influxdb/tsdb/executor.go

982 lines
26 KiB
Go

package tsdb
import (
"fmt"
"math"
"sort"
"time"
"github.com/influxdb/influxdb/influxql"
)
const (
// Return an error if the user is trying to select more than this number of points in a group by statement.
// Most likely they specified a group by interval without time boundaries.
MaxGroupByPoints = 100000
// Since time is always selected, the column count when selecting only a single other value will be 2
SelectColumnCountWithOneValue = 2
// IgnoredChunkSize is what gets passed into Mapper.Begin for aggregate queries as they don't chunk points out
IgnoredChunkSize = 0
)
// Mapper is the interface all Mapper types must implement.
type Mapper interface {
Open() error
TagSets() []string
Fields() []string
NextChunk() (interface{}, error)
Close()
}
// StatefulMapper encapsulates a Mapper and some state that the executor needs to
// track for that mapper.
type StatefulMapper struct {
Mapper
bufferedChunk *MapperOutput // Last read chunk.
drained bool
}
// NextChunk wraps a RawMapper and some state.
func (sm *StatefulMapper) NextChunk() (*MapperOutput, error) {
c, err := sm.Mapper.NextChunk()
if err != nil {
return nil, err
}
chunk, ok := c.(*MapperOutput)
if !ok {
if chunk == interface{}(nil) {
return nil, nil
}
}
return chunk, nil
}
type Executor struct {
stmt *influxql.SelectStatement
mappers []*StatefulMapper
chunkSize int
limitedTagSets map[string]struct{} // Set tagsets for which data has reached the LIMIT.
}
// NewRawExecutor returns a new RawExecutor.
func NewExecutor(stmt *influxql.SelectStatement, mappers []Mapper, chunkSize int) *Executor {
a := []*StatefulMapper{}
for _, m := range mappers {
a = append(a, &StatefulMapper{m, nil, false})
}
return &Executor{
stmt: stmt,
mappers: a,
chunkSize: chunkSize,
limitedTagSets: make(map[string]struct{}),
}
}
// Execute begins execution of the query and returns a channel to receive rows.
func (e *Executor) Execute() <-chan *influxql.Row {
// Create output channel and stream data in a separate goroutine.
out := make(chan *influxql.Row, 0)
// Certain operations on the SELECT statement can be performed by the Executor without
// assistance from the Mappers. This allows the Executor to prepare aggregation functions
// and mathematical functions.
e.stmt.RewriteDistinct()
if (e.stmt.IsRawQuery && !e.stmt.HasDistinct()) || e.stmt.IsSimpleDerivative() {
go e.executeRaw(out)
} else {
go e.executeAggregate(out)
}
return out
}
// mappersDrained returns whether all the executors Mappers have been drained of data.
func (e *Executor) mappersDrained() bool {
for _, m := range e.mappers {
if !m.drained {
return false
}
}
return true
}
// nextMapperTagset returns the alphabetically lowest tagset across all Mappers.
func (e *Executor) nextMapperTagSet() string {
tagset := ""
for _, m := range e.mappers {
if m.bufferedChunk != nil {
if tagset == "" {
tagset = m.bufferedChunk.key()
} else if m.bufferedChunk.key() < tagset {
tagset = m.bufferedChunk.key()
}
}
}
return tagset
}
// nextMapperLowestTime returns the lowest minimum time across all Mappers, for the given tagset.
func (e *Executor) nextMapperLowestTime(tagset string) int64 {
minTime := int64(math.MaxInt64)
for _, m := range e.mappers {
if !m.drained && m.bufferedChunk != nil {
if m.bufferedChunk.key() != tagset {
continue
}
t := m.bufferedChunk.Values[len(m.bufferedChunk.Values)-1].Time
if t < minTime {
minTime = t
}
}
}
return minTime
}
// tagSetIsLimited returns whether data for the given tagset has been LIMITed.
func (e *Executor) tagSetIsLimited(tagset string) bool {
_, ok := e.limitedTagSets[tagset]
return ok
}
// limitTagSet marks the given taset as LIMITed.
func (e *Executor) limitTagSet(tagset string) {
e.limitedTagSets[tagset] = struct{}{}
}
func (e *Executor) executeRaw(out chan *influxql.Row) {
// It's important that all resources are released when execution completes.
defer e.close()
// Open the mappers.
for _, m := range e.mappers {
if err := m.Open(); err != nil {
out <- &influxql.Row{Err: err}
return
}
}
// Get the distinct fields across all mappers.
var selectFields, aliasFields []string
if e.stmt.HasWildcard() {
sf := newStringSet()
for _, m := range e.mappers {
sf.add(m.Fields()...)
}
selectFields = sf.list()
aliasFields = selectFields
} else {
selectFields = e.stmt.Fields.Names()
aliasFields = e.stmt.Fields.AliasNames()
}
// Used to read ahead chunks from mappers.
var rowWriter *limitedRowWriter
var currTagset string
// Keep looping until all mappers drained.
var err error
for {
// Get the next chunk from each Mapper.
for _, m := range e.mappers {
if m.drained {
continue
}
// Set the next buffered chunk on the mapper, or mark it drained.
for {
if m.bufferedChunk == nil {
m.bufferedChunk, err = m.NextChunk()
if err != nil {
out <- &influxql.Row{Err: err}
return
}
if m.bufferedChunk == nil {
// Mapper can do no more for us.
m.drained = true
break
}
// If the SELECT query is on more than 1 field, but the chunks values from the Mappers
// only contain a single value, create k-v pairs using the field name of the chunk
// and the value of the chunk. If there is only 1 SELECT field across all mappers then
// there is no need to create k-v pairs, and there is no need to distinguish field data,
// as it is all for the *same* field.
if len(selectFields) > 1 && len(m.bufferedChunk.Fields) == 1 {
fieldKey := m.bufferedChunk.Fields[0]
for i := range m.bufferedChunk.Values {
field := map[string]interface{}{fieldKey: m.bufferedChunk.Values[i].Value}
m.bufferedChunk.Values[i].Value = field
}
}
}
if e.tagSetIsLimited(m.bufferedChunk.Name) {
// chunk's tagset is limited, so no good. Try again.
m.bufferedChunk = nil
continue
}
// This mapper has a chunk available, and it is not limited.
break
}
}
// All Mappers done?
if e.mappersDrained() {
rowWriter.Flush()
break
}
// Send out data for the next alphabetically-lowest tagset. All Mappers emit data in this order,
// so by always continuing with the lowest tagset until it is finished, we process all data in
// the required order, and don't "miss" any.
tagset := e.nextMapperTagSet()
if tagset != currTagset {
currTagset = tagset
// Tagset has changed, time for a new rowWriter. Be sure to kick out any residual values.
rowWriter.Flush()
rowWriter = nil
}
// Process the mapper outputs. We can send out everything up to the min of the last time
// of the chunks for the next tagset.
minTime := e.nextMapperLowestTime(tagset)
// Now empty out all the chunks up to the min time. Create new output struct for this data.
var chunkedOutput *MapperOutput
for _, m := range e.mappers {
if m.drained {
continue
}
// This mapper's next chunk is not for the next tagset, or the very first value of
// the chunk is at a higher acceptable timestamp. Skip it.
if m.bufferedChunk.key() != tagset || m.bufferedChunk.Values[0].Time > minTime {
continue
}
// Find the index of the point up to the min.
ind := len(m.bufferedChunk.Values)
for i, mo := range m.bufferedChunk.Values {
if mo.Time > minTime {
ind = i
break
}
}
// Add up to the index to the values
if chunkedOutput == nil {
chunkedOutput = &MapperOutput{
Name: m.bufferedChunk.Name,
Tags: m.bufferedChunk.Tags,
cursorKey: m.bufferedChunk.key(),
}
chunkedOutput.Values = m.bufferedChunk.Values[:ind]
} else {
chunkedOutput.Values = append(chunkedOutput.Values, m.bufferedChunk.Values[:ind]...)
}
// Clear out the values being sent out, keep the remainder.
m.bufferedChunk.Values = m.bufferedChunk.Values[ind:]
// If we emptied out all the values, clear the mapper's buffered chunk.
if len(m.bufferedChunk.Values) == 0 {
m.bufferedChunk = nil
}
}
// Sort the values by time first so we can then handle offset and limit
sort.Sort(MapperValues(chunkedOutput.Values))
// Now that we have full name and tag details, initialize the rowWriter.
// The Name and Tags will be the same for all mappers.
if rowWriter == nil {
rowWriter = &limitedRowWriter{
limit: e.stmt.Limit,
offset: e.stmt.Offset,
chunkSize: e.chunkSize,
name: chunkedOutput.Name,
tags: chunkedOutput.Tags,
selectNames: selectFields,
aliasNames: aliasFields,
fields: e.stmt.Fields,
c: out,
}
}
if e.stmt.HasDerivative() {
interval, err := derivativeInterval(e.stmt)
if err != nil {
out <- &influxql.Row{Err: err}
return
}
rowWriter.transformer = &RawQueryDerivativeProcessor{
IsNonNegative: e.stmt.FunctionCalls()[0].Name == "non_negative_derivative",
DerivativeInterval: interval,
}
}
// Emit the data via the limiter.
if limited := rowWriter.Add(chunkedOutput.Values); limited {
// Limit for this tagset was reached, mark it and start draining a new tagset.
e.limitTagSet(chunkedOutput.key())
continue
}
}
close(out)
}
func (e *Executor) executeAggregate(out chan *influxql.Row) {
// It's important to close all resources when execution completes.
defer e.close()
// Create the functions which will reduce values from mappers for
// a given interval. The function offsets within this slice match
// the offsets within the value slices that are returned by the
// mapper.
aggregates := e.stmt.FunctionCalls()
reduceFuncs := make([]influxql.ReduceFunc, len(aggregates))
for i, c := range aggregates {
reduceFunc, err := influxql.InitializeReduceFunc(c)
if err != nil {
out <- &influxql.Row{Err: err}
return
}
reduceFuncs[i] = reduceFunc
}
// Put together the rows to return, starting with columns.
columnNames := make([]string, len(e.stmt.Fields)+1)
columnNames[0] = "time"
for i, f := range e.stmt.Fields {
columnNames[i+1] = f.Name()
}
// Open the mappers.
for _, m := range e.mappers {
if err := m.Open(); err != nil {
out <- &influxql.Row{Err: err}
return
}
}
// Build the set of available tagsets across all mappers. This is used for
// later checks.
availTagSets := newStringSet()
for _, m := range e.mappers {
for _, t := range m.TagSets() {
availTagSets.add(t)
}
}
// Prime each mapper's chunk buffer.
var err error
for _, m := range e.mappers {
m.bufferedChunk, err = m.NextChunk()
if err != nil {
out <- &influxql.Row{Err: err}
return
}
if m.bufferedChunk == nil {
m.drained = true
}
}
// Keep looping until all mappers drained.
for !e.mappersDrained() {
// Send out data for the next alphabetically-lowest tagset. All Mappers send out in this order
// so collect data for this tagset, ignoring all others.
tagset := e.nextMapperTagSet()
chunks := []*MapperOutput{}
// Pull as much as possible from each mapper. Stop when a mapper offers
// data for a new tagset, or empties completely.
for _, m := range e.mappers {
if m.drained {
continue
}
for {
if m.bufferedChunk == nil {
m.bufferedChunk, err = m.NextChunk()
if err != nil {
out <- &influxql.Row{Err: err}
return
}
if m.bufferedChunk == nil {
m.drained = true
break
}
}
// Got a chunk. Can we use it?
if m.bufferedChunk.key() != tagset {
// No, so just leave it in the buffer.
break
}
// We can, take it.
chunks = append(chunks, m.bufferedChunk)
m.bufferedChunk = nil
}
}
// Prep a row, ready for kicking out.
var row *influxql.Row
// Prep for bucketing data by start time of the interval.
buckets := map[int64][][]interface{}{}
for _, chunk := range chunks {
if row == nil {
row = &influxql.Row{
Name: chunk.Name,
Tags: chunk.Tags,
Columns: columnNames,
}
}
startTime := chunk.Values[0].Time
_, ok := buckets[startTime]
values := chunk.Values[0].Value.([]interface{})
if !ok {
buckets[startTime] = make([][]interface{}, len(values))
}
for i, v := range values {
buckets[startTime][i] = append(buckets[startTime][i], v)
}
}
// Now, after the loop above, within each time bucket is a slice. Within the element of each
// slice is another slice of interface{}, ready for passing to the reducer functions.
// Work each bucket of time, in time ascending order.
tMins := make(int64arr, 0, len(buckets))
for k, _ := range buckets {
tMins = append(tMins, k)
}
sort.Sort(tMins)
values := make([][]interface{}, len(tMins))
for i, t := range tMins {
values[i] = make([]interface{}, 0, len(columnNames))
values[i] = append(values[i], time.Unix(0, t).UTC()) // Time value is always first.
for j, f := range reduceFuncs {
reducedVal := f(buckets[t][j])
values[i] = append(values[i], reducedVal)
}
}
// Perform any mathematics.
values = processForMath(e.stmt.Fields, values)
// Handle any fill options
values = e.processFill(values)
// process derivatives
values = e.processDerivative(values)
// If we have multiple tag sets we'll want to filter out the empty ones
if len(availTagSets) > 1 && resultsEmpty(values) {
continue
}
row.Values = values
out <- row
}
close(out)
}
// processFill will take the results and return new results (or the same if no fill modifications are needed)
// with whatever fill options the query has.
func (e *Executor) processFill(results [][]interface{}) [][]interface{} {
// don't do anything if we're supposed to leave the nulls
if e.stmt.Fill == influxql.NullFill {
return results
}
if e.stmt.Fill == influxql.NoFill {
// remove any rows that have even one nil value. This one is tricky because they could have multiple
// aggregates, but this option means that any row that has even one nil gets purged.
newResults := make([][]interface{}, 0, len(results))
for _, vals := range results {
hasNil := false
// start at 1 because the first value is always time
for j := 1; j < len(vals); j++ {
if vals[j] == nil {
hasNil = true
break
}
}
if !hasNil {
newResults = append(newResults, vals)
}
}
return newResults
}
// They're either filling with previous values or a specific number
for i, vals := range results {
// start at 1 because the first value is always time
for j := 1; j < len(vals); j++ {
if vals[j] == nil {
switch e.stmt.Fill {
case influxql.PreviousFill:
if i != 0 {
vals[j] = results[i-1][j]
}
case influxql.NumberFill:
vals[j] = e.stmt.FillValue
}
}
}
}
return results
}
// processDerivative returns the derivatives of the results
func (e *Executor) processDerivative(results [][]interface{}) [][]interface{} {
// Return early if we're not supposed to process the derivatives
if e.stmt.HasDerivative() {
interval, err := derivativeInterval(e.stmt)
if err != nil {
return results // XXX need to handle this better.
}
// Determines whether to drop negative differences
isNonNegative := e.stmt.FunctionCalls()[0].Name == "non_negative_derivative"
return ProcessAggregateDerivative(results, isNonNegative, interval)
}
return results
}
// Close closes the executor such that all resources are released. Once closed,
// an executor may not be re-used.
func (e *Executor) close() {
if e != nil {
for _, m := range e.mappers {
m.Close()
}
}
}
// limitedRowWriter accepts raw mapper values, and will emit those values as rows in chunks
// of the given size. If the chunk size is 0, no chunking will be performed. In addiiton if
// limit is reached, outstanding values will be emitted. If limit is zero, no limit is enforced.
type limitedRowWriter struct {
chunkSize int
limit int
offset int
name string
tags map[string]string
fields influxql.Fields
selectNames []string
aliasNames []string
c chan *influxql.Row
currValues []*MapperValue
totalOffSet int
totalSent int
transformer interface {
Process(input []*MapperValue) []*MapperValue
}
}
// Add accepts a slice of values, and will emit those values as per chunking requirements.
// If limited is returned as true, the limit was also reached and no more values should be
// added. In that case only up the limit of values are emitted.
func (r *limitedRowWriter) Add(values []*MapperValue) (limited bool) {
if r.currValues == nil {
r.currValues = make([]*MapperValue, 0, r.chunkSize)
}
// Enforce offset.
if r.totalOffSet < r.offset {
// Still some offsetting to do.
offsetRequired := r.offset - r.totalOffSet
if offsetRequired >= len(values) {
r.totalOffSet += len(values)
return false
} else {
// Drop leading values and keep going.
values = values[offsetRequired:]
r.totalOffSet += offsetRequired
}
}
r.currValues = append(r.currValues, values...)
// Check limit.
limitReached := r.limit > 0 && r.totalSent+len(r.currValues) >= r.limit
if limitReached {
// Limit will be satified with current values. Truncate 'em.
r.currValues = r.currValues[:r.limit-r.totalSent]
}
// Is chunking in effect?
if r.chunkSize != IgnoredChunkSize {
// Chunking level reached?
for len(r.currValues) >= r.chunkSize {
index := len(r.currValues) - (len(r.currValues) - r.chunkSize)
r.c <- r.processValues(r.currValues[:index])
r.currValues = r.currValues[index:]
}
// After values have been sent out by chunking, there may still be some
// values left, if the remainder is less than the chunk size. But if the
// limit has been reached, kick them out.
if len(r.currValues) > 0 && limitReached {
r.c <- r.processValues(r.currValues)
r.currValues = nil
}
} else if limitReached {
// No chunking in effect, but the limit has been reached.
r.c <- r.processValues(r.currValues)
r.currValues = nil
}
return limitReached
}
// Flush instructs the limitedRowWriter to emit any pending values as a single row,
// adhering to any limits. Chunking is not enforced.
func (r *limitedRowWriter) Flush() {
if r == nil {
return
}
// If at least some rows were sent, and no values are pending, then don't
// emit anything, since at least 1 row was previously emitted. This ensures
// that if no rows were ever sent, at least 1 will be emitted, even an empty row.
if r.totalSent != 0 && len(r.currValues) == 0 {
return
}
if r.limit > 0 && len(r.currValues) > r.limit {
r.currValues = r.currValues[:r.limit]
}
r.c <- r.processValues(r.currValues)
r.currValues = nil
}
// processValues emits the given values in a single row.
func (r *limitedRowWriter) processValues(values []*MapperValue) *influxql.Row {
defer func() {
r.totalSent += len(values)
}()
selectNames := r.selectNames
aliasNames := r.aliasNames
if r.transformer != nil {
values = r.transformer.Process(values)
}
// ensure that time is in the select names and in the first position
hasTime := false
for i, n := range selectNames {
if n == "time" {
// Swap time to the first argument for names
if i != 0 {
selectNames[0], selectNames[i] = selectNames[i], selectNames[0]
}
hasTime = true
break
}
}
// time should always be in the list of names they get back
if !hasTime {
selectNames = append([]string{"time"}, selectNames...)
aliasNames = append([]string{"time"}, aliasNames...)
}
// since selectNames can contain tags, we need to strip them out
selectFields := make([]string, 0, len(selectNames))
aliasFields := make([]string, 0, len(selectNames))
for i, n := range selectNames {
if _, found := r.tags[n]; !found {
selectFields = append(selectFields, n)
aliasFields = append(aliasFields, aliasNames[i])
}
}
row := &influxql.Row{
Name: r.name,
Tags: r.tags,
Columns: aliasFields,
}
// Kick out an empty row it no results available.
if len(values) == 0 {
return row
}
// if they've selected only a single value we have to handle things a little differently
singleValue := len(selectFields) == SelectColumnCountWithOneValue
// the results will have all of the raw mapper results, convert into the row
for _, v := range values {
vals := make([]interface{}, len(selectFields))
if singleValue {
vals[0] = time.Unix(0, v.Time).UTC()
switch val := v.Value.(type) {
case map[string]interface{}:
vals[1] = val[selectFields[1]]
default:
vals[1] = val
}
} else {
fields := v.Value.(map[string]interface{})
// time is always the first value
vals[0] = time.Unix(0, v.Time).UTC()
// populate the other values
for i := 1; i < len(selectFields); i++ {
f, ok := fields[selectFields[i]]
if ok {
vals[i] = f
continue
}
if v.Tags != nil {
f, ok = v.Tags[selectFields[i]]
if ok {
vals[i] = f
}
}
}
}
row.Values = append(row.Values, vals)
}
// Perform any mathematical post-processing.
row.Values = processForMath(r.fields, row.Values)
return row
}
type RawQueryDerivativeProcessor struct {
LastValueFromPreviousChunk *MapperValue
IsNonNegative bool // Whether to drop negative differences
DerivativeInterval time.Duration
}
func (rqdp *RawQueryDerivativeProcessor) canProcess(input []*MapperValue) bool {
// If we only have 1 value, then the value did not change, so return
// a single row with 0.0
if len(input) == 1 {
return false
}
// See if the field value is numeric, if it's not, we can't process the derivative
validType := false
switch input[0].Value.(type) {
case int64:
validType = true
case float64:
validType = true
}
return validType
}
func (rqdp *RawQueryDerivativeProcessor) Process(input []*MapperValue) []*MapperValue {
if len(input) == 0 {
return input
}
if !rqdp.canProcess(input) {
return []*MapperValue{
&MapperValue{
Time: input[0].Time,
Value: 0.0,
},
}
}
if rqdp.LastValueFromPreviousChunk == nil {
rqdp.LastValueFromPreviousChunk = input[0]
}
derivativeValues := []*MapperValue{}
for i := 1; i < len(input); i++ {
v := input[i]
// Calculate the derivative of successive points by dividing the difference
// of each value by the elapsed time normalized to the interval
diff := int64toFloat64(v.Value) - int64toFloat64(rqdp.LastValueFromPreviousChunk.Value)
elapsed := v.Time - rqdp.LastValueFromPreviousChunk.Time
value := 0.0
if elapsed > 0 {
value = diff / (float64(elapsed) / float64(rqdp.DerivativeInterval))
}
rqdp.LastValueFromPreviousChunk = v
// Drop negative values for non-negative derivatives
if rqdp.IsNonNegative && diff < 0 {
continue
}
derivativeValues = append(derivativeValues, &MapperValue{
Time: v.Time,
Value: value,
})
}
return derivativeValues
}
// processForMath will apply any math that was specified in the select statement
// against the passed in results
func processForMath(fields influxql.Fields, results [][]interface{}) [][]interface{} {
hasMath := false
for _, f := range fields {
if _, ok := f.Expr.(*influxql.BinaryExpr); ok {
hasMath = true
} else if _, ok := f.Expr.(*influxql.ParenExpr); ok {
hasMath = true
}
}
if !hasMath {
return results
}
processors := make([]influxql.Processor, len(fields))
startIndex := 1
for i, f := range fields {
processors[i], startIndex = influxql.GetProcessor(f.Expr, startIndex)
}
mathResults := make([][]interface{}, len(results))
for i, _ := range mathResults {
mathResults[i] = make([]interface{}, len(fields)+1)
// put the time in
mathResults[i][0] = results[i][0]
for j, p := range processors {
mathResults[i][j+1] = p(results[i])
}
}
return mathResults
}
// ProcessAggregateDerivative returns the derivatives of an aggregate result set
func ProcessAggregateDerivative(results [][]interface{}, isNonNegative bool, interval time.Duration) [][]interface{} {
// Return early if we can't calculate derivatives
if len(results) == 0 {
return results
}
// If we only have 1 value, then the value did not change, so return
// a single row w/ 0.0
if len(results) == 1 {
return [][]interface{}{
[]interface{}{results[0][0], 0.0},
}
}
// Check the value's type to ensure it's an numeric, if not, return a 0 result. We only check the first value
// because derivatives cannot be combined with other aggregates currently.
validType := false
switch results[0][1].(type) {
case int64:
validType = true
case float64:
validType = true
}
if !validType {
return [][]interface{}{
[]interface{}{results[0][0], 0.0},
}
}
// Otherwise calculate the derivatives as the difference between consecutive
// points divided by the elapsed time. Then normalize to the requested
// interval.
derivatives := [][]interface{}{}
for i := 1; i < len(results); i++ {
prev := results[i-1]
cur := results[i]
if cur[1] == nil || prev[1] == nil {
continue
}
elapsed := cur[0].(time.Time).Sub(prev[0].(time.Time))
diff := int64toFloat64(cur[1]) - int64toFloat64(prev[1])
value := 0.0
if elapsed > 0 {
value = float64(diff) / (float64(elapsed) / float64(interval))
}
// Drop negative values for non-negative derivatives
if isNonNegative && diff < 0 {
continue
}
val := []interface{}{
cur[0],
value,
}
derivatives = append(derivatives, val)
}
return derivatives
}
// derivativeInterval returns the time interval for the one (and only) derivative func
func derivativeInterval(stmt *influxql.SelectStatement) (time.Duration, error) {
if len(stmt.FunctionCalls()[0].Args) == 2 {
return stmt.FunctionCalls()[0].Args[1].(*influxql.DurationLiteral).Val, nil
}
interval, err := stmt.GroupByInterval()
if err != nil {
return 0, err
}
if interval > 0 {
return interval, nil
}
return time.Second, nil
}
// resultsEmpty will return true if the all the result values are empty or contain only nulls
func resultsEmpty(resultValues [][]interface{}) bool {
for _, vals := range resultValues {
// start the loop at 1 because we want to skip over the time value
for i := 1; i < len(vals); i++ {
if vals[i] != nil {
return false
}
}
}
return true
}
func int64toFloat64(v interface{}) float64 {
switch v.(type) {
case int64:
return float64(v.(int64))
case float64:
return v.(float64)
}
panic(fmt.Sprintf("expected either int64 or float64, got %v", v))
}
type int64arr []int64
func (a int64arr) Len() int { return len(a) }
func (a int64arr) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a int64arr) Less(i, j int) bool { return a[i] < a[j] }