influxdb/server.go

3991 lines
108 KiB
Go

package influxdb
import (
"bytes"
"encoding/json"
"errors"
"fmt"
"io"
"log"
"math"
"net/http"
"net/url"
"os"
"path/filepath"
"regexp"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"time"
"github.com/influxdb/influxdb/influxql"
"github.com/influxdb/influxdb/messaging"
"golang.org/x/crypto/bcrypt"
)
const (
// DefaultRootPassword is the password initially set for the root user.
// It is also used when reseting the root user's password.
DefaultRootPassword = "root"
// DefaultRetentionPolicyName is the name of a databases's default shard space.
DefaultRetentionPolicyName = "default"
// DefaultSplitN represents the number of partitions a shard is split into.
DefaultSplitN = 1
// DefaultReplicaN represents the number of replicas data is written to.
DefaultReplicaN = 1
// DefaultShardDuration is the time period held by a shard.
DefaultShardDuration = 7 * (24 * time.Hour)
// DefaultShardRetention is the length of time before a shard is dropped.
DefaultShardRetention = 7 * (24 * time.Hour)
// BroadcastTopicID is the topic used for all metadata.
BroadcastTopicID = uint64(0)
// Defines the minimum duration allowed for all retention policies
retentionPolicyMinDuration = time.Hour
// When planning a select statement, passing zero tells it not to chunk results. Only applies to raw queries
NoChunkingSize = 0
)
// Server represents a collection of metadata and raw metric data.
type Server struct {
mu sync.RWMutex
id uint64
path string
done chan struct{} // goroutine close notification
rpDone chan struct{} // retention policies goroutine close notification
sgpcDone chan struct{} // shard group pre-create goroutine close notification
client MessagingClient // broker client
index uint64 // highest broadcast index seen
errors map[uint64]error // message errors
meta *metastore // metadata store
dataNodes map[uint64]*DataNode // data nodes by id
databases map[string]*database // databases by name
users map[string]*User // user by name
shards map[uint64]*Shard // shards by shard id
stats *Stats
Logger *log.Logger
WriteTrace bool // Detailed logging of write path
authenticationEnabled bool
// Retention policy settings
RetentionAutoCreate bool
// continuous query settings
RecomputePreviousN int
RecomputeNoOlderThan time.Duration
ComputeRunsPerInterval int
ComputeNoMoreThan time.Duration
// This is the last time this data node has run continuous queries.
// Keep this state in memory so if a broker makes a request in another second
// to compute, it won't rerun CQs that have already been run. If this data node
// is just getting the request after being off duty for running CQs then
// it will recompute all of them
lastContinuousQueryRun time.Time
// Build information.
Version string
CommitHash string
}
// NewServer returns a new instance of Server.
func NewServer() *Server {
s := Server{
meta: &metastore{},
errors: make(map[uint64]error),
dataNodes: make(map[uint64]*DataNode),
databases: make(map[string]*database),
users: make(map[string]*User),
shards: make(map[uint64]*Shard),
stats: NewStats("server"),
Logger: log.New(os.Stderr, "[server] ", log.LstdFlags),
}
// Server will always return with authentication enabled.
// This ensures that disabling authentication must be an explicit decision.
// To set the server to 'authless mode', call server.SetAuthenticationEnabled(false).
s.authenticationEnabled = true
return &s
}
func (s *Server) BrokerURLs() []url.URL {
return s.client.URLs()
}
// SetAuthenticationEnabled turns on or off server authentication
func (s *Server) SetAuthenticationEnabled(enabled bool) {
s.authenticationEnabled = enabled
}
// ID returns the data node id for the server.
// Returns zero if the server is closed or the server has not joined a cluster.
func (s *Server) ID() uint64 {
s.mu.RLock()
defer s.mu.RUnlock()
return s.id
}
// Index returns the index for the server.
func (s *Server) Index() uint64 {
s.mu.RLock()
defer s.mu.RUnlock()
return s.index
}
// Path returns the path used when opening the server.
// Returns an empty string when the server is closed.
func (s *Server) Path() string {
s.mu.RLock()
defer s.mu.RUnlock()
return s.path
}
// shardPath returns the path for a shard.
func (s *Server) shardPath(id uint64) string {
if s.path == "" {
return ""
}
return filepath.Join(s.path, "shards", strconv.FormatUint(id, 10))
}
// metaPath returns the path for the metastore.
func (s *Server) metaPath() string {
if s.path == "" {
return ""
}
return filepath.Join(s.path, "meta")
}
// Open initializes the server from a given path.
func (s *Server) Open(path string, client MessagingClient) error {
s.mu.Lock()
defer s.mu.Unlock()
// Ensure the server isn't already open and there's a path provided.
if s.opened() {
return ErrServerOpen
} else if path == "" {
return ErrPathRequired
}
// Set the server path.
s.path = path
// Create required directories.
if err := os.MkdirAll(path, 0755); err != nil {
_ = s.close()
return err
}
if err := os.MkdirAll(filepath.Join(path, "shards"), 0755); err != nil {
_ = s.close()
return err
}
// Set the messaging client.
s.client = client
// Open metadata store.
if err := s.meta.open(s.metaPath()); err != nil {
_ = s.close()
return fmt.Errorf("meta: %s", err)
}
// Load state from metastore.
if err := s.load(); err != nil {
_ = s.close()
return fmt.Errorf("load: %s", err)
}
// Create connection for broadcast topic.
conn := client.Conn(BroadcastTopicID)
if err := conn.Open(s.index, true); err != nil {
_ = s.close()
return fmt.Errorf("open conn: %s", err)
}
// Begin streaming messages from broadcast topic.
done := make(chan struct{}, 0)
s.done = done
go s.processor(conn, done)
// TODO: Associate series ids with shards.
return nil
}
// opened returns true when the server is open. Must be called under lock.
func (s *Server) opened() bool { return s.path != "" }
// Close shuts down the server.
func (s *Server) Close() error {
s.mu.Lock()
defer s.mu.Unlock()
return s.close()
}
func (s *Server) close() error {
if !s.opened() {
return ErrServerClosed
}
if s.rpDone != nil {
close(s.rpDone)
s.rpDone = nil
}
if s.sgpcDone != nil {
close(s.sgpcDone)
s.sgpcDone = nil
}
// Remove path.
s.path = ""
s.index = 0
// Stop broadcast topic processing.
if s.done != nil {
close(s.done)
s.done = nil
}
if s.client != nil {
s.client.Close()
s.client = nil
}
// Close metastore.
_ = s.meta.close()
// Close shards.
for _, sh := range s.shards {
_ = sh.close()
}
// Server is closing, empty maps which should be reloaded on open.
s.shards = nil
s.dataNodes = nil
s.databases = nil
s.users = nil
return nil
}
// load reads the state of the server from the metastore.
func (s *Server) load() error {
return s.meta.view(func(tx *metatx) error {
// Read server id & index.
s.id = tx.id()
s.index = tx.index()
// Load data nodes.
s.dataNodes = make(map[uint64]*DataNode)
for _, node := range tx.dataNodes() {
s.dataNodes[node.ID] = node
}
// Load databases.
s.databases = make(map[string]*database)
for _, db := range tx.databases() {
s.databases[db.name] = db
// load the index
log.Printf("Loading metadata index for %s\n", db.name)
err := s.meta.view(func(tx *metatx) error {
tx.indexDatabase(db)
return nil
})
if err != nil {
return err
}
}
// Load shards.
s.shards = make(map[uint64]*Shard)
for _, db := range s.databases {
for _, rp := range db.policies {
for _, g := range rp.shardGroups {
for _, sh := range g.Shards {
// Add to lookups.
s.shards[sh.ID] = sh
// Only open shards owned by the server.
if !sh.HasDataNodeID(s.id) {
continue
}
if err := sh.open(s.shardPath(sh.ID), s.client.Conn(sh.ID)); err != nil {
return fmt.Errorf("cannot open shard store: id=%d, err=%s", sh.ID, err)
}
s.stats.Inc("shardsOpen")
}
}
}
}
// Load users.
s.users = make(map[string]*User)
for _, u := range tx.users() {
s.users[u.Name] = u
}
return nil
})
}
// StartSelfMonitoring starts a goroutine which monitors the InfluxDB server
// itself and stores the results in the specified database at a given interval.
func (s *Server) StartSelfMonitoring(database, retention string, interval time.Duration) error {
if interval == 0 {
return fmt.Errorf("statistics check interval must be non-zero")
}
// Function for local use turns stats into a slice of points
pointsFromStats := func(st *Stats, tags map[string]string) []Point {
var points []Point
now := time.Now()
st.Walk(func(k string, v int64) {
point := Point{
Timestamp: now,
Name: st.name + "_" + k,
Tags: make(map[string]string),
Fields: map[string]interface{}{"value": int(v)},
}
// Specifically create a new map.
for k, v := range tags {
point.Tags[k] = v
}
points = append(points, point)
})
return points
}
go func() {
tick := time.NewTicker(interval)
for {
<-tick.C
// Create the batch and tags
tags := map[string]string{"serverID": strconv.FormatUint(s.ID(), 10)}
if h, err := os.Hostname(); err == nil {
tags["host"] = h
}
batch := pointsFromStats(s.stats, tags)
// Shard-level stats.
tags["shardID"] = strconv.FormatUint(s.id, 10)
for _, sh := range s.shards {
batch = append(batch, pointsFromStats(sh.stats, tags)...)
}
// Server diagnostics.
for _, row := range s.DiagnosticsAsRows() {
points, err := s.convertRowToPoints(row.Name, row)
if err != nil {
s.Logger.Printf("failed to write diagnostic row for %s: %s", row.Name, err.Error())
continue
}
for _, p := range points {
p.Tags = map[string]string{"serverID": strconv.FormatUint(s.ID(), 10)}
}
batch = append(batch, points...)
}
s.WriteSeries(database, retention, batch)
}
}()
return nil
}
// StartRetentionPolicyEnforcement launches retention policy enforcement.
func (s *Server) StartRetentionPolicyEnforcement(checkInterval time.Duration) error {
if checkInterval == 0 {
return fmt.Errorf("retention policy check interval must be non-zero")
}
rpDone := make(chan struct{}, 0)
s.rpDone = rpDone
go func() {
for {
select {
case <-rpDone:
return
case <-time.After(checkInterval):
s.EnforceRetentionPolicies()
}
}
}()
return nil
}
// EnforceRetentionPolicies ensures that data that is aging-out due to retention policies
// is removed from the server.
func (s *Server) EnforceRetentionPolicies() {
log.Println("retention policy enforcement check commencing")
type group struct {
Database string
Retention string
ID uint64
}
var groups []group
// Only keep the lock while walking the shard groups, so the lock is not held while
// any deletions take place across the cluster.
func() {
s.mu.RLock()
defer s.mu.RUnlock()
// Check all shard groups.
for _, db := range s.databases {
for _, rp := range db.policies {
for _, g := range rp.shardGroups {
if rp.Duration != 0 && g.EndTime.Add(rp.Duration).Before(time.Now().UTC()) {
log.Printf("shard group %d, retention policy %s, database %s due for deletion",
g.ID, rp.Name, db.name)
groups = append(groups, group{Database: db.name, Retention: rp.Name, ID: g.ID})
}
}
}
}
}()
for _, g := range groups {
if err := s.DeleteShardGroup(g.Database, g.Retention, g.ID); err != nil {
log.Printf("failed to request deletion of shard group %d: %s", g.ID, err.Error())
}
}
}
// StartShardGroupsPreCreate launches shard group pre-create to avoid write bottlenecks.
func (s *Server) StartShardGroupsPreCreate(checkInterval time.Duration) error {
if checkInterval == 0 {
return fmt.Errorf("shard group pre-create check interval must be non-zero")
}
sgpcDone := make(chan struct{}, 0)
s.sgpcDone = sgpcDone
go func() {
for {
select {
case <-sgpcDone:
return
case <-time.After(checkInterval):
s.ShardGroupPreCreate(checkInterval)
}
}
}()
return nil
}
// ShardGroupPreCreate ensures that future shard groups and shards are created and ready for writing
// is removed from the server.
func (s *Server) ShardGroupPreCreate(checkInterval time.Duration) {
log.Println("shard group pre-create check commencing")
// For safety, we double the check interval to ensure we have enough time to create all shard groups
// before they are needed, but as close to needed as possible.
// This is a complete punt on optimization
cutoff := time.Now().Add(checkInterval * 2).UTC()
type group struct {
Database string
Retention string
ID uint64
Timestamp time.Time
}
var groups []group
// Only keep the lock while walking the shard groups, so the lock is not held while
// any deletions take place across the cluster.
func() {
s.mu.RLock()
defer s.mu.RUnlock()
// Check all shard groups.
// See if they have a "future" shard group ready to write to
// If not, create the next shard group, as well as each shard for the shardGroup
for _, db := range s.databases {
for _, rp := range db.policies {
for _, g := range rp.shardGroups {
// Check to see if it is going to end before our interval
if g.EndTime.Before(cutoff) {
log.Printf("pre-creating shard group for %d, retention policy %s, database %s", g.ID, rp.Name, db.name)
groups = append(groups, group{Database: db.name, Retention: rp.Name, ID: g.ID, Timestamp: g.EndTime.Add(1 * time.Nanosecond)})
}
}
}
}
}()
for _, g := range groups {
if err := s.CreateShardGroupIfNotExists(g.Database, g.Retention, g.Timestamp); err != nil {
log.Printf("failed to request pre-creation of shard group %d for time %s: %s", g.ID, g.Timestamp, err.Error())
}
}
}
// Client retrieves the current messaging client.
func (s *Server) Client() MessagingClient {
s.mu.RLock()
defer s.mu.RUnlock()
return s.client
}
// broadcast encodes a message as JSON and send it to the broker's broadcast topic.
// This function waits until the message has been processed by the server.
// Returns the broker log index of the message or an error.
func (s *Server) broadcast(typ messaging.MessageType, c interface{}) (uint64, error) {
s.stats.Inc("broadcastMessageTx")
// Encode the command.
data, err := json.Marshal(c)
if err != nil {
return 0, err
}
// Publish the message.
m := &messaging.Message{
Type: typ,
TopicID: BroadcastTopicID,
Data: data,
}
index, err := s.client.Publish(m)
if err != nil {
return 0, err
}
// Wait for the server to receive the message.
err = s.Sync(BroadcastTopicID, index)
return index, err
}
// Sync blocks until a given index (or a higher index) has been applied.
// Returns any error associated with the command.
func (s *Server) Sync(topicID, index uint64) error {
// Sync to the broadcast topic if specified.
if topicID == 0 {
return s.syncBroadcast(index)
}
// Otherwise retrieve shard by id.
s.mu.RLock()
sh := s.shards[topicID]
s.mu.RUnlock()
// Return error if there is no shard.
if sh == nil || sh.store == nil {
return errors.New("shard not owned")
}
return sh.sync(index)
}
// syncBroadcast syncs the broadcast topic.
func (s *Server) syncBroadcast(index uint64) error {
for {
// Check if index has occurred. If so, retrieve the error and return.
s.mu.RLock()
if s.index >= index {
err, ok := s.errors[index]
if ok {
delete(s.errors, index)
}
s.mu.RUnlock()
return err
}
s.mu.RUnlock()
// Otherwise wait momentarily and check again.
time.Sleep(1 * time.Millisecond)
}
}
// Initialize creates a new data node and initializes the server's id to the latest.
func (s *Server) Initialize(u url.URL) error {
// Create a new data node.
if err := s.CreateDataNode(&u); err != nil {
return err
}
// Ensure the data node returns with an ID.
// If it doesn't then something went really wrong. We have to panic because
// the messaging client relies on the first server being assigned ID 1.
n := s.DataNodeByURL(&u)
assert(n != nil, "node not created: %s", u.String())
assert(n.ID > 0, "invalid node id: %d", n.ID)
// Set the ID on the metastore.
if err := s.meta.mustUpdate(0, func(tx *metatx) error {
return tx.setID(n.ID)
}); err != nil {
return err
}
// Set the ID on the server.
s.id = n.ID
return nil
}
// This is the same struct we use in the httpd package, but
// it seems overkill to export it and share it
type dataNodeJSON struct {
ID uint64 `json:"id"`
URL string `json:"url"`
}
// copyURL returns a copy of the the URL.
func copyURL(u *url.URL) *url.URL {
other := &url.URL{}
*other = *u
return other
}
// Join creates a new data node in an existing cluster, copies the metastore,
// and initializes the ID.
func (s *Server) Join(u *url.URL, joinURL *url.URL) error {
s.mu.Lock()
defer s.mu.Unlock()
// Create the initial request. Might get a redirect though depending on
// the nodes role
joinURL = copyURL(joinURL)
joinURL.Path = "/data/data_nodes"
var retries int
var resp *http.Response
var err error
// When POSTing the to the join endpoint, we are manually following redirects
// and not relying on the Go http client redirect policy. The Go http client will convert
// POSTs to GETSs when following redirects which is not what we want when joining.
// (i.e. we want to join a node, not list the nodes) If we receive a redirect response,
// the Location header is where we should resend the POST. We also need to re-encode
// body since the buf was already read.
for {
// Should never get here but bail to avoid a infinite redirect loop to be safe
if retries >= 60 {
return ErrUnableToJoin
}
// Encode data node request.
var buf bytes.Buffer
if err := json.NewEncoder(&buf).Encode(&dataNodeJSON{URL: u.String()}); err != nil {
return err
}
resp, err = http.Post(joinURL.String(), "application/octet-stream", &buf)
if err != nil {
return err
}
defer resp.Body.Close()
// If we get a service unavailable, the other data nodes may still be booting
// so retry again
if resp.StatusCode == http.StatusServiceUnavailable {
s.Logger.Printf("join unavailable, retrying")
retries += 1
time.Sleep(1 * time.Second)
continue
}
// We likely tried to join onto a broker which cannot handle this request. It
// has given us the address of a known data node to join instead.
if resp.StatusCode == http.StatusTemporaryRedirect {
redirectURL, err := url.Parse(resp.Header.Get("Location"))
s.Logger.Printf("redirect join: %s", redirectURL)
// if we happen to get redirected back to ourselves then we'll never join. This
// may because the heartbeater could have already fired once, registering our endpoints
// as a data node and the broker is redirecting data node requests back to us. In
// this case, just re-request the original URL again util we get a different node.
if redirectURL.Host != u.Host {
joinURL = redirectURL
}
if err != nil {
return err
}
retries += 1
resp.Body.Close()
continue
}
// If we are first data node, we can't join anyone and need to initialize
if resp.StatusCode == http.StatusNotFound {
return ErrDataNodeNotFound
}
break
}
// Check if created.
if resp.StatusCode != http.StatusCreated {
return ErrUnableToJoin
}
// Decode response.
var n dataNodeJSON
if err := json.NewDecoder(resp.Body).Decode(&n); err != nil {
return err
}
assert(n.ID > 0, "invalid join node id returned: %d", n.ID)
// Download the metastore from joining server.
joinURL.Path = "/data/metastore"
resp, err = http.Get(joinURL.String())
if err != nil {
return err
}
defer resp.Body.Close()
// Check response & parse content length.
if resp.StatusCode != http.StatusOK {
return fmt.Errorf("unsuccessful meta copy: status=%d (%s)", resp.StatusCode, joinURL.String())
}
sz, err := strconv.ParseInt(resp.Header.Get("Content-Length"), 10, 64)
if err != nil {
return fmt.Errorf("cannot parse meta size: %s", err)
}
// Close the metastore.
_ = s.meta.close()
// Overwrite the metastore.
f, err := os.Create(s.metaPath())
if err != nil {
return fmt.Errorf("create meta file: %s", err)
}
// Copy and check size.
if _, err := io.CopyN(f, resp.Body, sz); err != nil {
_ = f.Close()
return fmt.Errorf("copy meta file: %s", err)
}
_ = f.Close()
// Reopen metastore.
s.meta = &metastore{}
if err := s.meta.open(s.metaPath()); err != nil {
return fmt.Errorf("reopen meta: %s", err)
}
// Update the ID on the metastore.
if err := s.meta.mustUpdate(0, func(tx *metatx) error {
return tx.setID(n.ID)
}); err != nil {
return err
}
// Reload the server.
log.Printf("reloading metadata")
if err := s.load(); err != nil {
return fmt.Errorf("reload: %s", err)
}
return nil
}
// CopyMetastore writes the underlying metastore data file to a writer.
func (s *Server) CopyMetastore(w io.Writer) error {
return s.meta.mustView(func(tx *metatx) error {
// Set content lengh if this is a HTTP connection.
if w, ok := w.(http.ResponseWriter); ok {
w.Header().Set("Content-Length", strconv.Itoa(int(tx.Size())))
}
// Write entire database to the writer.
return tx.Copy(w)
})
}
// DataNode returns a data node by id.
func (s *Server) DataNode(id uint64) *DataNode {
s.mu.RLock()
defer s.mu.RUnlock()
return s.dataNodes[id]
}
// DataNodesByID returns the data nodes matching the passed ids
func (s *Server) DataNodesByID(ids []uint64) []*DataNode {
s.mu.RLock()
defer s.mu.RUnlock()
var a []*DataNode
for _, id := range ids {
a = append(a, s.dataNodes[id])
}
return a
}
// DataNodeByURL returns a data node by url.
func (s *Server) DataNodeByURL(u *url.URL) *DataNode {
s.mu.RLock()
defer s.mu.RUnlock()
for _, n := range s.dataNodes {
if n.URL.String() == u.String() {
return n
}
}
return nil
}
// DataNodes returns a list of data nodes.
func (s *Server) DataNodes() (a []*DataNode) {
s.mu.RLock()
defer s.mu.RUnlock()
for _, n := range s.dataNodes {
a = append(a, n)
}
sort.Sort(dataNodes(a))
return
}
// CreateDataNode creates a new data node with a given URL.
func (s *Server) CreateDataNode(u *url.URL) error {
c := &createDataNodeCommand{URL: u.String()}
_, err := s.broadcast(createDataNodeMessageType, c)
return err
}
func (s *Server) applyCreateDataNode(m *messaging.Message) (err error) {
var c createDataNodeCommand
mustUnmarshalJSON(m.Data, &c)
// Validate parameters.
if c.URL == "" {
return ErrDataNodeURLRequired
}
// Check that another node with the same URL doesn't already exist.
u, _ := url.Parse(c.URL)
for _, n := range s.dataNodes {
if n.URL.String() == u.String() {
return ErrDataNodeExists
}
}
// Create data node.
n := newDataNode()
n.URL = u
// Persist to metastore.
err = s.meta.mustUpdate(m.Index, func(tx *metatx) error {
n.ID = tx.nextDataNodeID()
return tx.saveDataNode(n)
})
// Add to node on server.
s.dataNodes[n.ID] = n
return
}
// DeleteDataNode deletes an existing data node.
func (s *Server) DeleteDataNode(id uint64) error {
c := &deleteDataNodeCommand{ID: id}
_, err := s.broadcast(deleteDataNodeMessageType, c)
return err
}
func (s *Server) applyDeleteDataNode(m *messaging.Message) (err error) {
var c deleteDataNodeCommand
mustUnmarshalJSON(m.Data, &c)
n := s.dataNodes[c.ID]
if n == nil {
return ErrDataNodeNotFound
}
// Remove from metastore.
err = s.meta.mustUpdate(m.Index, func(tx *metatx) error { return tx.deleteDataNode(c.ID) })
// Delete the node.
delete(s.dataNodes, n.ID)
return
}
// DatabaseExists returns true if a database exists.
func (s *Server) DatabaseExists(name string) bool {
s.mu.RLock()
defer s.mu.RUnlock()
return s.databases[name] != nil
}
// Databases returns a sorted list of all database names.
func (s *Server) Databases() (a []string) {
s.mu.RLock()
defer s.mu.RUnlock()
for _, db := range s.databases {
a = append(a, db.name)
}
sort.Strings(a)
return
}
// CreateDatabase creates a new database.
func (s *Server) CreateDatabase(name string) error {
if name == "" {
return ErrDatabaseNameRequired
}
c := &createDatabaseCommand{Name: name}
_, err := s.broadcast(createDatabaseMessageType, c)
return err
}
// CreateDatabaseIfNotExists creates a new database if, and only if, it does not exist already.
func (s *Server) CreateDatabaseIfNotExists(name string) error {
if s.DatabaseExists(name) {
return nil
}
// Small chance database could have been created even though the check above said it didn't.
if err := s.CreateDatabase(name); err != nil && err != ErrDatabaseExists {
return err
}
return nil
}
func (s *Server) applyCreateDatabase(m *messaging.Message) (err error) {
var c createDatabaseCommand
mustUnmarshalJSON(m.Data, &c)
if s.databases[c.Name] != nil {
return ErrDatabaseExists
}
// Create database entry.
db := newDatabase()
db.name = c.Name
if s.RetentionAutoCreate {
// Create the default retention policy.
db.policies[DefaultRetentionPolicyName] = &RetentionPolicy{
Name: DefaultRetentionPolicyName,
Duration: 0,
ShardGroupDuration: calculateShardGroupDuration(0),
ReplicaN: 1,
}
db.defaultRetentionPolicy = DefaultRetentionPolicyName
s.Logger.Printf("retention policy '%s' auto-created for database '%s'", DefaultRetentionPolicyName, c.Name)
}
// Persist to metastore.
err = s.meta.mustUpdate(m.Index, func(tx *metatx) error { return tx.saveDatabase(db) })
// Add to databases on server.
s.databases[c.Name] = db
return
}
// DropDatabase deletes an existing database.
func (s *Server) DropDatabase(name string) error {
if name == "" {
return ErrDatabaseNameRequired
}
c := &dropDatabaseCommand{Name: name}
_, err := s.broadcast(dropDatabaseMessageType, c)
return err
}
func (s *Server) applyDropDatabase(m *messaging.Message) (err error) {
var c dropDatabaseCommand
mustUnmarshalJSON(m.Data, &c)
if s.databases[c.Name] == nil {
return ErrDatabaseNotFound(c.Name)
}
// Remove from metastore.
err = s.meta.mustUpdate(m.Index, func(tx *metatx) error { return tx.dropDatabase(c.Name) })
// Delete the database entry.
delete(s.databases, c.Name)
return
}
// Shard returns a shard by ID.
func (s *Server) Shard(id uint64) *Shard {
s.mu.RLock()
defer s.mu.RUnlock()
return s.shards[id]
}
// shardGroupByTimestamp returns a group for a database, policy & timestamp.
func (s *Server) shardGroupByTimestamp(database, policy string, timestamp time.Time) (*ShardGroup, error) {
db := s.databases[database]
if db == nil {
return nil, ErrDatabaseNotFound(database)
}
return db.shardGroupByTimestamp(policy, timestamp)
}
// ShardGroups returns a list of all shard groups for a database.
// Returns an error if the database doesn't exist.
func (s *Server) ShardGroups(database string) ([]*ShardGroup, error) {
s.mu.RLock()
defer s.mu.RUnlock()
// Lookup database.
db := s.databases[database]
if db == nil {
return nil, ErrDatabaseNotFound(database)
}
// Retrieve groups from database.
var a []*ShardGroup
for _, rp := range db.policies {
for _, g := range rp.shardGroups {
a = append(a, g)
}
}
return a, nil
}
// CreateShardGroupIfNotExists creates the shard group for a retention policy for the interval a timestamp falls into.
func (s *Server) CreateShardGroupIfNotExists(database, policy string, timestamp time.Time) error {
c := &createShardGroupIfNotExistsCommand{Database: database, Policy: policy, Timestamp: timestamp}
_, err := s.broadcast(createShardGroupIfNotExistsMessageType, c)
return err
}
func (s *Server) applyCreateShardGroupIfNotExists(m *messaging.Message) (err error) {
var c createShardGroupIfNotExistsCommand
mustUnmarshalJSON(m.Data, &c)
// Retrieve database.
db := s.databases[c.Database]
if s.databases[c.Database] == nil {
return ErrDatabaseNotFound(c.Database)
}
// Validate retention policy.
rp := db.policies[c.Policy]
if rp == nil {
return ErrRetentionPolicyNotFound
}
// If we can match to an existing shard group date range then just ignore request.
if g := rp.shardGroupByTimestamp(c.Timestamp); g != nil {
return nil
}
// If no shards match then create a new one.
g := newShardGroup()
g.StartTime = c.Timestamp.Truncate(rp.ShardGroupDuration).UTC()
g.EndTime = g.StartTime.Add(rp.ShardGroupDuration).UTC()
// Sort nodes so they're consistently assigned to the shards.
nodes := make([]*DataNode, 0, len(s.dataNodes))
for _, n := range s.dataNodes {
nodes = append(nodes, n)
}
sort.Sort(dataNodes(nodes))
// Require at least one replica but no more replicas than nodes.
replicaN := int(rp.ReplicaN)
if replicaN == 0 {
replicaN = 1
} else if replicaN > len(nodes) {
replicaN = len(nodes)
}
// Determine shard count by node count divided by replication factor.
// This will ensure nodes will get distributed across nodes evenly and
// replicated the correct number of times.
shardN := len(nodes) / replicaN
// Create a shard based on the node count and replication factor.
g.Shards = make([]*Shard, shardN)
for i := range g.Shards {
g.Shards[i] = newShard()
}
// Persist to metastore if a shard was created.
if err = s.meta.mustUpdate(m.Index, func(tx *metatx) error {
// Generate an ID for the group.
g.ID = tx.nextShardGroupID()
// Generate an ID for each shard.
for _, sh := range g.Shards {
sh.ID = tx.nextShardID()
}
// Assign data nodes to shards via round robin.
// Start from a repeatably "random" place in the node list.
nodeIndex := int(m.Index % uint64(len(nodes)))
for _, sh := range g.Shards {
for i := 0; i < replicaN; i++ {
node := nodes[nodeIndex%len(nodes)]
sh.DataNodeIDs = append(sh.DataNodeIDs, node.ID)
nodeIndex++
}
}
s.stats.Add("shardsCreated", int64(len(g.Shards)))
// Retention policy has a new shard group, so update the policy.
rp.shardGroups = append(rp.shardGroups, g)
return tx.saveDatabase(db)
}); err != nil {
g.close()
return
}
// Open shards assigned to this server.
for _, sh := range g.Shards {
// Ignore if this server is not assigned.
if !sh.HasDataNodeID(s.id) {
continue
}
// Open shard store. Panic if an error occurs and we can retry.
if err := sh.open(s.shardPath(sh.ID), s.client.Conn(sh.ID)); err != nil {
panic("unable to open shard: " + err.Error())
}
}
// Add to lookups.
for _, sh := range g.Shards {
s.shards[sh.ID] = sh
}
return
}
// DeleteShardGroup deletes the shard group identified by shardID.
func (s *Server) DeleteShardGroup(database, policy string, shardID uint64) error {
c := &deleteShardGroupCommand{Database: database, Policy: policy, ID: shardID}
_, err := s.broadcast(deleteShardGroupMessageType, c)
return err
}
// applyDeleteShardGroup deletes shard data from disk and updates the metastore.
func (s *Server) applyDeleteShardGroup(m *messaging.Message) (err error) {
var c deleteShardGroupCommand
mustUnmarshalJSON(m.Data, &c)
// Retrieve database.
db := s.databases[c.Database]
if s.databases[c.Database] == nil {
return ErrDatabaseNotFound(c.Database)
}
// Validate retention policy.
rp := db.policies[c.Policy]
if rp == nil {
return ErrRetentionPolicyNotFound
}
// If shard group no longer exists, then ignore request. This can occur if multiple
// data nodes triggered the deletion.
g := rp.shardGroupByID(c.ID)
if g == nil {
return nil
}
for _, shard := range g.Shards {
// Ignore shards not on this server.
if !shard.HasDataNodeID(s.id) {
continue
}
path := shard.store.Path()
shard.close()
if err := os.Remove(path); err != nil {
// Log, but keep going. This can happen if shards were deleted, but the server exited
// before it acknowledged the delete command.
log.Printf("error deleting shard %s, group ID %d, policy %s: %s", path, g.ID, rp.Name, err.Error())
}
}
// Remove from metastore.
rp.removeShardGroupByID(c.ID)
err = s.meta.mustUpdate(m.Index, func(tx *metatx) error {
s.stats.Add("shardsDeleted", int64(len(g.Shards)))
return tx.saveDatabase(db)
})
return
}
// User returns a user by username
// Returns nil if the user does not exist.
func (s *Server) User(name string) *User {
s.mu.Lock()
defer s.mu.Unlock()
return s.users[name]
}
// Users returns a list of all users, sorted by name.
func (s *Server) Users() (a []*User) {
s.mu.RLock()
defer s.mu.RUnlock()
for _, u := range s.users {
a = append(a, u)
}
sort.Sort(users(a))
return a
}
// UserCount returns the number of users.
func (s *Server) UserCount() int {
s.mu.RLock()
defer s.mu.RUnlock()
return len(s.users)
}
// AdminUserExists returns whether at least 1 admin-level user exists.
func (s *Server) AdminUserExists() bool {
for _, u := range s.users {
if u.Admin {
return true
}
}
return false
}
// Authenticate returns an authenticated user by username. If any error occurs,
// or the authentication credentials are invalid, an error is returned.
func (s *Server) Authenticate(username, password string) (*User, error) {
s.mu.Lock()
defer s.mu.Unlock()
u := s.users[username]
// If authorization is not enabled and user is nil, we are authorized
if u == nil && !s.authenticationEnabled {
return nil, nil
}
if u == nil {
return nil, fmt.Errorf("invalid username or password")
}
err := u.Authenticate(password)
if err != nil {
return nil, fmt.Errorf("invalid username or password")
}
return u, nil
}
// CreateUser creates a user on the server.
func (s *Server) CreateUser(username, password string, admin bool) error {
c := &createUserCommand{Username: username, Password: password, Admin: admin}
_, err := s.broadcast(createUserMessageType, c)
return err
}
func (s *Server) applyCreateUser(m *messaging.Message) (err error) {
var c createUserCommand
mustUnmarshalJSON(m.Data, &c)
// Validate user.
if c.Username == "" {
return ErrUsernameRequired
} else if s.users[c.Username] != nil {
return ErrUserExists
}
// Generate the hash of the password.
hash, err := HashPassword(c.Password)
if err != nil {
return err
}
// Create the user.
u := &User{
Name: c.Username,
Hash: string(hash),
Privileges: make(map[string]influxql.Privilege),
Admin: c.Admin,
}
// Persist to metastore.
err = s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.saveUser(u)
})
s.users[u.Name] = u
return
}
// UpdateUser updates an existing user on the server.
func (s *Server) UpdateUser(username, password string) error {
c := &updateUserCommand{Username: username, Password: password}
_, err := s.broadcast(updateUserMessageType, c)
return err
}
func (s *Server) applyUpdateUser(m *messaging.Message) (err error) {
var c updateUserCommand
mustUnmarshalJSON(m.Data, &c)
// Validate command.
u := s.users[c.Username]
if u == nil {
return ErrUserNotFound
}
// Update the user's password, if set.
if c.Password != "" {
hash, err := HashPassword(c.Password)
if err != nil {
return err
}
u.Hash = string(hash)
}
// Persist to metastore.
return s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.saveUser(u)
})
}
// DeleteUser removes a user from the server.
func (s *Server) DeleteUser(username string) error {
c := &deleteUserCommand{Username: username}
_, err := s.broadcast(deleteUserMessageType, c)
return err
}
func (s *Server) applyDeleteUser(m *messaging.Message) error {
var c deleteUserCommand
mustUnmarshalJSON(m.Data, &c)
// Validate user.
if c.Username == "" {
return ErrUsernameRequired
} else if s.users[c.Username] == nil {
return ErrUserNotFound
}
// Remove from metastore.
s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.deleteUser(c.Username)
})
// Delete the user.
delete(s.users, c.Username)
return nil
}
// SetPrivilege grants / revokes a privilege to a user.
func (s *Server) SetPrivilege(p influxql.Privilege, username string, dbname string) error {
c := &setPrivilegeCommand{p, username, dbname}
_, err := s.broadcast(setPrivilegeMessageType, c)
return err
}
func (s *Server) applySetPrivilege(m *messaging.Message) error {
var c setPrivilegeCommand
mustUnmarshalJSON(m.Data, &c)
// Validate user.
if c.Username == "" {
return ErrUsernameRequired
}
u := s.users[c.Username]
if u == nil {
return ErrUserNotFound
}
// If dbname is empty, update user's Admin flag.
if c.Database == "" && (c.Privilege == influxql.AllPrivileges || c.Privilege == influxql.NoPrivileges) {
u.Admin = (c.Privilege == influxql.AllPrivileges)
} else if c.Database != "" {
// Update user's privilege for the database.
u.Privileges[c.Database] = c.Privilege
} else {
return ErrInvalidGrantRevoke
}
// Persist to metastore.
return s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.saveUser(u)
})
}
// RetentionPolicy returns a retention policy by name.
// Returns an error if the database doesn't exist.
func (s *Server) RetentionPolicy(database, name string) (*RetentionPolicy, error) {
s.mu.Lock()
defer s.mu.Unlock()
// Lookup database.
db := s.databases[database]
if db == nil {
return nil, ErrDatabaseNotFound(database)
}
return db.policies[name], nil
}
// DefaultRetentionPolicy returns the default retention policy for a database.
// Returns an error if the database doesn't exist.
func (s *Server) DefaultRetentionPolicy(database string) (*RetentionPolicy, error) {
s.mu.RLock()
defer s.mu.RUnlock()
// Lookup database.
db := s.databases[database]
if db == nil {
return nil, ErrDatabaseNotFound(database)
}
return db.policies[db.defaultRetentionPolicy], nil
}
// RetentionPolicies returns a list of retention polocies for a database.
// Returns an error if the database doesn't exist.
func (s *Server) RetentionPolicies(database string) ([]*RetentionPolicy, error) {
s.mu.RLock()
defer s.mu.RUnlock()
// Lookup database.
db := s.databases[database]
if db == nil {
return nil, ErrDatabaseNotFound(database)
}
// Retrieve the policies.
a := make(RetentionPolicies, 0, len(db.policies))
for _, p := range db.policies {
a = append(a, p)
}
sort.Sort(a)
return a, nil
}
// RetentionPolicyExists returns true if a retention policy exists for a given database.
func (s *Server) RetentionPolicyExists(database, retention string) bool {
s.mu.RLock()
defer s.mu.RUnlock()
return s.DatabaseExists(database) && s.databases[database].policies[retention] != nil
}
// CreateRetentionPolicy creates a retention policy for a database.
func (s *Server) CreateRetentionPolicy(database string, rp *RetentionPolicy) error {
// Enforce duration of at least retentionPolicyMinDuration
if rp.Duration < retentionPolicyMinDuration && rp.Duration != 0 {
return ErrRetentionPolicyMinDuration
}
c := &createRetentionPolicyCommand{
Database: database,
Name: rp.Name,
Duration: rp.Duration,
ShardGroupDuration: calculateShardGroupDuration(rp.Duration),
ReplicaN: rp.ReplicaN,
}
_, err := s.broadcast(createRetentionPolicyMessageType, c)
return err
}
// CreateRetentionPolicyIfNotExists creates a retention policy for a database.
func (s *Server) CreateRetentionPolicyIfNotExists(database string, rp *RetentionPolicy) error {
// Ensure retention policy exists.
if !s.RetentionPolicyExists(database, rp.Name) {
// Small chance retention policy could be created after it didn't exist when checked.
if err := s.CreateRetentionPolicy(database, rp); err != nil && err != ErrRetentionPolicyExists {
return err
}
}
return nil
}
func calculateShardGroupDuration(d time.Duration) time.Duration {
const (
day = time.Hour * 24
month = day * 30
)
switch {
case d > 6*month || d == 0:
return 7 * day
case d > 2*day:
return 1 * day
default:
return 1 * time.Hour
}
}
func (s *Server) applyCreateRetentionPolicy(m *messaging.Message) error {
var c createRetentionPolicyCommand
mustUnmarshalJSON(m.Data, &c)
// Retrieve the database.
db := s.databases[c.Database]
if s.databases[c.Database] == nil {
return ErrDatabaseNotFound(c.Database)
} else if c.Name == "" {
return ErrRetentionPolicyNameRequired
} else if db.policies[c.Name] != nil {
return ErrRetentionPolicyExists
}
// Add policy to the database.
db.policies[c.Name] = &RetentionPolicy{
Name: c.Name,
Duration: c.Duration,
ShardGroupDuration: c.ShardGroupDuration,
ReplicaN: c.ReplicaN,
}
// Persist to metastore.
s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.saveDatabase(db)
})
return nil
}
// RetentionPolicyUpdate represents retention policy fields that
// need to be updated.
type RetentionPolicyUpdate struct {
Name *string `json:"name,omitempty"`
Duration *time.Duration `json:"duration,omitempty"`
ReplicaN *uint32 `json:"replicaN,omitempty"`
}
// UpdateRetentionPolicy updates an existing retention policy on a database.
func (s *Server) UpdateRetentionPolicy(database, name string, rpu *RetentionPolicyUpdate) error {
// Enforce duration of at least retentionPolicyMinDuration
if rpu.Duration != nil && *rpu.Duration < retentionPolicyMinDuration && *rpu.Duration != 0 {
return ErrRetentionPolicyMinDuration
}
c := &updateRetentionPolicyCommand{Database: database, Name: name, Policy: rpu}
_, err := s.broadcast(updateRetentionPolicyMessageType, c)
return err
}
func (s *Server) applyUpdateRetentionPolicy(m *messaging.Message) (err error) {
var c updateRetentionPolicyCommand
mustUnmarshalJSON(m.Data, &c)
// Validate command.
db := s.databases[c.Database]
if s.databases[c.Database] == nil {
return ErrDatabaseNotFound(c.Database)
} else if c.Name == "" {
return ErrRetentionPolicyNameRequired
}
// Retrieve the policy.
p := db.policies[c.Name]
if db.policies[c.Name] == nil {
return ErrRetentionPolicyNotFound
}
// Update the policy name.
if c.Policy.Name != nil {
delete(db.policies, p.Name)
p.Name = *c.Policy.Name
db.policies[p.Name] = p
}
// Update duration.
if c.Policy.Duration != nil {
p.Duration = *c.Policy.Duration
}
// Update replication factor.
if c.Policy.ReplicaN != nil {
p.ReplicaN = *c.Policy.ReplicaN
}
// Persist to metastore.
err = s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.saveDatabase(db)
})
return
}
// DeleteRetentionPolicy removes a retention policy from a database.
func (s *Server) DeleteRetentionPolicy(database, name string) error {
c := &deleteRetentionPolicyCommand{Database: database, Name: name}
_, err := s.broadcast(deleteRetentionPolicyMessageType, c)
return err
}
func (s *Server) applyDeleteRetentionPolicy(m *messaging.Message) (err error) {
var c deleteRetentionPolicyCommand
mustUnmarshalJSON(m.Data, &c)
// Retrieve the database.
db := s.databases[c.Database]
if s.databases[c.Database] == nil {
return ErrDatabaseNotFound(c.Database)
} else if c.Name == "" {
return ErrRetentionPolicyNameRequired
} else if db.policies[c.Name] == nil {
return ErrRetentionPolicyNotFound
}
// Remove retention policy.
delete(db.policies, c.Name)
// Persist to metastore.
err = s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.saveDatabase(db)
})
return
}
// SetDefaultRetentionPolicy sets the default policy to write data into and query from on a database.
func (s *Server) SetDefaultRetentionPolicy(database, name string) error {
c := &setDefaultRetentionPolicyCommand{Database: database, Name: name}
_, err := s.broadcast(setDefaultRetentionPolicyMessageType, c)
return err
}
func (s *Server) applySetDefaultRetentionPolicy(m *messaging.Message) (err error) {
var c setDefaultRetentionPolicyCommand
mustUnmarshalJSON(m.Data, &c)
// Validate command.
db := s.databases[c.Database]
if s.databases[c.Database] == nil {
return ErrDatabaseNotFound(c.Database)
} else if db.policies[c.Name] == nil {
return ErrRetentionPolicyNotFound
}
// Update default policy.
db.defaultRetentionPolicy = c.Name
// Persist to metastore.
err = s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.saveDatabase(db)
})
return
}
func (s *Server) applyDropSeries(m *messaging.Message) error {
var c dropSeriesCommand
mustUnmarshalJSON(m.Data, &c)
database := s.databases[c.Database]
if database == nil {
return ErrDatabaseNotFound(c.Database)
}
// Remove from metastore.
err := s.meta.mustUpdate(m.Index, func(tx *metatx) error {
if err := tx.dropSeries(c.Database, c.SeriesByMeasurement); err != nil {
return err
}
// Delete series from the database.
if err := database.dropSeries(c.SeriesByMeasurement); err != nil {
return fmt.Errorf("failed to remove series from index: %s", err)
}
return nil
})
if err != nil {
return err
}
return nil
}
// DropSeries deletes from an existing series.
func (s *Server) DropSeries(database string, seriesByMeasurement map[string][]uint64) error {
c := dropSeriesCommand{Database: database, SeriesByMeasurement: seriesByMeasurement}
_, err := s.broadcast(dropSeriesMessageType, c)
return err
}
// Point defines the values that will be written to the database
type Point struct {
Name string
Tags map[string]string
Timestamp time.Time
Fields map[string]interface{}
}
// WriteSeries writes series data to the database.
// Returns the messaging index the data was written to.
func (s *Server) WriteSeries(database, retentionPolicy string, points []Point) (idx uint64, err error) {
s.stats.Inc("batchWriteRx")
s.stats.Add("pointWriteRx", int64(len(points)))
defer func() {
if err != nil {
s.stats.Inc("batchWriteRxError")
}
}()
if s.WriteTrace {
log.Printf("received write for database '%s', retention policy '%s', with %d points",
database, retentionPolicy, len(points))
}
// Make sure every point has at least one field.
for _, p := range points {
if len(p.Fields) == 0 {
return 0, ErrFieldsRequired
}
}
// If the retention policy is not set, use the default for this database.
if retentionPolicy == "" {
rp, err := s.DefaultRetentionPolicy(database)
if err != nil {
return 0, fmt.Errorf("failed to determine default retention policy: %s", err.Error())
} else if rp == nil {
return 0, ErrDefaultRetentionPolicyNotFound
}
retentionPolicy = rp.Name
}
// Ensure all required Series and Measurement Fields are created cluster-wide.
if err := s.createMeasurementsIfNotExists(database, retentionPolicy, points); err != nil {
return 0, err
}
if s.WriteTrace {
log.Printf("measurements and series created on database '%s'", database)
}
// Ensure all the required shard groups exist. TODO: this should be done async.
if err := s.createShardGroupsIfNotExists(database, retentionPolicy, points); err != nil {
return 0, err
}
if s.WriteTrace {
log.Printf("shard groups created for database '%s'", database)
}
// Build writeRawSeriesMessageType publish commands.
shardData := make(map[uint64][]byte, 0)
codecs := make(map[string]*FieldCodec, 0)
if err := func() error {
// Local function makes lock management foolproof.
s.mu.RLock()
defer s.mu.RUnlock()
db := s.databases[database]
if db == nil {
return ErrDatabaseNotFound(database)
}
for _, p := range points {
measurement, series := db.MeasurementAndSeries(p.Name, p.Tags)
if series == nil {
s.Logger.Printf("series not found: name=%s, tags=%#v", p.Name, p.Tags)
return ErrSeriesNotFound
}
// Retrieve shard group.
g, err := s.shardGroupByTimestamp(database, retentionPolicy, p.Timestamp)
if err != nil {
return err
}
if s.WriteTrace {
log.Printf("shard group located: %v", g)
}
// Find appropriate shard within the shard group.
sh := g.ShardBySeriesID(series.ID)
if s.WriteTrace {
log.Printf("shard located: %v", sh)
}
// Many points are likely to have the same Measurement name. Re-use codecs if possible.
var codec *FieldCodec
codec, ok := codecs[measurement.Name]
if !ok {
codec = NewFieldCodec(measurement)
codecs[measurement.Name] = codec
}
// Convert string-key/values to encoded fields.
encodedFields, err := codec.EncodeFields(p.Fields)
if err != nil {
return err
}
// Encode point header, followed by point data, and add to shard's batch.
data := marshalPointHeader(series.ID, uint32(len(encodedFields)), p.Timestamp.UnixNano())
data = append(data, encodedFields...)
if shardData[sh.ID] == nil {
shardData[sh.ID] = make([]byte, 0)
}
shardData[sh.ID] = append(shardData[sh.ID], data...)
if s.WriteTrace {
log.Printf("data appended to buffer for shard %d", sh.ID)
}
}
return nil
}(); err != nil {
return 0, err
}
// Write data for each shard to the Broker.
var maxIndex uint64
for i, d := range shardData {
assert(len(d) > 0, "raw series data required: topic=%d", i)
index, err := s.client.Publish(&messaging.Message{
Type: writeRawSeriesMessageType,
TopicID: i,
Data: d,
})
if err != nil {
return maxIndex, err
}
s.stats.Inc("writeSeriesMessageTx")
if index > maxIndex {
maxIndex = index
}
if s.WriteTrace {
log.Printf("write series message published successfully for topic %d", i)
}
}
return maxIndex, nil
}
// createMeasurementsIfNotExists walks the "points" and ensures that all new Series are created, and all
// new Measurement fields have been created, across the cluster.
func (s *Server) createMeasurementsIfNotExists(database, retentionPolicy string, points []Point) error {
c := newCreateMeasurementsIfNotExistsCommand(database)
// Local function keeps lock management foolproof.
func() error {
s.mu.RLock()
defer s.mu.RUnlock()
db := s.databases[database]
if db == nil {
return ErrDatabaseNotFound(database)
}
for _, p := range points {
measurement, series := db.MeasurementAndSeries(p.Name, p.Tags)
if series == nil {
// Series does not exist in Metastore, add it so it's created cluster-wide.
c.addSeriesIfNotExists(p.Name, p.Tags)
}
for k, v := range p.Fields {
if measurement != nil {
if f := measurement.FieldByName(k); f != nil {
// Field present in Metastore, make sure there is no type conflict.
if f.Type != influxql.InspectDataType(v) {
return fmt.Errorf("field \"%s\" is type %T, mapped as type %s", k, v, f.Type)
}
continue // Field is present, and it's of the same type. Nothing more to do.
}
}
// Field isn't in Metastore. Add it to command so it's created cluster-wide.
if err := c.addFieldIfNotExists(p.Name, k, influxql.InspectDataType(v)); err != nil {
return err
}
}
}
return nil
}()
// Any broadcast actually required?
if len(c.Measurements) > 0 {
_, err := s.broadcast(createMeasurementsIfNotExistsMessageType, c)
if err != nil {
return err
}
}
return nil
}
// applyCreateMeasurementsIfNotExists creates the Measurements, Series, and Fields in the Metastore.
func (s *Server) applyCreateMeasurementsIfNotExists(m *messaging.Message) error {
var c createMeasurementsIfNotExistsCommand
mustUnmarshalJSON(m.Data, &c)
// Validate command.
db := s.databases[c.Database]
if db == nil {
return ErrDatabaseNotFound(c.Database)
}
// Process command within a transaction.
if err := s.meta.mustUpdate(m.Index, func(tx *metatx) error {
for _, cm := range c.Measurements {
// Create each series
for _, t := range cm.Tags {
_, ss := db.MeasurementAndSeries(cm.Name, t)
// Ensure creation of Series is idempotent.
if ss != nil {
continue
}
series, err := tx.createSeries(db.name, cm.Name, t)
if err != nil {
return err
}
db.addSeriesToIndex(cm.Name, series)
}
// Create each new field.
mm := db.measurements[cm.Name]
if mm == nil {
panic(fmt.Sprintf("measurement not found: %s", cm.Name))
}
for _, f := range cm.Fields {
if err := mm.createFieldIfNotExists(f.Name, f.Type); err != nil {
if err == ErrFieldOverflow {
log.Printf("no more fields allowed: %s::%s", mm.Name, f.Name)
continue
} else if err == ErrFieldTypeConflict {
log.Printf("field type conflict: %s::%s", mm.Name, f.Name)
continue
}
return err
}
if err := tx.saveMeasurement(db.name, mm); err != nil {
return fmt.Errorf("save measurement: %s", err)
}
}
if err := tx.saveDatabase(db); err != nil {
return fmt.Errorf("save database: %s", err)
}
}
return nil
}); err != nil {
return err
}
return nil
}
// DropMeasurement drops a given measurement from a database.
func (s *Server) DropMeasurement(database, name string) error {
c := &dropMeasurementCommand{Database: database, Name: name}
_, err := s.broadcast(dropMeasurementMessageType, c)
return err
}
func (s *Server) applyDropMeasurement(m *messaging.Message) error {
var c dropMeasurementCommand
mustUnmarshalJSON(m.Data, &c)
database := s.databases[c.Database]
if database == nil {
return ErrDatabaseNotFound(c.Database)
}
measurement := database.measurements[c.Name]
if measurement == nil {
return ErrMeasurementNotFound(c.Name)
}
err := s.meta.mustUpdate(m.Index, func(tx *metatx) error {
// Drop metastore data
if err := tx.dropMeasurement(c.Database, c.Name); err != nil {
return err
}
// Drop measurement from the database.
if err := database.dropMeasurement(c.Name); err != nil {
return err
}
return nil
})
if err != nil {
return err
}
return nil
}
// createShardGroupsIfNotExist walks the "points" and ensures that all required shards exist on the cluster.
func (s *Server) createShardGroupsIfNotExists(database, retentionPolicy string, points []Point) error {
for _, p := range points {
// Check if shard group exists first.
g, err := s.shardGroupByTimestamp(database, retentionPolicy, p.Timestamp)
if err != nil {
return err
} else if g != nil {
continue
}
err = s.CreateShardGroupIfNotExists(database, retentionPolicy, p.Timestamp)
if err != nil {
return fmt.Errorf("create shard(%s/%s): %s", retentionPolicy, p.Timestamp.Format(time.RFC3339Nano), err)
}
}
return nil
}
// ReadSeries reads a single point from a series in the database. It is used for debug and test only.
func (s *Server) ReadSeries(database, retentionPolicy, name string, tags map[string]string, timestamp time.Time) (map[string]interface{}, error) {
s.mu.RLock()
defer s.mu.RUnlock()
// Find database.
db := s.databases[database]
if db == nil {
return nil, ErrDatabaseNotFound(database)
}
// Find series.
mm, series := db.MeasurementAndSeries(name, tags)
if mm == nil {
return nil, ErrMeasurementNotFound("")
} else if series == nil {
return nil, ErrSeriesNotFound
}
// If the retention policy is not specified, use the default for this database.
if retentionPolicy == "" {
retentionPolicy = db.defaultRetentionPolicy
}
// Retrieve retention policy.
rp := db.policies[retentionPolicy]
if rp == nil {
return nil, ErrRetentionPolicyNotFound
}
// Retrieve shard group.
g, err := s.shardGroupByTimestamp(database, retentionPolicy, timestamp)
if err != nil {
return nil, err
} else if g == nil {
return nil, nil
}
// TODO: Verify that server owns shard.
// Find appropriate shard within the shard group.
sh := g.Shards[int(series.ID)%len(g.Shards)]
// Read raw encoded series data.
data, err := sh.readSeries(series.ID, timestamp.UnixNano())
if err != nil {
return nil, err
}
// Decode into a raw value map.
codec := NewFieldCodec(mm)
rawFields, err := codec.DecodeFields(data)
if err != nil || rawFields == nil {
return nil, nil
}
// Decode into a string-key value map.
values := make(map[string]interface{}, len(rawFields))
for fieldID, value := range rawFields {
f := mm.Field(fieldID)
if f == nil {
continue
}
values[f.Name] = value
}
return values, nil
}
// ExecuteQuery executes an InfluxQL query against the server.
// If the user isn't authorized to access the database an error will be returned.
// It sends results down the passed in chan and closes it when done. It will close the chan
// on the first statement that throws an error.
func (s *Server) ExecuteQuery(q *influxql.Query, database string, user *User, chunkSize int) (chan *Result, error) {
// Authorize user to execute the query.
if s.authenticationEnabled {
if err := s.Authorize(user, q, database); err != nil {
return nil, err
}
}
s.stats.Add("queriesRx", int64(len(q.Statements)))
// Execute each statement. Keep the iterator external so we can
// track how many of the statements were executed
results := make(chan *Result)
go func() {
var i int
var stmt influxql.Statement
for i, stmt = range q.Statements {
// If a default database wasn't passed in by the caller,
// try to get it from the statement.
defaultDB := database
if defaultDB == "" {
if s, ok := stmt.(influxql.HasDefaultDatabase); ok {
defaultDB = s.DefaultDatabase()
}
}
// If we have a default database, normalize the statement with it.
if defaultDB != "" {
if err := s.NormalizeStatement(stmt, defaultDB); err != nil {
results <- &Result{Err: err}
break
}
}
var res *Result
switch stmt := stmt.(type) {
case *influxql.SelectStatement:
if err := s.executeSelectStatement(i, stmt, database, user, results, chunkSize); err != nil {
results <- &Result{Err: err}
break
}
case *influxql.CreateDatabaseStatement:
res = s.executeCreateDatabaseStatement(stmt, user)
case *influxql.DropDatabaseStatement:
res = s.executeDropDatabaseStatement(stmt, user)
case *influxql.ShowDatabasesStatement:
res = s.executeShowDatabasesStatement(stmt, user)
case *influxql.ShowServersStatement:
res = s.executeShowServersStatement(stmt, user)
case *influxql.CreateUserStatement:
res = s.executeCreateUserStatement(stmt, user)
case *influxql.SetPasswordUserStatement:
res = s.executeSetPasswordUserStatement(stmt, user)
case *influxql.DeleteStatement:
res = s.executeDeleteStatement()
case *influxql.DropUserStatement:
res = s.executeDropUserStatement(stmt, user)
case *influxql.ShowUsersStatement:
res = s.executeShowUsersStatement(stmt, user)
case *influxql.DropSeriesStatement:
res = s.executeDropSeriesStatement(stmt, database, user)
case *influxql.ShowSeriesStatement:
res = s.executeShowSeriesStatement(stmt, database, user)
case *influxql.DropMeasurementStatement:
res = s.executeDropMeasurementStatement(stmt, database, user)
case *influxql.ShowMeasurementsStatement:
res = s.executeShowMeasurementsStatement(stmt, database, user)
case *influxql.ShowTagKeysStatement:
res = s.executeShowTagKeysStatement(stmt, database, user)
case *influxql.ShowTagValuesStatement:
res = s.executeShowTagValuesStatement(stmt, database, user)
case *influxql.ShowFieldKeysStatement:
res = s.executeShowFieldKeysStatement(stmt, database, user)
case *influxql.ShowStatsStatement:
res = s.executeShowStatsStatement(stmt, user)
case *influxql.ShowDiagnosticsStatement:
res = s.executeShowDiagnosticsStatement(stmt, user)
case *influxql.GrantStatement:
res = s.executeGrantStatement(stmt, user)
case *influxql.RevokeStatement:
res = s.executeRevokeStatement(stmt, user)
case *influxql.CreateRetentionPolicyStatement:
res = s.executeCreateRetentionPolicyStatement(stmt, user)
case *influxql.AlterRetentionPolicyStatement:
res = s.executeAlterRetentionPolicyStatement(stmt, user)
case *influxql.DropRetentionPolicyStatement:
res = s.executeDropRetentionPolicyStatement(stmt, user)
case *influxql.ShowRetentionPoliciesStatement:
res = s.executeShowRetentionPoliciesStatement(stmt, user)
case *influxql.CreateContinuousQueryStatement:
res = s.executeCreateContinuousQueryStatement(stmt, user)
case *influxql.DropContinuousQueryStatement:
continue
case *influxql.ShowContinuousQueriesStatement:
res = s.executeShowContinuousQueriesStatement(stmt, database, user)
default:
panic(fmt.Sprintf("unsupported statement type: %T", stmt))
}
if res != nil {
// set the StatementID for the handler on the other side to combine results
res.StatementID = i
// If an error occurs then stop processing remaining statements.
results <- res
if res.Err != nil {
break
}
}
}
// if there was an error send results that the remaining statements weren't executed
for ; i < len(q.Statements)-1; i++ {
results <- &Result{Err: ErrNotExecuted}
}
s.stats.Inc("queriesExecuted")
close(results)
}()
return results, nil
}
// executeSelectStatement plans and executes a select statement against a database.
func (s *Server) executeSelectStatement(statementID int, stmt *influxql.SelectStatement, database string, user *User, results chan *Result, chunkSize int) error {
// Perform any necessary query re-writing.
stmt, err := s.rewriteSelectStatement(stmt)
if err != nil {
return err
}
// Plan statement execution.
e, err := s.planSelectStatement(stmt, chunkSize)
if err != nil {
return err
}
// Execute plan.
ch := e.Execute()
// Stream results from the channel. We should send an empty result if nothing comes through.
resultSent := false
for row := range ch {
if row.Err != nil {
return row.Err
} else {
resultSent = true
results <- &Result{StatementID: statementID, Series: []*influxql.Row{row}}
}
}
if !resultSent {
results <- &Result{StatementID: statementID, Series: make([]*influxql.Row, 0)}
}
return nil
}
// rewriteSelectStatement performs any necessary query re-writing.
func (s *Server) rewriteSelectStatement(stmt *influxql.SelectStatement) (*influxql.SelectStatement, error) {
s.mu.RLock()
defer s.mu.RUnlock()
var err error
// Expand regex expressions in the FROM clause.
sources, err := s.expandSources(stmt.Sources)
if err != nil {
return nil, err
}
stmt.Sources = sources
// Expand wildcards in the fields or GROUP BY.
if stmt.HasWildcard() {
stmt, err = s.expandWildcards(stmt)
if err != nil {
return nil, err
}
}
return stmt, nil
}
// expandWildcards returns a new SelectStatement with wildcards in the fields
// and/or GROUP BY exapnded with actual field names.
func (s *Server) expandWildcards(stmt *influxql.SelectStatement) (*influxql.SelectStatement, error) {
// If there are no wildcards in the statement, return it as-is.
if !stmt.HasWildcard() {
return stmt, nil
}
// Use sets to avoid duplicate field names.
fieldSet := map[string]struct{}{}
dimensionSet := map[string]struct{}{}
var fields influxql.Fields
var dimensions influxql.Dimensions
// Iterate measurements in the FROM clause getting the fields & dimensions for each.
for _, src := range stmt.Sources {
if m, ok := src.(*influxql.Measurement); ok {
// Lookup the database.
db, ok := s.databases[m.Database]
if !ok {
return nil, ErrDatabaseNotFound(m.Database)
}
// Lookup the measurement in the database.
mm := db.measurements[m.Name]
if mm == nil {
return nil, ErrMeasurementNotFound(m.String())
}
// Get the fields for this measurement.
for _, f := range mm.Fields {
if _, ok := fieldSet[f.Name]; ok {
continue
}
fieldSet[f.Name] = struct{}{}
fields = append(fields, &influxql.Field{Expr: &influxql.VarRef{Val: f.Name}})
}
// Get the dimensions for this measurement.
for _, t := range mm.tagKeys() {
if _, ok := dimensionSet[t]; ok {
continue
}
dimensionSet[t] = struct{}{}
dimensions = append(dimensions, &influxql.Dimension{Expr: &influxql.VarRef{Val: t}})
}
}
}
// Return a new SelectStatement with the wild cards rewritten.
return stmt.RewriteWildcards(fields, dimensions), nil
}
// expandSources expands regex sources and removes duplicates.
// NOTE: sources must be normalized (db and rp set) before calling this function.
func (s *Server) expandSources(sources influxql.Sources) (influxql.Sources, error) {
// Use a map as a set to prevent duplicates. Two regexes might produce
// duplicates when expanded.
set := map[string]influxql.Source{}
names := []string{}
// Iterate all sources, expanding regexes when they're found.
for _, source := range sources {
switch src := source.(type) {
case *influxql.Measurement:
if src.Regex == nil {
name := src.String()
set[name] = src
names = append(names, name)
continue
}
// Lookup the database.
db := s.databases[src.Database]
if db == nil {
return nil, ErrDatabaseNotFound(src.Database)
}
// Get measurements from the database that match the regex.
measurements := db.measurementsByRegex(src.Regex.Val)
// Add those measurments to the set.
for _, m := range measurements {
m2 := &influxql.Measurement{
Database: src.Database,
RetentionPolicy: src.RetentionPolicy,
Name: m.Name,
}
name := m2.String()
if _, ok := set[name]; !ok {
set[name] = m2
names = append(names, name)
}
}
default:
return nil, fmt.Errorf("expandSources: unsuported source type: %T", source)
}
}
// Sort the list of source names.
sort.Strings(names)
// Convert set to a list of Sources.
expanded := make(influxql.Sources, 0, len(set))
for _, name := range names {
expanded = append(expanded, set[name])
}
return expanded, nil
}
// plans a selection statement under lock.
func (s *Server) planSelectStatement(stmt *influxql.SelectStatement, chunkSize int) (*influxql.Executor, error) {
s.mu.RLock()
defer s.mu.RUnlock()
// Plan query.
p := influxql.NewPlanner(s)
return p.Plan(stmt, chunkSize)
}
func (s *Server) executeCreateDatabaseStatement(q *influxql.CreateDatabaseStatement, user *User) *Result {
return &Result{Err: s.CreateDatabase(q.Name)}
}
func (s *Server) executeDropDatabaseStatement(q *influxql.DropDatabaseStatement, user *User) *Result {
return &Result{Err: s.DropDatabase(q.Name)}
}
func (s *Server) executeShowDatabasesStatement(q *influxql.ShowDatabasesStatement, user *User) *Result {
row := &influxql.Row{Name: "databases", Columns: []string{"name"}}
for _, name := range s.Databases() {
row.Values = append(row.Values, []interface{}{name})
}
return &Result{Series: []*influxql.Row{row}}
}
func (s *Server) executeShowServersStatement(q *influxql.ShowServersStatement, user *User) *Result {
row := &influxql.Row{Columns: []string{"id", "url"}}
for _, node := range s.DataNodes() {
row.Values = append(row.Values, []interface{}{node.ID, node.URL.String()})
}
return &Result{Series: []*influxql.Row{row}}
}
func (s *Server) executeCreateUserStatement(q *influxql.CreateUserStatement, user *User) *Result {
isAdmin := false
if q.Privilege != nil {
isAdmin = *q.Privilege == influxql.AllPrivileges
}
return &Result{Err: s.CreateUser(q.Name, q.Password, isAdmin)}
}
func (s *Server) executeSetPasswordUserStatement(q *influxql.SetPasswordUserStatement, user *User) *Result {
return &Result{Err: s.UpdateUser(q.Name, q.Password)}
}
func (s *Server) executeDropUserStatement(q *influxql.DropUserStatement, user *User) *Result {
return &Result{Err: s.DeleteUser(q.Name)}
}
func (s *Server) executeDropMeasurementStatement(stmt *influxql.DropMeasurementStatement, database string, user *User) *Result {
return &Result{Err: s.DropMeasurement(database, stmt.Name)}
}
func (s *Server) executeDropSeriesStatement(stmt *influxql.DropSeriesStatement, database string, user *User) *Result {
s.mu.RLock()
seriesByMeasurement := make(map[string][]uint64)
// Handle the simple `DROP SERIES <id>` case.
if stmt.Source == nil && stmt.Condition == nil {
for _, db := range s.databases {
for _, m := range db.measurements {
if m.seriesByID[stmt.SeriesID] != nil {
seriesByMeasurement[m.Name] = []uint64{stmt.SeriesID}
}
}
}
s.mu.RUnlock()
return &Result{Err: s.DropSeries(database, seriesByMeasurement)}
}
// Handle the more complicated `DROP SERIES` with sources and/or conditions...
// Find the database.
db := s.databases[database]
if db == nil {
s.mu.RUnlock()
return &Result{Err: ErrDatabaseNotFound(database)}
}
// Get the list of measurements we're interested in.
measurements, err := measurementsFromSourceOrDB(stmt.Source, db)
if err != nil {
s.mu.RUnlock()
return &Result{Err: err}
}
for _, m := range measurements {
var ids seriesIDs
if stmt.Condition != nil {
// Get series IDs that match the WHERE clause.
filters := map[uint64]influxql.Expr{}
ids, _, _ = m.walkWhereForSeriesIds(stmt.Condition, filters)
// TODO: check return of walkWhereForSeriesIds for fields
} else {
// No WHERE clause so get all series IDs for this measurement.
ids = m.seriesIDs
}
seriesByMeasurement[m.Name] = ids
}
s.mu.RUnlock()
return &Result{Err: s.DropSeries(database, seriesByMeasurement)}
}
func (s *Server) executeShowSeriesStatement(stmt *influxql.ShowSeriesStatement, database string, user *User) *Result {
s.mu.RLock()
defer s.mu.RUnlock()
// Find the database.
db := s.databases[database]
if db == nil {
return &Result{Err: ErrDatabaseNotFound(database)}
}
// Get the list of measurements we're interested in.
measurements, err := measurementsFromSourceOrDB(stmt.Source, db)
if err != nil {
return &Result{Err: err}
}
// Create result struct that will be populated and returned.
result := &Result{
Series: make(influxql.Rows, 0, len(measurements)),
}
// Loop through measurements to build result. One result row / measurement.
for _, m := range measurements {
var ids seriesIDs
if stmt.Condition != nil {
// Get series IDs that match the WHERE clause.
filters := map[uint64]influxql.Expr{}
ids, _, _ = m.walkWhereForSeriesIds(stmt.Condition, filters)
// If no series matched, then go to the next measurement.
if len(ids) == 0 {
continue
}
// TODO: check return of walkWhereForSeriesIds for fields
} else {
// No WHERE clause so get all series IDs for this measurement.
ids = m.seriesIDs
}
// Make a new row for this measurement.
r := &influxql.Row{
Name: m.Name,
Columns: m.tagKeys(),
}
// Loop through series IDs getting matching tag sets.
for _, id := range ids {
if s, ok := m.seriesByID[id]; ok {
values := make([]interface{}, 0, len(r.Columns)+1)
values = append(values, id)
for _, column := range r.Columns {
values = append(values, s.Tags[column])
}
// Add the tag values to the row.
r.Values = append(r.Values, values)
}
}
// make the id the first column
r.Columns = append([]string{"_id"}, r.Columns...)
// Append the row to the result.
result.Series = append(result.Series, r)
}
if stmt.Limit > 0 || stmt.Offset > 0 {
result.Series = s.filterShowSeriesResult(stmt.Limit, stmt.Offset, result.Series)
}
return result
}
// filterShowSeriesResult will limit the number of series returned based on the limit and the offset.
// Unlike limit and offset on SELECT statements, the limit and offset don't apply to the number of Rows, but
// to the number of total Values returned, since each Value represents a unique series.
func (s *Server) filterShowSeriesResult(limit, offset int, rows influxql.Rows) influxql.Rows {
var filteredSeries influxql.Rows
seriesCount := 0
for _, r := range rows {
var currentSeries [][]interface{}
// filter the values
for _, v := range r.Values {
if seriesCount >= offset && seriesCount-offset < limit {
currentSeries = append(currentSeries, v)
}
seriesCount++
}
// only add the row back in if there are some values in it
if len(currentSeries) > 0 {
r.Values = currentSeries
filteredSeries = append(filteredSeries, r)
if seriesCount > limit+offset {
return filteredSeries
}
}
}
return filteredSeries
}
func (s *Server) executeShowMeasurementsStatement(stmt *influxql.ShowMeasurementsStatement, database string, user *User) *Result {
s.mu.RLock()
defer s.mu.RUnlock()
// Find the database.
db := s.databases[database]
if db == nil {
return &Result{Err: ErrDatabaseNotFound(database)}
}
var measurements Measurements
// If a WHERE clause was specified, filter the measurements.
if stmt.Condition != nil {
var err error
measurements, err = db.measurementsByExpr(stmt.Condition)
if err != nil {
return &Result{Err: err}
}
} else {
// Otherwise, get all measurements from the database.
measurements = db.Measurements()
}
sort.Sort(measurements)
offset := stmt.Offset
limit := stmt.Limit
// If OFFSET is past the end of the array, return empty results.
if offset > len(measurements)-1 {
return &Result{}
}
// Calculate last index based on LIMIT.
end := len(measurements)
if limit > 0 && offset+limit < end {
limit = offset + limit
} else {
limit = end
}
// Make a result row to hold all measurement names.
row := &influxql.Row{
Name: "measurements",
Columns: []string{"name"},
}
// Add one value to the row for each measurement name.
for i := offset; i < limit; i++ {
m := measurements[i]
v := interface{}(m.Name)
row.Values = append(row.Values, []interface{}{v})
}
// Make a result.
result := &Result{
Series: influxql.Rows{row},
}
return result
}
func (s *Server) executeShowTagKeysStatement(stmt *influxql.ShowTagKeysStatement, database string, user *User) *Result {
s.mu.RLock()
defer s.mu.RUnlock()
// Find the database.
db := s.databases[database]
if db == nil {
return &Result{Err: ErrDatabaseNotFound(database)}
}
// Get the list of measurements we're interested in.
measurements, err := measurementsFromSourceOrDB(stmt.Source, db)
if err != nil {
return &Result{Err: err}
}
// Make result.
result := &Result{
Series: make(influxql.Rows, 0, len(measurements)),
}
// Add one row per measurement to the result.
for _, m := range measurements {
// TODO: filter tag keys by stmt.Condition
// Get the tag keys in sorted order.
keys := m.tagKeys()
// Convert keys to an [][]interface{}.
values := make([][]interface{}, 0, len(m.seriesByTagKeyValue))
for _, k := range keys {
v := interface{}(k)
values = append(values, []interface{}{v})
}
// Make a result row for the measurement.
r := &influxql.Row{
Name: m.Name,
Columns: []string{"tagKey"},
Values: values,
}
result.Series = append(result.Series, r)
}
// TODO: LIMIT & OFFSET
return result
}
func (s *Server) executeShowTagValuesStatement(stmt *influxql.ShowTagValuesStatement, database string, user *User) *Result {
s.mu.RLock()
defer s.mu.RUnlock()
// Find the database.
db := s.databases[database]
if db == nil {
return &Result{Err: ErrDatabaseNotFound(database)}
}
// Get the list of measurements we're interested in.
measurements, err := measurementsFromSourceOrDB(stmt.Source, db)
if err != nil {
return &Result{Err: err}
}
// Make result.
result := &Result{
Series: make(influxql.Rows, 0),
}
tagValues := make(map[string]stringSet)
for _, m := range measurements {
var ids seriesIDs
if stmt.Condition != nil {
// Get series IDs that match the WHERE clause.
filters := map[uint64]influxql.Expr{}
ids, _, _ = m.walkWhereForSeriesIds(stmt.Condition, filters)
// If no series matched, then go to the next measurement.
if len(ids) == 0 {
continue
}
// TODO: check return of walkWhereForSeriesIds for fields
} else {
// No WHERE clause so get all series IDs for this measurement.
ids = m.seriesIDs
}
for k, v := range m.tagValuesByKeyAndSeriesID(stmt.TagKeys, ids) {
_, ok := tagValues[k]
if !ok {
tagValues[k] = v
}
tagValues[k] = tagValues[k].union(v)
}
}
for k, v := range tagValues {
r := &influxql.Row{
Name: k + "TagValues",
Columns: []string{k},
}
vals := v.list()
sort.Strings(vals)
for _, val := range vals {
v := interface{}(val)
r.Values = append(r.Values, []interface{}{v})
}
result.Series = append(result.Series, r)
}
sort.Sort(result.Series)
return result
}
func (s *Server) executeShowContinuousQueriesStatement(stmt *influxql.ShowContinuousQueriesStatement, database string, user *User) *Result {
rows := []*influxql.Row{}
for _, name := range s.Databases() {
row := &influxql.Row{Columns: []string{"name", "query"}, Name: name}
for _, cq := range s.ContinuousQueries(name) {
row.Values = append(row.Values, []interface{}{cq.cq.Name, cq.Query})
}
rows = append(rows, row)
}
return &Result{Series: rows}
}
func (s *Server) executeShowStatsStatement(stmt *influxql.ShowStatsStatement, user *User) *Result {
var rows []*influxql.Row
// Server stats.
serverRow := &influxql.Row{Columns: []string{}}
serverRow.Name = s.stats.Name()
s.stats.Walk(func(k string, v int64) {
serverRow.Columns = append(serverRow.Columns, k)
serverRow.Values = append(serverRow.Values, []interface{}{v})
})
rows = append(rows, serverRow)
// Shard-level stats.
for _, sh := range s.shards {
row := &influxql.Row{Columns: []string{}}
row.Name = sh.stats.Name()
sh.stats.Walk(func(k string, v int64) {
row.Columns = append(row.Columns, k)
row.Values = append(row.Values, []interface{}{v})
})
rows = append(rows, row)
}
return &Result{Series: rows}
}
func (s *Server) executeShowDiagnosticsStatement(stmt *influxql.ShowDiagnosticsStatement, user *User) *Result {
s.mu.RLock()
defer s.mu.RUnlock()
return &Result{Series: s.DiagnosticsAsRows()}
}
// filterMeasurementsByExpr filters a list of measurements by a tags expression.
func filterMeasurementsByExpr(measurements Measurements, expr influxql.Expr) (Measurements, error) {
// Create a list to hold result measurements.
filtered := Measurements{}
// Iterate measurements adding the ones that match to the result.
for _, m := range measurements {
// Look up series IDs that match the tags expression.
ids, err := m.seriesIDsAllOrByExpr(expr)
if err != nil {
return nil, err
} else if len(ids) > 0 {
filtered = append(filtered, m)
}
}
sort.Sort(filtered)
return filtered, nil
}
func (s *Server) executeShowFieldKeysStatement(stmt *influxql.ShowFieldKeysStatement, database string, user *User) *Result {
s.mu.RLock()
defer s.mu.RUnlock()
var err error
// Find the database.
db := s.databases[database]
if db == nil {
return &Result{Err: ErrDatabaseNotFound(database)}
}
// Get the list of measurements we're interested in.
measurements, err := measurementsFromSourceOrDB(stmt.Source, db)
if err != nil {
return &Result{Err: err}
}
// Make result.
result := &Result{
Series: make(influxql.Rows, 0, len(measurements)),
}
// Loop through measurements, adding a result row for each.
for _, m := range measurements {
// Create a new row.
r := &influxql.Row{
Name: m.Name,
Columns: []string{"fieldKey"},
}
// Get a list of field names from the measurement then sort them.
names := make([]string, 0, len(m.Fields))
for _, f := range m.Fields {
names = append(names, f.Name)
}
sort.Strings(names)
// Add the field names to the result row values.
for _, n := range names {
v := interface{}(n)
r.Values = append(r.Values, []interface{}{v})
}
// Append the row to the result.
result.Series = append(result.Series, r)
}
return result
}
func (s *Server) executeGrantStatement(stmt *influxql.GrantStatement, user *User) *Result {
return &Result{Err: s.SetPrivilege(stmt.Privilege, stmt.User, stmt.On)}
}
func (s *Server) executeRevokeStatement(stmt *influxql.RevokeStatement, user *User) *Result {
return &Result{Err: s.SetPrivilege(influxql.NoPrivileges, stmt.User, stmt.On)}
}
// measurementsFromSourceOrDB returns a list of measurements from the
// statement passed in or, if the statement is nil, a list of all
// measurement names from the database passed in.
func measurementsFromSourceOrDB(stmt influxql.Source, db *database) (Measurements, error) {
var measurements Measurements
if stmt != nil {
// TODO: handle multiple measurement sources
if m, ok := stmt.(*influxql.Measurement); ok {
measurement := db.measurements[m.Name]
if measurement == nil {
return nil, ErrMeasurementNotFound(m.Name)
}
measurements = append(measurements, measurement)
} else {
return nil, errors.New("identifiers in FROM clause must be measurement names")
}
} else {
// No measurements specified in FROM clause so get all measurements that have series.
for _, m := range db.Measurements() {
if len(m.seriesIDs) > 0 {
measurements = append(measurements, m)
}
}
}
sort.Sort(measurements)
return measurements, nil
}
func (s *Server) executeShowUsersStatement(q *influxql.ShowUsersStatement, user *User) *Result {
row := &influxql.Row{Columns: []string{"user", "admin"}}
for _, user := range s.Users() {
row.Values = append(row.Values, []interface{}{user.Name, user.Admin})
}
return &Result{Series: []*influxql.Row{row}}
}
func (s *Server) executeCreateRetentionPolicyStatement(stmt *influxql.CreateRetentionPolicyStatement, user *User) *Result {
rp := NewRetentionPolicy(stmt.Name)
rp.Duration = stmt.Duration
rp.ReplicaN = uint32(stmt.Replication)
// Create new retention policy.
err := s.CreateRetentionPolicy(stmt.Database, rp)
if err != nil {
return &Result{Err: err}
}
// If requested, set new policy as the default.
if stmt.Default {
err = s.SetDefaultRetentionPolicy(stmt.Database, stmt.Name)
}
return &Result{Err: err}
}
func (s *Server) executeAlterRetentionPolicyStatement(stmt *influxql.AlterRetentionPolicyStatement, user *User) *Result {
rpu := &RetentionPolicyUpdate{
Duration: stmt.Duration,
ReplicaN: func() *uint32 {
if stmt.Replication == nil {
return nil
}
n := uint32(*stmt.Replication)
return &n
}(),
}
// Update the retention policy.
err := s.UpdateRetentionPolicy(stmt.Database, stmt.Name, rpu)
if err != nil {
return &Result{Err: err}
}
// If requested, set as default retention policy.
if stmt.Default {
err = s.SetDefaultRetentionPolicy(stmt.Database, stmt.Name)
}
return &Result{Err: err}
}
func (s *Server) executeDeleteStatement() *Result {
return &Result{Err: ErrInvalidQuery}
}
func (s *Server) executeDropRetentionPolicyStatement(q *influxql.DropRetentionPolicyStatement, user *User) *Result {
return &Result{Err: s.DeleteRetentionPolicy(q.Database, q.Name)}
}
func (s *Server) executeShowRetentionPoliciesStatement(q *influxql.ShowRetentionPoliciesStatement, user *User) *Result {
s.mu.RLock()
defer s.mu.RUnlock()
a, err := s.RetentionPolicies(q.Database)
if err != nil {
return &Result{Err: err}
}
d := s.databases[q.Database]
row := &influxql.Row{Columns: []string{"name", "duration", "replicaN", "default"}}
for _, rp := range a {
row.Values = append(row.Values, []interface{}{rp.Name, rp.Duration.String(), rp.ReplicaN, d.defaultRetentionPolicy == rp.Name})
}
return &Result{Series: []*influxql.Row{row}}
}
func (s *Server) executeCreateContinuousQueryStatement(q *influxql.CreateContinuousQueryStatement, user *User) *Result {
return &Result{Err: s.CreateContinuousQuery(q)}
}
// CreateContinuousQuery creates a continuous query.
func (s *Server) CreateContinuousQuery(q *influxql.CreateContinuousQueryStatement) error {
c := &createContinuousQueryCommand{Query: q.String()}
_, err := s.broadcast(createContinuousQueryMessageType, c)
return err
}
func (s *Server) executeDropContinuousQueryStatement(q *influxql.DropContinuousQueryStatement, user *User) *Result {
return &Result{Err: s.DropContinuousQuery(q)}
}
// DropContinuousQuery dropsoa continuous query.
func (s *Server) DropContinuousQuery(q *influxql.DropContinuousQueryStatement) error {
c := &dropContinuousQueryCommand{Name: q.Name, Database: q.Database}
_, err := s.broadcast(dropContinuousQueryMessageType, c)
return err
}
// ContinuousQueries returns a list of all continuous queries.
func (s *Server) ContinuousQueries(database string) []*ContinuousQuery {
s.mu.RLock()
defer s.mu.RUnlock()
db := s.databases[database]
if db == nil {
return nil
}
return db.continuousQueries
}
// MeasurementNames returns a list of all measurements for the specified database.
func (s *Server) MeasurementNames(database string) []string {
s.mu.RLock()
defer s.mu.RUnlock()
db := s.databases[database]
if db == nil {
return nil
}
return db.names
}
// measurement returns a measurement by database and name.
func (s *Server) measurement(database, name string) (*Measurement, error) {
db := s.databases[database]
if db == nil {
return nil, ErrDatabaseNotFound(database)
}
return db.measurements[name], nil
}
// Begin returns an unopened transaction associated with the server.
func (s *Server) Begin() (influxql.Tx, error) { return newTx(s), nil }
// StartLocalMapper will create a local mapper for the passed in remote mapper
func (s *Server) StartLocalMapper(rm *RemoteMapper) (*LocalMapper, error) {
s.mu.RLock()
defer s.mu.RUnlock()
// get everything we need to run the local mapper
shard := s.shards[rm.ShardID]
if shard == nil {
return nil, ErrShardNotFound
}
// this should never be the case, but we have to be sure
if shard.store == nil {
return nil, ErrShardNotLocal
}
db := s.databases[rm.Database]
if db == nil {
return nil, ErrDatabaseNotFound(rm.Database)
}
m := db.measurements[rm.MeasurementName]
if m == nil {
return nil, ErrMeasurementNotFound(rm.MeasurementName)
}
// create a job, it's only used as a container for a few variables
job := &influxql.MapReduceJob{
MeasurementName: rm.MeasurementName,
TMin: rm.TMin,
TMax: rm.TMax,
}
// limits and offsets can't be evaluated at the local mapper so we need to read
// limit + offset points to be sure that the reducer will be able to correctly put things together
limit := uint64(rm.Limit) + uint64(rm.Offset)
// if limit is zero, just set to the max number since we use limit == 0 later to determine if the mapper is empty
if limit == 0 {
limit = math.MaxUint64
}
// now create and start the local mapper
lm := &LocalMapper{
seriesIDs: rm.SeriesIDs,
job: job,
db: shard.store,
decoder: NewFieldCodec(m),
filters: rm.FilterExprs(),
whereFields: rm.WhereFields,
selectFields: rm.SelectFields,
selectTags: rm.SelectTags,
interval: rm.Interval,
tmax: rm.TMax,
limit: limit,
}
return lm, nil
}
// NormalizeStatement adds a default database and policy to the measurements in statement.
func (s *Server) NormalizeStatement(stmt influxql.Statement, defaultDatabase string) (err error) {
s.mu.RLock()
defer s.mu.RUnlock()
return s.normalizeStatement(stmt, defaultDatabase)
}
func (s *Server) normalizeStatement(stmt influxql.Statement, defaultDatabase string) (err error) {
// Track prefixes for replacing field names.
prefixes := make(map[string]string)
// Qualify all measurements.
influxql.WalkFunc(stmt, func(n influxql.Node) {
if err != nil {
return
}
switch n := n.(type) {
case *influxql.Measurement:
e := s.normalizeMeasurement(n, defaultDatabase)
if e != nil {
err = e
return
}
prefixes[n.Name] = n.Name
}
})
if err != nil {
return err
}
// Replace all variable references that used measurement prefixes.
influxql.WalkFunc(stmt, func(n influxql.Node) {
switch n := n.(type) {
case *influxql.VarRef:
for k, v := range prefixes {
if strings.HasPrefix(n.Val, k+".") {
n.Val = v + "." + influxql.QuoteIdent(n.Val[len(k)+1:])
}
}
}
})
return
}
// NormalizeMeasurement inserts the default database or policy into all measurement names.
func (s *Server) NormalizeMeasurement(m *influxql.Measurement, defaultDatabase string) error {
s.mu.RLock()
defer s.mu.RUnlock()
return s.normalizeMeasurement(m, defaultDatabase)
}
func (s *Server) normalizeMeasurement(m *influxql.Measurement, defaultDatabase string) error {
if defaultDatabase == "" {
return errors.New("no default database specified")
}
if m.Name == "" && m.Regex == nil {
return errors.New("invalid measurement")
}
if m.Database == "" {
m.Database = defaultDatabase
}
// Find database.
db := s.databases[m.Database]
if db == nil {
return ErrDatabaseNotFound(m.Database)
}
// If no retention policy was specified, use the default.
if m.RetentionPolicy == "" {
if db.defaultRetentionPolicy == "" {
return fmt.Errorf("default retention policy not set for: %s", db.name)
}
m.RetentionPolicy = db.defaultRetentionPolicy
}
// Make sure the retention policy exists.
if _, ok := db.policies[m.RetentionPolicy]; !ok {
return fmt.Errorf("retention policy does not exist: %s.%s", m.Database, m.RetentionPolicy)
}
return nil
}
// DiagnosticsAsRows returns diagnostic information about the server, as a slice of
// InfluxQL rows.
func (s *Server) DiagnosticsAsRows() []*influxql.Row {
s.mu.RLock()
defer s.mu.RUnlock()
now := time.Now().UTC()
// Common rows.
gd := NewGoDiagnostics()
sd := NewSystemDiagnostics()
md := NewMemoryDiagnostics()
bd := BuildDiagnostics{Version: s.Version, CommitHash: s.CommitHash}
// Common tagset.
tags := map[string]string{"serverID": strconv.FormatUint(s.id, 10)}
// Server row.
serverRow := &influxql.Row{
Name: "server_diag",
Columns: []string{"time", "startTime", "uptime", "id",
"path", "authEnabled", "index", "retentionAutoCreate", "numShards", "cqLastRun"},
Tags: tags,
Values: [][]interface{}{[]interface{}{now, startTime.String(), time.Since(startTime).String(), strconv.FormatUint(s.id, 10),
s.path, s.authenticationEnabled, int64(s.index), s.RetentionAutoCreate, len(s.shards), s.lastContinuousQueryRun.String()}},
}
// Shard groups.
shardGroupsRow := &influxql.Row{Columns: []string{}}
shardGroupsRow.Name = "shardGroups_diag"
shardGroupsRow.Columns = append(shardGroupsRow.Columns, "time", "database", "retentionPolicy", "id",
"startTime", "endTime", "duration", "numShards")
shardGroupsRow.Tags = tags
// Check all shard groups.
for _, db := range s.databases {
for _, rp := range db.policies {
for _, g := range rp.shardGroups {
shardGroupsRow.Values = append(shardGroupsRow.Values, []interface{}{now, db.name, rp.Name,
strconv.FormatUint(g.ID, 10), g.StartTime.String(), g.EndTime.String(), g.Duration().String(), len(g.Shards)})
}
}
}
// Shards
shardsRow := &influxql.Row{Columns: []string{}}
shardsRow.Name = "shards_diag"
shardsRow.Columns = append(shardsRow.Columns, "time", "id", "dataNodes", "index", "path")
shardsRow.Tags = tags
for _, sh := range s.shards {
var nodes []string
for _, n := range sh.DataNodeIDs {
nodes = append(nodes, strconv.FormatUint(n, 10))
shardsRow.Values = append(shardsRow.Values, []interface{}{now, strconv.FormatUint(sh.ID, 10), strings.Join(nodes, ","),
strconv.FormatUint(sh.index, 10), sh.store.Path()})
}
}
return []*influxql.Row{
gd.AsRow("server_go", tags),
sd.AsRow("server_system", tags),
md.AsRow("server_memory", tags),
bd.AsRow("server_build", tags),
serverRow,
shardGroupsRow,
shardsRow,
}
}
// processor runs in a separate goroutine and processes all incoming broker messages.
func (s *Server) processor(conn MessagingConn, done chan struct{}) {
for {
// Read incoming message.
var m *messaging.Message
var ok bool
select {
case <-done:
return
case m, ok = <-conn.C():
if !ok {
return
}
}
// All messages must be processed under lock.
func() {
s.stats.Inc("broadcastMessageRx")
s.mu.Lock()
defer s.mu.Unlock()
// Exit if closed or if the index is below the high water mark.
if !s.opened() {
return
} else if s.index >= m.Index {
return
}
// Process message.
var err error
switch m.Type {
case createDataNodeMessageType:
err = s.applyCreateDataNode(m)
case deleteDataNodeMessageType:
err = s.applyDeleteDataNode(m)
case createDatabaseMessageType:
err = s.applyCreateDatabase(m)
case dropDatabaseMessageType:
err = s.applyDropDatabase(m)
case createUserMessageType:
err = s.applyCreateUser(m)
case updateUserMessageType:
err = s.applyUpdateUser(m)
case deleteUserMessageType:
err = s.applyDeleteUser(m)
case createRetentionPolicyMessageType:
err = s.applyCreateRetentionPolicy(m)
case updateRetentionPolicyMessageType:
err = s.applyUpdateRetentionPolicy(m)
case deleteRetentionPolicyMessageType:
err = s.applyDeleteRetentionPolicy(m)
case createShardGroupIfNotExistsMessageType:
err = s.applyCreateShardGroupIfNotExists(m)
case deleteShardGroupMessageType:
err = s.applyDeleteShardGroup(m)
case setDefaultRetentionPolicyMessageType:
err = s.applySetDefaultRetentionPolicy(m)
case createMeasurementsIfNotExistsMessageType:
err = s.applyCreateMeasurementsIfNotExists(m)
case dropMeasurementMessageType:
err = s.applyDropMeasurement(m)
case setPrivilegeMessageType:
err = s.applySetPrivilege(m)
case createContinuousQueryMessageType:
err = s.applyCreateContinuousQueryCommand(m)
case dropContinuousQueryMessageType:
err = s.applyDropContinuousQueryCommand(m)
case dropSeriesMessageType:
err = s.applyDropSeries(m)
case writeRawSeriesMessageType:
panic("write series not allowed in broadcast topic")
}
// Sync high water mark and errors.
s.index = m.Index
if err != nil {
s.errors[m.Index] = err
}
}()
}
}
// Result represents a resultset returned from a single statement.
type Result struct {
// StatementID is just the statement's position in the query. It's used
// to combine statement results if they're being buffered in memory.
StatementID int `json:"-"`
Series influxql.Rows
Err error
}
// MarshalJSON encodes the result into JSON.
func (r *Result) MarshalJSON() ([]byte, error) {
// Define a struct that outputs "error" as a string.
var o struct {
Series []*influxql.Row `json:"series,omitempty"`
Err string `json:"error,omitempty"`
}
// Copy fields to output struct.
o.Series = r.Series
if r.Err != nil {
o.Err = r.Err.Error()
}
return json.Marshal(&o)
}
// UnmarshalJSON decodes the data into the Result struct
func (r *Result) UnmarshalJSON(b []byte) error {
var o struct {
Series []*influxql.Row `json:"series,omitempty"`
Err string `json:"error,omitempty"`
}
err := json.Unmarshal(b, &o)
if err != nil {
return err
}
r.Series = o.Series
if o.Err != "" {
r.Err = errors.New(o.Err)
}
return nil
}
// Response represents a list of statement results.
type Response struct {
Results []*Result
Err error
}
// MarshalJSON encodes a Response struct into JSON.
func (r Response) MarshalJSON() ([]byte, error) {
// Define a struct that outputs "error" as a string.
var o struct {
Results []*Result `json:"results,omitempty"`
Err string `json:"error,omitempty"`
}
// Copy fields to output struct.
o.Results = r.Results
if r.Err != nil {
o.Err = r.Err.Error()
}
return json.Marshal(&o)
}
// UnmarshalJSON decodes the data into the Response struct
func (r *Response) UnmarshalJSON(b []byte) error {
var o struct {
Results []*Result `json:"results,omitempty"`
Err string `json:"error,omitempty"`
}
err := json.Unmarshal(b, &o)
if err != nil {
return err
}
r.Results = o.Results
if o.Err != "" {
r.Err = errors.New(o.Err)
}
return nil
}
// Error returns the first error from any statement.
// Returns nil if no errors occurred on any statements.
func (r *Response) Error() error {
if r.Err != nil {
return r.Err
}
for _, rr := range r.Results {
if rr.Err != nil {
return rr.Err
}
}
return nil
}
// MessagingClient represents the client used to connect to brokers.
type MessagingClient interface {
Open(path string) error
Close() error
// Retrieves or sets the current list of broker URLs.
URLs() []url.URL
SetURLs([]url.URL)
// Publishes a message to the broker.
Publish(m *messaging.Message) (index uint64, err error)
// Conn returns an open, streaming connection to a topic.
Conn(topicID uint64) MessagingConn
}
type messagingClient struct {
*messaging.Client
}
// NewMessagingClient returns an instance of MessagingClient.
func NewMessagingClient(dataURL url.URL) MessagingClient {
return &messagingClient{messaging.NewClient(dataURL)}
}
func (c *messagingClient) Conn(topicID uint64) MessagingConn { return c.Client.Conn(topicID) }
// MessagingConn represents a streaming connection to a single broker topic.
type MessagingConn interface {
Open(index uint64, streaming bool) error
C() <-chan *messaging.Message
}
// DataNode represents a data node in the cluster.
type DataNode struct {
ID uint64
URL *url.URL
}
// newDataNode returns an instance of DataNode.
func newDataNode() *DataNode { return &DataNode{} }
type dataNodes []*DataNode
func (p dataNodes) Len() int { return len(p) }
func (p dataNodes) Less(i, j int) bool { return p[i].ID < p[j].ID }
func (p dataNodes) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Authorize user u to execute query q on database.
// database can be "" for queries that do not require a database.
// If u is nil, this means authorization is disabled.
func (s *Server) Authorize(u *User, q *influxql.Query, database string) error {
const authErrLogFmt = "unauthorized request | user: %q | query: %q | database %q\n"
if u == nil {
s.Logger.Printf(authErrLogFmt, "", q.String(), database)
return ErrAuthorize{text: "no user provided"}
}
// Cluster admins can do anything.
if u.Admin {
return nil
}
// Check each statement in the query.
for _, stmt := range q.Statements {
// Get the privileges required to execute the statement.
privs := stmt.RequiredPrivileges()
// Make sure the user has each privilege required to execute
// the statement.
for _, p := range privs {
// Use the db name specified by the statement or the db
// name passed by the caller if one wasn't specified by
// the statement.
dbname := p.Name
if dbname == "" {
dbname = database
}
// Check if user has required privilege.
if !u.Authorize(p.Privilege, dbname) {
var msg string
if dbname == "" {
msg = "requires cluster admin"
} else {
msg = fmt.Sprintf("requires %s privilege on %s", p.Privilege.String(), dbname)
}
s.Logger.Printf(authErrLogFmt, u.Name, q.String(), database)
return ErrAuthorize{
text: fmt.Sprintf("%s not authorized to execute '%s'. %s", u.Name, stmt.String(), msg),
}
}
}
}
return nil
}
// BcryptCost is the cost associated with generating password with Bcrypt.
// This setting is lowered during testing to improve test suite performance.
var BcryptCost = 10
// User represents a user account on the system.
// It can be given read/write permissions to individual databases.
type User struct {
Name string `json:"name"`
Hash string `json:"hash"`
Privileges map[string]influxql.Privilege `json:"privileges"` // db name to privilege
Admin bool `json:"admin,omitempty"`
}
// Authenticate returns nil if the password matches the user's password.
// Returns an error if the password was incorrect.
func (u *User) Authenticate(password string) error {
return bcrypt.CompareHashAndPassword([]byte(u.Hash), []byte(password))
}
// Authorize returns true if the user is authorized and false if not.
func (u *User) Authorize(privilege influxql.Privilege, database string) bool {
p, ok := u.Privileges[database]
return (ok && p >= privilege) || (u.Admin)
}
// users represents a list of users, sortable by name.
type users []*User
func (p users) Len() int { return len(p) }
func (p users) Less(i, j int) bool { return p[i].Name < p[j].Name }
func (p users) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Matcher can match either a Regex or plain string.
type Matcher struct {
IsRegex bool
Name string
}
// Matches returns true of the name passed in matches this Matcher.
func (m *Matcher) Matches(name string) bool {
if m.IsRegex {
matches, _ := regexp.MatchString(m.Name, name)
return matches
}
return m.Name == name
}
// HashPassword generates a cryptographically secure hash for password.
// Returns an error if the password is invalid or a hash cannot be generated.
func HashPassword(password string) ([]byte, error) {
// The second arg is the cost of the hashing, higher is slower but makes
// it harder to brute force, since it will be really slow and impractical
return bcrypt.GenerateFromPassword([]byte(password), BcryptCost)
}
// ContinuousQuery represents a query that exists on the server and processes
// each incoming event.
type ContinuousQuery struct {
Query string `json:"query"`
mu sync.Mutex
cq *influxql.CreateContinuousQueryStatement
lastRun time.Time
}
func (cq *ContinuousQuery) intoDB() string { return cq.cq.Source.Target.Measurement.Database }
func (cq *ContinuousQuery) intoRP() string { return cq.cq.Source.Target.Measurement.RetentionPolicy }
func (cq *ContinuousQuery) setIntoRP(rp string) { cq.cq.Source.Target.Measurement.RetentionPolicy = rp }
func (cq *ContinuousQuery) intoMeasurement() string { return cq.cq.Source.Target.Measurement.Name }
// NewContinuousQuery returns a ContinuousQuery object with a parsed influxql.CreateContinuousQueryStatement
func NewContinuousQuery(q string) (*ContinuousQuery, error) {
stmt, err := influxql.NewParser(strings.NewReader(q)).ParseStatement()
if err != nil {
return nil, err
}
cq, ok := stmt.(*influxql.CreateContinuousQueryStatement)
if !ok {
return nil, errors.New("query isn't a valie continuous query")
}
cquery := &ContinuousQuery{
Query: q,
cq: cq,
}
return cquery, nil
}
// applyCreateContinuousQueryCommand adds the continuous query to the database object and saves it to the metastore
func (s *Server) applyCreateContinuousQueryCommand(m *messaging.Message) error {
var c createContinuousQueryCommand
mustUnmarshalJSON(m.Data, &c)
cq, err := NewContinuousQuery(c.Query)
if err != nil {
return err
}
// normalize the select statement in the CQ so that it has the database and retention policy inserted
if err := s.normalizeStatement(cq.cq.Source, cq.cq.Database); err != nil {
return err
}
// ensure the into database exists
if s.databases[cq.intoDB()] == nil {
return ErrDatabaseNotFound(cq.intoDB())
}
// Retrieve the database.
db := s.databases[cq.cq.Database]
if db == nil {
return ErrDatabaseNotFound(cq.cq.Database)
} else if db.continuousQueryByName(cq.cq.Name) != nil {
return ErrContinuousQueryExists
}
// Add cq to the database.
db.continuousQueries = append(db.continuousQueries, cq)
// Persist to metastore.
s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.saveDatabase(db)
})
return nil
}
// applyDropContinuousQueryCommand removes the continuous query from the database object and saves it to the metastore
func (s *Server) applyDropContinuousQueryCommand(m *messaging.Message) error {
var c dropContinuousQueryCommand
mustUnmarshalJSON(m.Data, &c)
// retrieve the database and ensure that it exists
db := s.databases[c.Database]
if db == nil {
return ErrDatabaseNotFound(c.Database)
}
// loop through continuous queries and find the match
cqIndex := -1
for n, continuousQuery := range db.continuousQueries {
if continuousQuery.cq.Name == c.Name {
cqIndex = n
break
}
}
if cqIndex == -1 {
return ErrContinuousQueryNotFound
}
// delete the relevant continuous query
copy(db.continuousQueries[cqIndex:], db.continuousQueries[cqIndex+1:])
db.continuousQueries[len(db.continuousQueries)-1] = nil
db.continuousQueries = db.continuousQueries[:len(db.continuousQueries)-1]
// persist to metastore
s.meta.mustUpdate(m.Index, func(tx *metatx) error {
return tx.saveDatabase(db)
})
return nil
}
// RunContinuousQueries will run any continuous queries that are due to run and write the
// results back into the database
func (s *Server) RunContinuousQueries() error {
s.mu.Lock()
defer s.mu.Unlock()
for _, d := range s.databases {
for _, c := range d.continuousQueries {
if s.shouldRunContinuousQuery(c) {
// set the into retention policy based on what is now the default
if c.intoRP() == "" {
c.setIntoRP(d.defaultRetentionPolicy)
}
go func(cq *ContinuousQuery) {
s.runContinuousQuery(c)
}(c)
}
}
}
return nil
}
// shouldRunContinuousQuery returns true if the CQ should be schedule to run. It will use the
// lastRunTime of the CQ and the rules for when to run set through the config to determine
// if this CQ should be run
func (s *Server) shouldRunContinuousQuery(cq *ContinuousQuery) bool {
// if it's not aggregated we don't run it
if cq.cq.Source.IsRawQuery {
return false
}
// since it's aggregated we need to figure how often it should be run
interval, err := cq.cq.Source.GroupByInterval()
if err != nil {
return false
}
// determine how often we should run this continuous query.
// group by time / the number of times to compute
computeEvery := time.Duration(interval.Nanoseconds()/int64(s.ComputeRunsPerInterval)) * time.Nanosecond
// make sure we're running no more frequently than the setting in the config
if computeEvery < s.ComputeNoMoreThan {
computeEvery = s.ComputeNoMoreThan
}
// if we've passed the amount of time since the last run, do it up
if cq.lastRun.Add(computeEvery).UnixNano() <= time.Now().UnixNano() {
return true
}
return false
}
// runContinuousQuery will execute a continuous query
// TODO: make this fan out to the cluster instead of running all the queries on this single data node
func (s *Server) runContinuousQuery(cq *ContinuousQuery) {
s.stats.Inc("continuousQueryExecuted")
cq.mu.Lock()
defer cq.mu.Unlock()
now := time.Now()
cq.lastRun = now
interval, err := cq.cq.Source.GroupByInterval()
if err != nil || interval == 0 {
return
}
startTime := now.Round(interval)
if startTime.UnixNano() > now.UnixNano() {
startTime = startTime.Add(-interval)
}
if err := cq.cq.Source.SetTimeRange(startTime, startTime.Add(interval)); err != nil {
log.Printf("cq error setting time range: %s\n", err.Error())
}
if err := s.runContinuousQueryAndWriteResult(cq); err != nil {
log.Printf("cq error: %s. running: %s\n", err.Error(), cq.cq.String())
}
for i := 0; i < s.RecomputePreviousN; i++ {
// if we're already more time past the previous window than we're going to look back, stop
if now.Sub(startTime) > s.RecomputeNoOlderThan {
return
}
newStartTime := startTime.Add(-interval)
if err := cq.cq.Source.SetTimeRange(newStartTime, startTime); err != nil {
log.Printf("cq error setting time range: %s\n", err.Error())
}
if err := s.runContinuousQueryAndWriteResult(cq); err != nil {
log.Printf("cq error during recompute previous: %s. running: %s\n", err.Error(), cq.cq.String())
}
startTime = newStartTime
}
}
// runContinuousQueryAndWriteResult will run the query against the cluster and write the results back in
func (s *Server) runContinuousQueryAndWriteResult(cq *ContinuousQuery) error {
e, err := s.planSelectStatement(cq.cq.Source, NoChunkingSize)
if err != nil {
return err
}
// Execute plan.
ch := e.Execute()
// Read all rows from channel and write them in
for row := range ch {
points, err := s.convertRowToPoints(cq.intoMeasurement(), row)
if err != nil {
log.Println(err)
continue
}
if len(points) > 0 {
for _, p := range points {
for _, v := range p.Fields {
if v == nil {
// If we have any nil values, we can't write the data
// This happens the CQ is created and running before we write data to the measurement
return nil
}
}
}
_, err = s.WriteSeries(cq.intoDB(), cq.intoRP(), points)
if err != nil {
log.Printf("[cq] err: %s", err)
}
}
}
return nil
}
// convertRowToPoints will convert a query result Row into Points that can be written back in.
// Used for continuous and INTO queries
func (s *Server) convertRowToPoints(measurementName string, row *influxql.Row) ([]Point, error) {
// figure out which parts of the result are the time and which are the fields
timeIndex := -1
fieldIndexes := make(map[string]int)
for i, c := range row.Columns {
if c == "time" {
timeIndex = i
} else {
fieldIndexes[c] = i
}
}
if timeIndex == -1 {
return nil, errors.New("cq error finding time index in result")
}
points := make([]Point, 0, len(row.Values))
for _, v := range row.Values {
vals := make(map[string]interface{})
for fieldName, fieldIndex := range fieldIndexes {
vals[fieldName] = v[fieldIndex]
}
p := &Point{
Name: measurementName,
Tags: row.Tags,
Timestamp: v[timeIndex].(time.Time),
Fields: vals,
}
points = append(points, *p)
}
return points, nil
}
// StartReportingLoop starts the anonymous usage reporting loop for a given
// cluster ID.
func (s *Server) StartReportingLoop(clusterID uint64) chan struct{} {
s.reportServer(clusterID)
ticker := time.NewTicker(24 * time.Hour)
for {
select {
case <-ticker.C:
s.reportServer(clusterID)
}
}
}
func (s *Server) reportServer(clusterID uint64) {
s.mu.RLock()
defer s.mu.RUnlock()
numSeries, numMeasurements := 0, 0
for _, db := range s.databases {
numSeries += len(db.series)
numMeasurements += len(db.measurements)
}
numDatabases := len(s.databases)
json := fmt.Sprintf(`[{
"name":"reports",
"columns":["os", "arch", "version", "server_id", "id", "num_series", "num_measurements", "num_databases"],
"points":[["%s", "%s", "%s", "%x", "%x", "%d", "%d", "%d"]]
}]`, runtime.GOOS, runtime.GOARCH, s.Version, s.ID(), clusterID, numSeries, numMeasurements, numDatabases)
data := bytes.NewBufferString(json)
log.Printf("Sending anonymous usage statistics to m.influxdb.com")
client := http.Client{Timeout: time.Duration(5 * time.Second)}
go client.Post("http://m.influxdb.com:8086/db/reporting/series?u=reporter&p=influxdb", "application/json", data)
}
// CreateSnapshotWriter returns a writer for the current snapshot.
func (s *Server) CreateSnapshotWriter() (*SnapshotWriter, error) {
s.mu.RLock()
defer s.mu.RUnlock()
return createServerSnapshotWriter(s)
}
func (s *Server) URL() url.URL {
s.mu.Lock()
defer s.mu.Unlock()
if n := s.dataNodes[s.id]; n != nil {
return *n.URL
}
return url.URL{}
}