off a new election.
func (s *Server) electionTimeoutFunc(startChannel chan bool) {
startChannel <- true
for {
// Grab the current timer channel.
s.mutex.Lock()
var c chan time.Time
if s.electionTimer != nil {
c = s.electionTimer.C()
}
s.mutex.Unlock()
// If the channel or timer are gone then exit.
if c == nil {
break
}
// If an election times out then promote this server. If the channel
// closes then that means the server has stopped so kill the function.
if _, ok := <-c; ok {
debugln("[ElectionTimeout] ", s.Name(), " ", time.Now())
s.promote()
} else {
break
}
}
}
//--------------------------------------
// Membership
//--------------------------------------
// Adds a peer to the server. This should be called by a system's join command
// within the context so that it is within the context of the server lock.
func (s *Server) AddPeer(name string) error {
// Do not allow peers to be added twice.
if s.peers[name] != nil {
return DuplicatePeerError
}
// Only add the peer if it doesn't have the same name.
if s.name != name {
//debugln("Add peer ", name)
peer := NewPeer(s, name, s.heartbeatTimeout)
if s.state == Leader {
peer.resume()
}
s.peers[peer.name] = peer
}
return nil
}
// Removes a peer from the server. This should be called by a system's join command
// within the context so that it is within the context of the server lock.
func (s *Server) RemovePeer(name string) error {
// Ignore removal of the server itself.
if s.name == name {
return nil
}
// Return error if peer doesn't exist.
peer := s.peers[name]
if peer == nil {
return fmt.Errorf("raft: Peer not found: %s", name)
}
// Flush entries to the peer first.
if s.state == Leader {
if _, _, err := peer.flush(); err != nil {
warn("raft: Unable to notify peer of removal: %v", err)
}
}
// Stop peer and remove it.
peer.stop()
delete(s.peers, name)
return nil
}
//--------------------------------------
// Log compaction
//--------------------------------------
// Creates a snapshot request.
func (s *Server) createSnapshotRequest() *SnapshotRequest {
s.mutex.Lock()
defer s.mutex.Unlock()
return NewSnapshotRequest(s.name, s.lastSnapshot)
}
// The background snapshot function
func (s *Server) Snapshot() {
for {
// TODO: change this... to something reasonable
time.Sleep(60 * time.Second)
s.takeSnapshot()
}
}
func (s *Server) takeSnapshot() error {
//TODO put a snapshot mutex
debugln("take Snapshot")
if s.currentSnapshot != nil {
return errors.New("handling snapshot")
}
lastIndex, lastTerm := s.log.CommitInfo()
if lastIndex == 0 || lastTerm == 0 {
return errors.New("No logs")
}
path := s.SnapshotPath(lastIndex, lastTerm)
var state []byte
var err error
if s.stateMachine != nil {
state, err = s.stateMachine.Save()
if err != nil {
return err
}
} else {
state = []byte{0}
}
var peerNames []string
for _, peer := range s.peers {
peerNames = append(peerNames, peer.Name())
}
peerNames = append(peerNames, s.Name())
s.currentSnapshot = &Snapshot{lastIndex, lastTerm, peerNames, state, path}
s.saveSnapshot()
s.log.Compact(lastIndex, lastTerm)
return nil
}
// Retrieves the log path for the server.
func (s *Server) saveSnapshot() error {
if s.currentSnapshot == nil {
return errors.New("no snapshot to save")
}
err := s.currentSnapshot.Save()
if err != nil {
return err
}
tmp := s.lastSnapshot
s.lastSnapshot = s.currentSnapshot
// delete the previous snapshot if there is any change
if tmp != nil && !(tmp.LastIndex == s.lastSnapshot.LastIndex && tmp.LastTerm == s.lastSnapshot.LastTerm) {
tmp.Remove()
}
s.currentSnapshot = nil
return nil
}
// Retrieves the log path for the server.
func (s *Server) SnapshotPath(lastIndex uint64, lastTerm uint64) string {
return path.Join(s.path, "snapshot", fmt.Sprintf("%v_%v.ss", lastTerm, lastIndex))
}
func (s *Server) SnapshotRecovery(req *SnapshotRequest) (*SnapshotResponse, error) {
//
s.mutex.Lock()
defer s.mutex.Unlock()
s.stateMachine.Recovery(req.State)
//recovery the cluster configuration
for _, peerName := range req.Peers {
s.AddPeer(peerName)
}
//update term and index
s.currentTerm = req.LastTerm
s.log.UpdateCommitIndex(req.LastIndex)
snapshotPath := s.SnapshotPath(req.LastIndex, req.LastTerm)
s.currentSnapshot = &Snapshot{req.LastIndex, req.LastTerm, req.Peers, req.State, snapshotPath}
s.saveSnapshot()
s.log.Compact(req.LastIndex, req.LastTerm)
return NewSnapshotResponse(req.LastTerm, true, req.LastIndex), nil
}
// Load a snapshot at restart
func (s *Server) LoadSnapshot() error {
dir, err := os.OpenFile(path.Join(s.path, "snapshot"), os.O_RDONLY, 0)
if err != nil {
return err
}
filenames, err := dir.Readdirnames(-1)
if err != nil {
dir.Close()
panic(err)
}
dir.Close()
if len(filenames) == 0 {
return errors.New("no snapshot")
}
// not sure how many snapshot we should keep
sort.Strings(filenames)
snapshotPath := path.Join(s.path, "snapshot", filenames[len(filenames)-1])
// should not file
file, err := os.OpenFile(snapshotPath, os.O_RDONLY, 0)
defer file.Close()
if err != nil {
panic(err)
}
// TODO check checksum first
var snapshotBytes []byte
var checksum []byte
n, err := fmt.Fscanf(file, "%08x\n", &checksum)
if err != nil {
return err
}
if n != 1 {
return errors.New("Bad snapshot file")
}
snapshotBytes, _ = ioutil.ReadAll(file)
debugln(string(snapshotBytes))
err = json.Unmarshal(snapshotBytes, &s.lastSnapshot)
if err != nil {
return err
}
err = s.stateMachine.Recovery(s.lastSnapshot.State)
for _, peerName := range s.lastSnapshot.Peers {
s.AddPeer(peerName)
}
s.log.SetStartTerm(s.lastSnapshot.LastTerm)
s.log.SetStartIndex(s.lastSnapshot.LastIndex)
s.log.UpdateCommitIndex(s.lastSnapshot.LastIndex)
return err
}