1371 lines
37 KiB
Go
1371 lines
37 KiB
Go
package influxql
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"sync"
|
|
"time"
|
|
|
|
"github.com/influxdata/influxdb/models"
|
|
|
|
"github.com/gogo/protobuf/proto"
|
|
internal "github.com/influxdata/influxdb/influxql/internal"
|
|
)
|
|
|
|
// ErrUnknownCall is returned when operating on an unknown function call.
|
|
var ErrUnknownCall = errors.New("unknown call")
|
|
|
|
const (
|
|
// MinTime is used as the minimum time value when computing an unbounded range.
|
|
// This time is one less than the MinNanoTime so that the first minimum
|
|
// time can be used as a sentinel value to signify that it is the default
|
|
// value rather than explicitly set by the user.
|
|
MinTime = models.MinNanoTime - 1
|
|
|
|
// MaxTime is used as the maximum time value when computing an unbounded range.
|
|
// This time is 2262-04-11 23:47:16.854775806 +0000 UTC
|
|
MaxTime = models.MaxNanoTime
|
|
|
|
// secToNs is the number of nanoseconds in a second.
|
|
secToNs = int64(time.Second)
|
|
)
|
|
|
|
// Iterator represents a generic interface for all Iterators.
|
|
// Most iterator operations are done on the typed sub-interfaces.
|
|
type Iterator interface {
|
|
Stats() IteratorStats
|
|
Close() error
|
|
}
|
|
|
|
// Iterators represents a list of iterators.
|
|
type Iterators []Iterator
|
|
|
|
// Stats returns the aggregation of all iterator stats.
|
|
func (a Iterators) Stats() IteratorStats {
|
|
var stats IteratorStats
|
|
for _, itr := range a {
|
|
stats.Add(itr.Stats())
|
|
}
|
|
return stats
|
|
}
|
|
|
|
// Close closes all iterators.
|
|
func (a Iterators) Close() error {
|
|
for _, itr := range a {
|
|
itr.Close()
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// filterNonNil returns a slice of iterators that removes all nil iterators.
|
|
func (a Iterators) filterNonNil() []Iterator {
|
|
other := make([]Iterator, 0, len(a))
|
|
for _, itr := range a {
|
|
if itr == nil {
|
|
continue
|
|
}
|
|
other = append(other, itr)
|
|
}
|
|
return other
|
|
}
|
|
|
|
// castType determines what type to cast the set of iterators to.
|
|
// An iterator type is chosen using this hierarchy:
|
|
// float > integer > string > boolean
|
|
func (a Iterators) castType() DataType {
|
|
if len(a) == 0 {
|
|
return Unknown
|
|
}
|
|
|
|
typ := DataType(Boolean)
|
|
for _, input := range a {
|
|
switch input.(type) {
|
|
case FloatIterator:
|
|
// Once a float iterator is found, short circuit the end.
|
|
return Float
|
|
case IntegerIterator:
|
|
if typ > Integer {
|
|
typ = Integer
|
|
}
|
|
case StringIterator:
|
|
if typ > String {
|
|
typ = String
|
|
}
|
|
case BooleanIterator:
|
|
// Boolean is the lowest type.
|
|
}
|
|
}
|
|
return typ
|
|
}
|
|
|
|
// cast casts an array of iterators to a single type.
|
|
// Iterators that are not compatible or cannot be cast to the
|
|
// chosen iterator type are closed and dropped.
|
|
func (a Iterators) cast() interface{} {
|
|
typ := a.castType()
|
|
switch typ {
|
|
case Float:
|
|
return newFloatIterators(a)
|
|
case Integer:
|
|
return newIntegerIterators(a)
|
|
case String:
|
|
return newStringIterators(a)
|
|
case Boolean:
|
|
return newBooleanIterators(a)
|
|
}
|
|
return a
|
|
}
|
|
|
|
// Merge combines all iterators into a single iterator.
|
|
// A sorted merge iterator or a merge iterator can be used based on opt.
|
|
func (a Iterators) Merge(opt IteratorOptions) (Iterator, error) {
|
|
// Check if this is a call expression.
|
|
call, ok := opt.Expr.(*Call)
|
|
|
|
// Merge into a single iterator.
|
|
if !ok && opt.MergeSorted() {
|
|
itr := NewSortedMergeIterator(a, opt)
|
|
if itr != nil && opt.InterruptCh != nil {
|
|
itr = NewInterruptIterator(itr, opt.InterruptCh)
|
|
}
|
|
return itr, nil
|
|
}
|
|
|
|
// We do not need an ordered output so use a merge iterator.
|
|
itr := NewMergeIterator(a, opt)
|
|
if itr == nil {
|
|
return nil, nil
|
|
}
|
|
|
|
if opt.InterruptCh != nil {
|
|
itr = NewInterruptIterator(itr, opt.InterruptCh)
|
|
}
|
|
|
|
if !ok {
|
|
// This is not a call expression so do not use a call iterator.
|
|
return itr, nil
|
|
}
|
|
|
|
// When merging the count() function, use sum() to sum the counted points.
|
|
if call.Name == "count" {
|
|
opt.Expr = &Call{
|
|
Name: "sum",
|
|
Args: call.Args,
|
|
}
|
|
}
|
|
return NewCallIterator(itr, opt)
|
|
}
|
|
|
|
// NewMergeIterator returns an iterator to merge itrs into one.
|
|
// Inputs must either be merge iterators or only contain a single name/tag in
|
|
// sorted order. The iterator will output all points by window, name/tag, then
|
|
// time. This iterator is useful when you need all of the points for an
|
|
// interval.
|
|
func NewMergeIterator(inputs []Iterator, opt IteratorOptions) Iterator {
|
|
inputs = Iterators(inputs).filterNonNil()
|
|
if n := len(inputs); n == 0 {
|
|
return nil
|
|
} else if n == 1 {
|
|
return inputs[0]
|
|
}
|
|
|
|
// Aggregate functions can use a more relaxed sorting so that points
|
|
// within a window are grouped. This is much more efficient.
|
|
switch inputs := Iterators(inputs).cast().(type) {
|
|
case []FloatIterator:
|
|
return newFloatMergeIterator(inputs, opt)
|
|
case []IntegerIterator:
|
|
return newIntegerMergeIterator(inputs, opt)
|
|
case []StringIterator:
|
|
return newStringMergeIterator(inputs, opt)
|
|
case []BooleanIterator:
|
|
return newBooleanMergeIterator(inputs, opt)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported merge iterator type: %T", inputs))
|
|
}
|
|
}
|
|
|
|
// NewParallelMergeIterator returns an iterator that breaks input iterators
|
|
// into groups and processes them in parallel.
|
|
func NewParallelMergeIterator(inputs []Iterator, opt IteratorOptions, parallelism int) Iterator {
|
|
inputs = Iterators(inputs).filterNonNil()
|
|
if len(inputs) == 0 {
|
|
return nil
|
|
} else if len(inputs) == 1 {
|
|
return inputs[0]
|
|
}
|
|
|
|
// Limit parallelism to the number of inputs.
|
|
if len(inputs) < parallelism {
|
|
parallelism = len(inputs)
|
|
}
|
|
|
|
// Determine the number of inputs per output iterator.
|
|
n := len(inputs) / parallelism
|
|
|
|
// Group iterators together.
|
|
outputs := make([]Iterator, parallelism)
|
|
for i := range outputs {
|
|
var slice []Iterator
|
|
if i < len(outputs)-1 {
|
|
slice = inputs[i*n : (i+1)*n]
|
|
} else {
|
|
slice = inputs[i*n:]
|
|
}
|
|
|
|
outputs[i] = newParallelIterator(NewMergeIterator(slice, opt))
|
|
}
|
|
|
|
// Merge all groups together.
|
|
return NewMergeIterator(outputs, opt)
|
|
}
|
|
|
|
// NewSortedMergeIterator returns an iterator to merge itrs into one.
|
|
// Inputs must either be sorted merge iterators or only contain a single
|
|
// name/tag in sorted order. The iterator will output all points by name/tag,
|
|
// then time. This iterator is useful when you need all points for a name/tag
|
|
// to be in order.
|
|
func NewSortedMergeIterator(inputs []Iterator, opt IteratorOptions) Iterator {
|
|
inputs = Iterators(inputs).filterNonNil()
|
|
if len(inputs) == 0 {
|
|
return nil
|
|
} else if len(inputs) == 1 {
|
|
return inputs[0]
|
|
}
|
|
|
|
switch inputs := Iterators(inputs).cast().(type) {
|
|
case []FloatIterator:
|
|
return newFloatSortedMergeIterator(inputs, opt)
|
|
case []IntegerIterator:
|
|
return newIntegerSortedMergeIterator(inputs, opt)
|
|
case []StringIterator:
|
|
return newStringSortedMergeIterator(inputs, opt)
|
|
case []BooleanIterator:
|
|
return newBooleanSortedMergeIterator(inputs, opt)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported sorted merge iterator type: %T", inputs))
|
|
}
|
|
}
|
|
|
|
// newParallelIterator returns an iterator that runs in a separate goroutine.
|
|
func newParallelIterator(input Iterator) Iterator {
|
|
if input == nil {
|
|
return nil
|
|
}
|
|
|
|
switch itr := input.(type) {
|
|
case FloatIterator:
|
|
return newFloatParallelIterator(itr)
|
|
case IntegerIterator:
|
|
return newIntegerParallelIterator(itr)
|
|
case StringIterator:
|
|
return newStringParallelIterator(itr)
|
|
case BooleanIterator:
|
|
return newBooleanParallelIterator(itr)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported parallel iterator type: %T", itr))
|
|
}
|
|
}
|
|
|
|
// NewLimitIterator returns an iterator that limits the number of points per grouping.
|
|
func NewLimitIterator(input Iterator, opt IteratorOptions) Iterator {
|
|
switch input := input.(type) {
|
|
case FloatIterator:
|
|
return newFloatLimitIterator(input, opt)
|
|
case IntegerIterator:
|
|
return newIntegerLimitIterator(input, opt)
|
|
case StringIterator:
|
|
return newStringLimitIterator(input, opt)
|
|
case BooleanIterator:
|
|
return newBooleanLimitIterator(input, opt)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported limit iterator type: %T", input))
|
|
}
|
|
}
|
|
|
|
// NewFilterIterator returns an iterator that filters the points based on the
|
|
// condition. This iterator is not nearly as efficient as filtering points
|
|
// within the query engine and is only used when filtering subqueries.
|
|
func NewFilterIterator(input Iterator, cond Expr, opt IteratorOptions) Iterator {
|
|
if input == nil {
|
|
return nil
|
|
}
|
|
|
|
switch input := input.(type) {
|
|
case FloatIterator:
|
|
return newFloatFilterIterator(input, cond, opt)
|
|
case IntegerIterator:
|
|
return newIntegerFilterIterator(input, cond, opt)
|
|
case StringIterator:
|
|
return newStringFilterIterator(input, cond, opt)
|
|
case BooleanIterator:
|
|
return newBooleanFilterIterator(input, cond, opt)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported filter iterator type: %T", input))
|
|
}
|
|
}
|
|
|
|
// NewDedupeIterator returns an iterator that only outputs unique points.
|
|
// This iterator maintains a serialized copy of each row so it is inefficient
|
|
// to use on large datasets. It is intended for small datasets such as meta queries.
|
|
func NewDedupeIterator(input Iterator) Iterator {
|
|
if input == nil {
|
|
return nil
|
|
}
|
|
|
|
switch input := input.(type) {
|
|
case FloatIterator:
|
|
return newFloatDedupeIterator(input)
|
|
case IntegerIterator:
|
|
return newIntegerDedupeIterator(input)
|
|
case StringIterator:
|
|
return newStringDedupeIterator(input)
|
|
case BooleanIterator:
|
|
return newBooleanDedupeIterator(input)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported dedupe iterator type: %T", input))
|
|
}
|
|
}
|
|
|
|
// NewFillIterator returns an iterator that fills in missing points in an aggregate.
|
|
func NewFillIterator(input Iterator, expr Expr, opt IteratorOptions) Iterator {
|
|
switch input := input.(type) {
|
|
case FloatIterator:
|
|
return newFloatFillIterator(input, expr, opt)
|
|
case IntegerIterator:
|
|
return newIntegerFillIterator(input, expr, opt)
|
|
case StringIterator:
|
|
return newStringFillIterator(input, expr, opt)
|
|
case BooleanIterator:
|
|
return newBooleanFillIterator(input, expr, opt)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported fill iterator type: %T", input))
|
|
}
|
|
}
|
|
|
|
// NewIntervalIterator returns an iterator that sets the time on each point to the interval.
|
|
func NewIntervalIterator(input Iterator, opt IteratorOptions) Iterator {
|
|
switch input := input.(type) {
|
|
case FloatIterator:
|
|
return newFloatIntervalIterator(input, opt)
|
|
case IntegerIterator:
|
|
return newIntegerIntervalIterator(input, opt)
|
|
case StringIterator:
|
|
return newStringIntervalIterator(input, opt)
|
|
case BooleanIterator:
|
|
return newBooleanIntervalIterator(input, opt)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported fill iterator type: %T", input))
|
|
}
|
|
}
|
|
|
|
// NewInterruptIterator returns an iterator that will stop producing output
|
|
// when the passed-in channel is closed.
|
|
func NewInterruptIterator(input Iterator, closing <-chan struct{}) Iterator {
|
|
switch input := input.(type) {
|
|
case FloatIterator:
|
|
return newFloatInterruptIterator(input, closing)
|
|
case IntegerIterator:
|
|
return newIntegerInterruptIterator(input, closing)
|
|
case StringIterator:
|
|
return newStringInterruptIterator(input, closing)
|
|
case BooleanIterator:
|
|
return newBooleanInterruptIterator(input, closing)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported interrupt iterator type: %T", input))
|
|
}
|
|
}
|
|
|
|
// NewCloseInterruptIterator returns an iterator that will invoke the Close() method on an
|
|
// iterator when the passed-in channel has been closed.
|
|
func NewCloseInterruptIterator(input Iterator, closing <-chan struct{}) Iterator {
|
|
switch input := input.(type) {
|
|
case FloatIterator:
|
|
return newFloatCloseInterruptIterator(input, closing)
|
|
case IntegerIterator:
|
|
return newIntegerCloseInterruptIterator(input, closing)
|
|
case StringIterator:
|
|
return newStringCloseInterruptIterator(input, closing)
|
|
case BooleanIterator:
|
|
return newBooleanCloseInterruptIterator(input, closing)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported close iterator iterator type: %T", input))
|
|
}
|
|
}
|
|
|
|
// AuxIterator represents an iterator that can split off separate auxiliary iterators.
|
|
type AuxIterator interface {
|
|
Iterator
|
|
|
|
// Auxilary iterator
|
|
Iterator(name string, typ DataType) Iterator
|
|
|
|
// Start starts writing to the created iterators.
|
|
Start()
|
|
|
|
// Backgrounds the iterator so that, when start is called, it will
|
|
// continuously read from the iterator.
|
|
Background()
|
|
}
|
|
|
|
// NewAuxIterator returns a new instance of AuxIterator.
|
|
func NewAuxIterator(input Iterator, opt IteratorOptions) AuxIterator {
|
|
switch input := input.(type) {
|
|
case FloatIterator:
|
|
return newFloatAuxIterator(input, opt)
|
|
case IntegerIterator:
|
|
return newIntegerAuxIterator(input, opt)
|
|
case StringIterator:
|
|
return newStringAuxIterator(input, opt)
|
|
case BooleanIterator:
|
|
return newBooleanAuxIterator(input, opt)
|
|
default:
|
|
panic(fmt.Sprintf("unsupported aux iterator type: %T", input))
|
|
}
|
|
}
|
|
|
|
// auxIteratorField represents an auxilary field within an AuxIterator.
|
|
type auxIteratorField struct {
|
|
name string // field name
|
|
typ DataType // detected data type
|
|
itrs []Iterator // auxillary iterators
|
|
mu sync.Mutex
|
|
opt IteratorOptions
|
|
}
|
|
|
|
func (f *auxIteratorField) append(itr Iterator) {
|
|
f.mu.Lock()
|
|
defer f.mu.Unlock()
|
|
f.itrs = append(f.itrs, itr)
|
|
}
|
|
|
|
func (f *auxIteratorField) close() {
|
|
f.mu.Lock()
|
|
defer f.mu.Unlock()
|
|
for _, itr := range f.itrs {
|
|
itr.Close()
|
|
}
|
|
}
|
|
|
|
type auxIteratorFields struct {
|
|
fields []*auxIteratorField
|
|
dimensions []string
|
|
}
|
|
|
|
// newAuxIteratorFields returns a new instance of auxIteratorFields from a list of field names.
|
|
func newAuxIteratorFields(opt IteratorOptions) *auxIteratorFields {
|
|
fields := make([]*auxIteratorField, len(opt.Aux))
|
|
for i, ref := range opt.Aux {
|
|
fields[i] = &auxIteratorField{name: ref.Val, typ: ref.Type, opt: opt}
|
|
}
|
|
return &auxIteratorFields{
|
|
fields: fields,
|
|
dimensions: opt.GetDimensions(),
|
|
}
|
|
}
|
|
|
|
func (a *auxIteratorFields) close() {
|
|
for _, f := range a.fields {
|
|
f.close()
|
|
}
|
|
}
|
|
|
|
// iterator creates a new iterator for a named auxilary field.
|
|
func (a *auxIteratorFields) iterator(name string, typ DataType) Iterator {
|
|
for _, f := range a.fields {
|
|
// Skip field if it's name doesn't match.
|
|
// Exit if no points were received by the iterator.
|
|
if f.name != name || (typ != Unknown && f.typ != typ) {
|
|
continue
|
|
}
|
|
|
|
// Create channel iterator by data type.
|
|
switch f.typ {
|
|
case Float:
|
|
itr := &floatChanIterator{cond: sync.NewCond(&sync.Mutex{})}
|
|
f.append(itr)
|
|
return itr
|
|
case Integer:
|
|
itr := &integerChanIterator{cond: sync.NewCond(&sync.Mutex{})}
|
|
f.append(itr)
|
|
return itr
|
|
case String, Tag:
|
|
itr := &stringChanIterator{cond: sync.NewCond(&sync.Mutex{})}
|
|
f.append(itr)
|
|
return itr
|
|
case Boolean:
|
|
itr := &booleanChanIterator{cond: sync.NewCond(&sync.Mutex{})}
|
|
f.append(itr)
|
|
return itr
|
|
default:
|
|
break
|
|
}
|
|
}
|
|
|
|
return &nilFloatIterator{}
|
|
}
|
|
|
|
// send sends a point to all field iterators.
|
|
func (a *auxIteratorFields) send(p Point) (ok bool) {
|
|
values := p.aux()
|
|
for i, f := range a.fields {
|
|
var v interface{}
|
|
if i < len(values) {
|
|
v = values[i]
|
|
}
|
|
|
|
tags := p.tags()
|
|
tags = tags.Subset(a.dimensions)
|
|
|
|
// Send new point for each aux iterator.
|
|
// Primitive pointers represent nil values.
|
|
for _, itr := range f.itrs {
|
|
switch itr := itr.(type) {
|
|
case *floatChanIterator:
|
|
ok = itr.setBuf(p.name(), tags, p.time(), v) || ok
|
|
case *integerChanIterator:
|
|
ok = itr.setBuf(p.name(), tags, p.time(), v) || ok
|
|
case *stringChanIterator:
|
|
ok = itr.setBuf(p.name(), tags, p.time(), v) || ok
|
|
case *booleanChanIterator:
|
|
ok = itr.setBuf(p.name(), tags, p.time(), v) || ok
|
|
default:
|
|
panic(fmt.Sprintf("invalid aux itr type: %T", itr))
|
|
}
|
|
}
|
|
}
|
|
return ok
|
|
}
|
|
|
|
func (a *auxIteratorFields) sendError(err error) {
|
|
for _, f := range a.fields {
|
|
for _, itr := range f.itrs {
|
|
switch itr := itr.(type) {
|
|
case *floatChanIterator:
|
|
itr.setErr(err)
|
|
case *integerChanIterator:
|
|
itr.setErr(err)
|
|
case *stringChanIterator:
|
|
itr.setErr(err)
|
|
case *booleanChanIterator:
|
|
itr.setErr(err)
|
|
default:
|
|
panic(fmt.Sprintf("invalid aux itr type: %T", itr))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// DrainIterator reads and discards all points from itr.
|
|
func DrainIterator(itr Iterator) {
|
|
defer itr.Close()
|
|
switch itr := itr.(type) {
|
|
case FloatIterator:
|
|
for p, _ := itr.Next(); p != nil; p, _ = itr.Next() {
|
|
}
|
|
case IntegerIterator:
|
|
for p, _ := itr.Next(); p != nil; p, _ = itr.Next() {
|
|
}
|
|
case StringIterator:
|
|
for p, _ := itr.Next(); p != nil; p, _ = itr.Next() {
|
|
}
|
|
case BooleanIterator:
|
|
for p, _ := itr.Next(); p != nil; p, _ = itr.Next() {
|
|
}
|
|
default:
|
|
panic(fmt.Sprintf("unsupported iterator type for draining: %T", itr))
|
|
}
|
|
}
|
|
|
|
// DrainIterators reads and discards all points from itrs.
|
|
func DrainIterators(itrs []Iterator) {
|
|
defer Iterators(itrs).Close()
|
|
for {
|
|
var hasData bool
|
|
|
|
for _, itr := range itrs {
|
|
switch itr := itr.(type) {
|
|
case FloatIterator:
|
|
if p, _ := itr.Next(); p != nil {
|
|
hasData = true
|
|
}
|
|
case IntegerIterator:
|
|
if p, _ := itr.Next(); p != nil {
|
|
hasData = true
|
|
}
|
|
case StringIterator:
|
|
if p, _ := itr.Next(); p != nil {
|
|
hasData = true
|
|
}
|
|
case BooleanIterator:
|
|
if p, _ := itr.Next(); p != nil {
|
|
hasData = true
|
|
}
|
|
default:
|
|
panic(fmt.Sprintf("unsupported iterator type for draining: %T", itr))
|
|
}
|
|
}
|
|
|
|
// Exit once all iterators return a nil point.
|
|
if !hasData {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
// NewReaderIterator returns an iterator that streams from a reader.
|
|
func NewReaderIterator(r io.Reader, typ DataType, stats IteratorStats) Iterator {
|
|
switch typ {
|
|
case Float:
|
|
return newFloatReaderIterator(r, stats)
|
|
case Integer:
|
|
return newIntegerReaderIterator(r, stats)
|
|
case String:
|
|
return newStringReaderIterator(r, stats)
|
|
case Boolean:
|
|
return newBooleanReaderIterator(r, stats)
|
|
default:
|
|
return &nilFloatIterator{}
|
|
}
|
|
}
|
|
|
|
// IteratorCreator is an interface to create Iterators.
|
|
type IteratorCreator interface {
|
|
// Creates a simple iterator for use in an InfluxQL query.
|
|
CreateIterator(source *Measurement, opt IteratorOptions) (Iterator, error)
|
|
}
|
|
|
|
// FieldMapper returns the data type for the field inside of the measurement.
|
|
type FieldMapper interface {
|
|
FieldDimensions(m *Measurement) (fields map[string]DataType, dimensions map[string]struct{}, err error)
|
|
|
|
TypeMapper
|
|
}
|
|
|
|
// IteratorOptions is an object passed to CreateIterator to specify creation options.
|
|
type IteratorOptions struct {
|
|
// Expression to iterate for.
|
|
// This can be VarRef or a Call.
|
|
Expr Expr
|
|
|
|
// Auxilary tags or values to also retrieve for the point.
|
|
Aux []VarRef
|
|
|
|
// Data sources from which to receive data. This is only used for encoding
|
|
// measurements over RPC and is no longer used in the open source version.
|
|
Sources []Source
|
|
|
|
// Group by interval and tags.
|
|
Interval Interval
|
|
Dimensions []string // The final dimensions of the query (stays the same even in subqueries).
|
|
GroupBy map[string]struct{} // Dimensions to group points by in intermediate iterators.
|
|
Location *time.Location
|
|
|
|
// Fill options.
|
|
Fill FillOption
|
|
FillValue interface{}
|
|
|
|
// Condition to filter by.
|
|
Condition Expr
|
|
|
|
// Time range for the iterator.
|
|
StartTime int64
|
|
EndTime int64
|
|
|
|
// Sorted in time ascending order if true.
|
|
Ascending bool
|
|
|
|
// Limits the number of points per series.
|
|
Limit, Offset int
|
|
|
|
// Limits the number of series.
|
|
SLimit, SOffset int
|
|
|
|
// Removes duplicate rows from raw queries.
|
|
Dedupe bool
|
|
|
|
// Determines if this is a query for raw data or an aggregate/selector.
|
|
Ordered bool
|
|
|
|
// Limits on the creation of iterators.
|
|
MaxSeriesN int
|
|
|
|
// If this channel is set and is closed, the iterator should try to exit
|
|
// and close as soon as possible.
|
|
InterruptCh <-chan struct{}
|
|
|
|
// Authorizer can limit acccess to data
|
|
Authorizer Authorizer
|
|
}
|
|
|
|
// newIteratorOptionsStmt creates the iterator options from stmt.
|
|
func newIteratorOptionsStmt(stmt *SelectStatement, sopt *SelectOptions) (opt IteratorOptions, err error) {
|
|
|
|
// Determine time range from the condition.
|
|
startTime, endTime, err := TimeRange(stmt.Condition)
|
|
if err != nil {
|
|
return IteratorOptions{}, err
|
|
}
|
|
|
|
if !startTime.IsZero() {
|
|
opt.StartTime = startTime.UnixNano()
|
|
} else {
|
|
if sopt != nil {
|
|
opt.StartTime = sopt.MinTime.UnixNano()
|
|
} else {
|
|
opt.StartTime = MinTime
|
|
}
|
|
}
|
|
if !endTime.IsZero() {
|
|
opt.EndTime = endTime.UnixNano()
|
|
} else {
|
|
if sopt != nil {
|
|
opt.EndTime = sopt.MaxTime.UnixNano()
|
|
} else {
|
|
opt.EndTime = MaxTime
|
|
}
|
|
}
|
|
opt.Location = stmt.Location
|
|
|
|
// Determine group by interval.
|
|
interval, err := stmt.GroupByInterval()
|
|
if err != nil {
|
|
return opt, err
|
|
}
|
|
// Set duration to zero if a negative interval has been used.
|
|
if interval < 0 {
|
|
interval = 0
|
|
} else if interval > 0 {
|
|
opt.Interval.Offset, err = stmt.GroupByOffset()
|
|
if err != nil {
|
|
return opt, err
|
|
}
|
|
}
|
|
opt.Interval.Duration = interval
|
|
|
|
// Always request an ordered output for the top level iterators.
|
|
// The emitter will always emit points as ordered.
|
|
opt.Ordered = true
|
|
|
|
// Determine dimensions.
|
|
opt.GroupBy = make(map[string]struct{}, len(opt.Dimensions))
|
|
for _, d := range stmt.Dimensions {
|
|
if d, ok := d.Expr.(*VarRef); ok {
|
|
opt.Dimensions = append(opt.Dimensions, d.Val)
|
|
opt.GroupBy[d.Val] = struct{}{}
|
|
}
|
|
}
|
|
|
|
opt.Condition = stmt.Condition
|
|
opt.Ascending = stmt.TimeAscending()
|
|
opt.Dedupe = stmt.Dedupe
|
|
|
|
opt.Fill, opt.FillValue = stmt.Fill, stmt.FillValue
|
|
if opt.Fill == NullFill && stmt.Target != nil {
|
|
// Set the fill option to none if a target has been given.
|
|
// Null values will get ignored when being written to the target
|
|
// so fill(null) wouldn't write any null values to begin with.
|
|
opt.Fill = NoFill
|
|
}
|
|
opt.Limit, opt.Offset = stmt.Limit, stmt.Offset
|
|
opt.SLimit, opt.SOffset = stmt.SLimit, stmt.SOffset
|
|
if sopt != nil {
|
|
opt.MaxSeriesN = sopt.MaxSeriesN
|
|
opt.InterruptCh = sopt.InterruptCh
|
|
opt.Authorizer = sopt.Authorizer
|
|
}
|
|
|
|
return opt, nil
|
|
}
|
|
|
|
func newIteratorOptionsSubstatement(stmt *SelectStatement, opt IteratorOptions) (IteratorOptions, error) {
|
|
subOpt, err := newIteratorOptionsStmt(stmt, nil)
|
|
if err != nil {
|
|
return IteratorOptions{}, err
|
|
}
|
|
|
|
if subOpt.StartTime < opt.StartTime {
|
|
subOpt.StartTime = opt.StartTime
|
|
}
|
|
if subOpt.EndTime > opt.EndTime {
|
|
subOpt.EndTime = opt.EndTime
|
|
}
|
|
// Propagate the dimensions to the inner subquery.
|
|
subOpt.Dimensions = opt.Dimensions
|
|
for d := range opt.GroupBy {
|
|
subOpt.GroupBy[d] = struct{}{}
|
|
}
|
|
subOpt.InterruptCh = opt.InterruptCh
|
|
|
|
// Propagate the SLIMIT and SOFFSET from the outer query.
|
|
subOpt.SLimit += opt.SLimit
|
|
subOpt.SOffset += opt.SOffset
|
|
|
|
// If the inner query uses a null fill option, switch it to none so we
|
|
// don't hit an unnecessary penalty from the fill iterator. Null values
|
|
// will end up getting stripped by an outer query anyway so there's no
|
|
// point in having them here. We still need all other types of fill
|
|
// iterators because they can affect the result of the outer query.
|
|
if subOpt.Fill == NullFill {
|
|
subOpt.Fill = NoFill
|
|
}
|
|
|
|
// Inherit the ordering method from the outer query.
|
|
subOpt.Ordered = opt.Ordered
|
|
|
|
// If there is no interval for this subquery, but the outer query has an
|
|
// interval, inherit the parent interval.
|
|
interval, err := stmt.GroupByInterval()
|
|
if err != nil {
|
|
return IteratorOptions{}, err
|
|
} else if interval == 0 {
|
|
subOpt.Interval = opt.Interval
|
|
}
|
|
return subOpt, nil
|
|
}
|
|
|
|
// MergeSorted returns true if the options require a sorted merge.
|
|
func (opt IteratorOptions) MergeSorted() bool {
|
|
return opt.Ordered
|
|
}
|
|
|
|
// SeekTime returns the time the iterator should start from.
|
|
// For ascending iterators this is the start time, for descending iterators it's the end time.
|
|
func (opt IteratorOptions) SeekTime() int64 {
|
|
if opt.Ascending {
|
|
return opt.StartTime
|
|
}
|
|
return opt.EndTime
|
|
}
|
|
|
|
// Window returns the time window [start,end) that t falls within.
|
|
func (opt IteratorOptions) Window(t int64) (start, end int64) {
|
|
if opt.Interval.IsZero() {
|
|
return opt.StartTime, opt.EndTime + 1
|
|
}
|
|
|
|
// Subtract the offset to the time so we calculate the correct base interval.
|
|
t -= int64(opt.Interval.Offset)
|
|
|
|
// Retrieve the zone offset for the start time.
|
|
var startOffset int64
|
|
if opt.Location != nil {
|
|
_, startOffset = opt.Zone(t)
|
|
t += startOffset
|
|
}
|
|
|
|
// Truncate time by duration.
|
|
dt := t % int64(opt.Interval.Duration)
|
|
if dt < 0 {
|
|
// Negative modulo rounds up instead of down, so offset
|
|
// with the duration.
|
|
dt += int64(opt.Interval.Duration)
|
|
}
|
|
|
|
// Find the start time.
|
|
if MinTime+dt >= t {
|
|
start = MinTime
|
|
} else {
|
|
start = t - dt
|
|
}
|
|
|
|
// Look for the start offset again because the first time may have been
|
|
// after the offset switch. Now that we are at midnight in UTC, we can
|
|
// lookup the zone offset again to get the real starting offset.
|
|
if opt.Location != nil {
|
|
_, adjustedOffset := opt.Zone(start)
|
|
// Do not adjust the offset if the offset change is greater than or
|
|
// equal to the duration.
|
|
if o := startOffset - adjustedOffset; o != 0 && abs(o) < int64(opt.Interval.Duration) {
|
|
startOffset = adjustedOffset
|
|
}
|
|
}
|
|
start += int64(opt.Interval.Offset) - startOffset
|
|
|
|
// Find the end time.
|
|
if dt := int64(opt.Interval.Duration) - dt; MaxTime-dt <= t {
|
|
end = MaxTime
|
|
} else {
|
|
end = t + dt
|
|
}
|
|
end += int64(opt.Interval.Offset) - startOffset
|
|
|
|
// Retrieve the zone offset for the end time.
|
|
if opt.Location != nil {
|
|
_, endOffset := opt.Zone(end)
|
|
// Adjust the end time if the offset is different from the start offset.
|
|
if startOffset != endOffset {
|
|
offset := startOffset - endOffset
|
|
|
|
// Only apply the offset if it is smaller than the duration.
|
|
// This prevents going back in time and creating time windows
|
|
// that don't make any sense.
|
|
if abs(offset) < int64(opt.Interval.Duration) {
|
|
end += offset
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// DerivativeInterval returns the time interval for the derivative function.
|
|
func (opt IteratorOptions) DerivativeInterval() Interval {
|
|
// Use the interval on the derivative() call, if specified.
|
|
if expr, ok := opt.Expr.(*Call); ok && len(expr.Args) == 2 {
|
|
return Interval{Duration: expr.Args[1].(*DurationLiteral).Val}
|
|
}
|
|
|
|
// Otherwise use the group by interval, if specified.
|
|
if opt.Interval.Duration > 0 {
|
|
return Interval{Duration: opt.Interval.Duration}
|
|
}
|
|
|
|
return Interval{Duration: time.Second}
|
|
}
|
|
|
|
// ElapsedInterval returns the time interval for the elapsed function.
|
|
func (opt IteratorOptions) ElapsedInterval() Interval {
|
|
// Use the interval on the elapsed() call, if specified.
|
|
if expr, ok := opt.Expr.(*Call); ok && len(expr.Args) == 2 {
|
|
return Interval{Duration: expr.Args[1].(*DurationLiteral).Val}
|
|
}
|
|
|
|
return Interval{Duration: time.Nanosecond}
|
|
}
|
|
|
|
// IntegralInterval returns the time interval for the integral function.
|
|
func (opt IteratorOptions) IntegralInterval() Interval {
|
|
// Use the interval on the integral() call, if specified.
|
|
if expr, ok := opt.Expr.(*Call); ok && len(expr.Args) == 2 {
|
|
return Interval{Duration: expr.Args[1].(*DurationLiteral).Val}
|
|
}
|
|
|
|
return Interval{Duration: time.Second}
|
|
}
|
|
|
|
// GetDimensions retrieves the dimensions for this query.
|
|
func (opt IteratorOptions) GetDimensions() []string {
|
|
if len(opt.GroupBy) > 0 {
|
|
dimensions := make([]string, 0, len(opt.GroupBy))
|
|
for dim := range opt.GroupBy {
|
|
dimensions = append(dimensions, dim)
|
|
}
|
|
return dimensions
|
|
}
|
|
return opt.Dimensions
|
|
}
|
|
|
|
// Zone returns the zone information for the given time. The offset is in nanoseconds.
|
|
func (opt *IteratorOptions) Zone(ns int64) (string, int64) {
|
|
if opt.Location == nil {
|
|
return "", 0
|
|
}
|
|
|
|
t := time.Unix(0, ns).In(opt.Location)
|
|
name, offset := t.Zone()
|
|
return name, secToNs * int64(offset)
|
|
}
|
|
|
|
// MarshalBinary encodes opt into a binary format.
|
|
func (opt *IteratorOptions) MarshalBinary() ([]byte, error) {
|
|
return proto.Marshal(encodeIteratorOptions(opt))
|
|
}
|
|
|
|
// UnmarshalBinary decodes from a binary format in to opt.
|
|
func (opt *IteratorOptions) UnmarshalBinary(buf []byte) error {
|
|
var pb internal.IteratorOptions
|
|
if err := proto.Unmarshal(buf, &pb); err != nil {
|
|
return err
|
|
}
|
|
|
|
other, err := decodeIteratorOptions(&pb)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
*opt = *other
|
|
|
|
return nil
|
|
}
|
|
|
|
func encodeIteratorOptions(opt *IteratorOptions) *internal.IteratorOptions {
|
|
pb := &internal.IteratorOptions{
|
|
Interval: encodeInterval(opt.Interval),
|
|
Dimensions: opt.Dimensions,
|
|
Fill: proto.Int32(int32(opt.Fill)),
|
|
StartTime: proto.Int64(opt.StartTime),
|
|
EndTime: proto.Int64(opt.EndTime),
|
|
Ascending: proto.Bool(opt.Ascending),
|
|
Limit: proto.Int64(int64(opt.Limit)),
|
|
Offset: proto.Int64(int64(opt.Offset)),
|
|
SLimit: proto.Int64(int64(opt.SLimit)),
|
|
SOffset: proto.Int64(int64(opt.SOffset)),
|
|
Dedupe: proto.Bool(opt.Dedupe),
|
|
MaxSeriesN: proto.Int64(int64(opt.MaxSeriesN)),
|
|
Ordered: proto.Bool(opt.Ordered),
|
|
}
|
|
|
|
// Set expression, if set.
|
|
if opt.Expr != nil {
|
|
pb.Expr = proto.String(opt.Expr.String())
|
|
}
|
|
|
|
// Set the location, if set.
|
|
if opt.Location != nil {
|
|
pb.Location = proto.String(opt.Location.String())
|
|
}
|
|
|
|
// Convert and encode aux fields as variable references.
|
|
pb.Fields = make([]*internal.VarRef, len(opt.Aux))
|
|
pb.Aux = make([]string, len(opt.Aux))
|
|
for i, ref := range opt.Aux {
|
|
pb.Fields[i] = encodeVarRef(ref)
|
|
pb.Aux[i] = ref.Val
|
|
}
|
|
|
|
// Encode group by dimensions from a map.
|
|
if pb.GroupBy != nil {
|
|
dimensions := make([]string, 0, len(opt.GroupBy))
|
|
for dim := range opt.GroupBy {
|
|
dimensions = append(dimensions, dim)
|
|
}
|
|
pb.GroupBy = dimensions
|
|
}
|
|
|
|
// Convert and encode sources to measurements.
|
|
if opt.Sources != nil {
|
|
sources := make([]*internal.Measurement, len(opt.Sources))
|
|
for i, source := range opt.Sources {
|
|
mm := source.(*Measurement)
|
|
sources[i] = encodeMeasurement(mm)
|
|
}
|
|
pb.Sources = sources
|
|
}
|
|
|
|
// Fill value can only be a number. Set it if available.
|
|
if v, ok := opt.FillValue.(float64); ok {
|
|
pb.FillValue = proto.Float64(v)
|
|
}
|
|
|
|
// Set condition, if set.
|
|
if opt.Condition != nil {
|
|
pb.Condition = proto.String(opt.Condition.String())
|
|
}
|
|
|
|
return pb
|
|
}
|
|
|
|
func decodeIteratorOptions(pb *internal.IteratorOptions) (*IteratorOptions, error) {
|
|
opt := &IteratorOptions{
|
|
Interval: decodeInterval(pb.GetInterval()),
|
|
Dimensions: pb.GetDimensions(),
|
|
Fill: FillOption(pb.GetFill()),
|
|
FillValue: pb.GetFillValue(),
|
|
StartTime: pb.GetStartTime(),
|
|
EndTime: pb.GetEndTime(),
|
|
Ascending: pb.GetAscending(),
|
|
Limit: int(pb.GetLimit()),
|
|
Offset: int(pb.GetOffset()),
|
|
SLimit: int(pb.GetSLimit()),
|
|
SOffset: int(pb.GetSOffset()),
|
|
Dedupe: pb.GetDedupe(),
|
|
MaxSeriesN: int(pb.GetMaxSeriesN()),
|
|
Ordered: pb.GetOrdered(),
|
|
}
|
|
|
|
// Set expression, if set.
|
|
if pb.Expr != nil {
|
|
expr, err := ParseExpr(pb.GetExpr())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
opt.Expr = expr
|
|
}
|
|
|
|
if pb.Location != nil {
|
|
loc, err := time.LoadLocation(pb.GetLocation())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
opt.Location = loc
|
|
}
|
|
|
|
// Convert and decode variable references.
|
|
if fields := pb.GetFields(); fields != nil {
|
|
opt.Aux = make([]VarRef, len(fields))
|
|
for i, ref := range fields {
|
|
opt.Aux[i] = decodeVarRef(ref)
|
|
}
|
|
} else {
|
|
opt.Aux = make([]VarRef, len(pb.GetAux()))
|
|
for i, name := range pb.GetAux() {
|
|
opt.Aux[i] = VarRef{Val: name}
|
|
}
|
|
}
|
|
|
|
// Convert and decode sources to measurements.
|
|
if pb.Sources != nil {
|
|
sources := make([]Source, len(pb.GetSources()))
|
|
for i, source := range pb.GetSources() {
|
|
mm, err := decodeMeasurement(source)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
sources[i] = mm
|
|
}
|
|
opt.Sources = sources
|
|
}
|
|
|
|
// Convert group by dimensions to a map.
|
|
if pb.GroupBy != nil {
|
|
dimensions := make(map[string]struct{}, len(pb.GroupBy))
|
|
for _, dim := range pb.GetGroupBy() {
|
|
dimensions[dim] = struct{}{}
|
|
}
|
|
opt.GroupBy = dimensions
|
|
}
|
|
|
|
// Set condition, if set.
|
|
if pb.Condition != nil {
|
|
expr, err := ParseExpr(pb.GetCondition())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
opt.Condition = expr
|
|
}
|
|
|
|
return opt, nil
|
|
}
|
|
|
|
// selectInfo represents an object that stores info about select fields.
|
|
type selectInfo struct {
|
|
calls map[*Call]struct{}
|
|
refs map[*VarRef]struct{}
|
|
}
|
|
|
|
// newSelectInfo creates a object with call and var ref info from stmt.
|
|
func newSelectInfo(stmt *SelectStatement) *selectInfo {
|
|
info := &selectInfo{
|
|
calls: make(map[*Call]struct{}),
|
|
refs: make(map[*VarRef]struct{}),
|
|
}
|
|
Walk(info, stmt.Fields)
|
|
return info
|
|
}
|
|
|
|
func (v *selectInfo) Visit(n Node) Visitor {
|
|
switch n := n.(type) {
|
|
case *Call:
|
|
v.calls[n] = struct{}{}
|
|
return nil
|
|
case *VarRef:
|
|
v.refs[n] = struct{}{}
|
|
return nil
|
|
}
|
|
return v
|
|
}
|
|
|
|
// FindSelector returns a selector from the selectInfo. This will only
|
|
// return a selector if the Call is a selector and it's the only function
|
|
// in the selectInfo.
|
|
func (v *selectInfo) FindSelector() *Call {
|
|
if len(v.calls) != 1 {
|
|
return nil
|
|
}
|
|
|
|
for s := range v.calls {
|
|
if IsSelector(s) {
|
|
return s
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Interval represents a repeating interval for a query.
|
|
type Interval struct {
|
|
Duration time.Duration
|
|
Offset time.Duration
|
|
}
|
|
|
|
// IsZero returns true if the interval has no duration.
|
|
func (i Interval) IsZero() bool { return i.Duration == 0 }
|
|
|
|
func encodeInterval(i Interval) *internal.Interval {
|
|
return &internal.Interval{
|
|
Duration: proto.Int64(i.Duration.Nanoseconds()),
|
|
Offset: proto.Int64(i.Offset.Nanoseconds()),
|
|
}
|
|
}
|
|
|
|
func decodeInterval(pb *internal.Interval) Interval {
|
|
return Interval{
|
|
Duration: time.Duration(pb.GetDuration()),
|
|
Offset: time.Duration(pb.GetOffset()),
|
|
}
|
|
}
|
|
|
|
func encodeVarRef(ref VarRef) *internal.VarRef {
|
|
return &internal.VarRef{
|
|
Val: proto.String(ref.Val),
|
|
Type: proto.Int32(int32(ref.Type)),
|
|
}
|
|
}
|
|
|
|
func decodeVarRef(pb *internal.VarRef) VarRef {
|
|
return VarRef{
|
|
Val: pb.GetVal(),
|
|
Type: DataType(pb.GetType()),
|
|
}
|
|
}
|
|
|
|
type nilFloatIterator struct{}
|
|
|
|
func (*nilFloatIterator) Stats() IteratorStats { return IteratorStats{} }
|
|
func (*nilFloatIterator) Close() error { return nil }
|
|
func (*nilFloatIterator) Next() (*FloatPoint, error) { return nil, nil }
|
|
|
|
// integerFloatTransformIterator executes a function to modify an existing point for every
|
|
// output of the input iterator.
|
|
type integerFloatTransformIterator struct {
|
|
input IntegerIterator
|
|
fn integerFloatTransformFunc
|
|
}
|
|
|
|
// Stats returns stats from the input iterator.
|
|
func (itr *integerFloatTransformIterator) Stats() IteratorStats { return itr.input.Stats() }
|
|
|
|
// Close closes the iterator and all child iterators.
|
|
func (itr *integerFloatTransformIterator) Close() error { return itr.input.Close() }
|
|
|
|
// Next returns the minimum value for the next available interval.
|
|
func (itr *integerFloatTransformIterator) Next() (*FloatPoint, error) {
|
|
p, err := itr.input.Next()
|
|
if err != nil {
|
|
return nil, err
|
|
} else if p != nil {
|
|
return itr.fn(p), nil
|
|
}
|
|
return nil, nil
|
|
}
|
|
|
|
// integerFloatTransformFunc creates or modifies a point.
|
|
// The point passed in may be modified and returned rather than allocating a
|
|
// new point if possible.
|
|
type integerFloatTransformFunc func(p *IntegerPoint) *FloatPoint
|
|
|
|
type integerFloatCastIterator struct {
|
|
input IntegerIterator
|
|
}
|
|
|
|
func (itr *integerFloatCastIterator) Stats() IteratorStats { return itr.input.Stats() }
|
|
func (itr *integerFloatCastIterator) Close() error { return itr.input.Close() }
|
|
func (itr *integerFloatCastIterator) Next() (*FloatPoint, error) {
|
|
p, err := itr.input.Next()
|
|
if p == nil || err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &FloatPoint{
|
|
Name: p.Name,
|
|
Tags: p.Tags,
|
|
Time: p.Time,
|
|
Nil: p.Nil,
|
|
Value: float64(p.Value),
|
|
Aux: p.Aux,
|
|
}, nil
|
|
}
|
|
|
|
// IteratorStats represents statistics about an iterator.
|
|
// Some statistics are available immediately upon iterator creation while
|
|
// some are derived as the iterator processes data.
|
|
type IteratorStats struct {
|
|
SeriesN int // series represented
|
|
PointN int // points returned
|
|
}
|
|
|
|
// Add aggregates fields from s and other together. Overwrites s.
|
|
func (s *IteratorStats) Add(other IteratorStats) {
|
|
s.SeriesN += other.SeriesN
|
|
s.PointN += other.PointN
|
|
}
|
|
|
|
func encodeIteratorStats(stats *IteratorStats) *internal.IteratorStats {
|
|
return &internal.IteratorStats{
|
|
SeriesN: proto.Int64(int64(stats.SeriesN)),
|
|
PointN: proto.Int64(int64(stats.PointN)),
|
|
}
|
|
}
|
|
|
|
func decodeIteratorStats(pb *internal.IteratorStats) IteratorStats {
|
|
return IteratorStats{
|
|
SeriesN: int(pb.GetSeriesN()),
|
|
PointN: int(pb.GetPointN()),
|
|
}
|
|
}
|
|
|
|
// floatFastDedupeIterator outputs unique points where the point has a single aux field.
|
|
type floatFastDedupeIterator struct {
|
|
input FloatIterator
|
|
m map[fastDedupeKey]struct{} // lookup of points already sent
|
|
}
|
|
|
|
// newFloatFastDedupeIterator returns a new instance of floatFastDedupeIterator.
|
|
func newFloatFastDedupeIterator(input FloatIterator) *floatFastDedupeIterator {
|
|
return &floatFastDedupeIterator{
|
|
input: input,
|
|
m: make(map[fastDedupeKey]struct{}),
|
|
}
|
|
}
|
|
|
|
// Stats returns stats from the input iterator.
|
|
func (itr *floatFastDedupeIterator) Stats() IteratorStats { return itr.input.Stats() }
|
|
|
|
// Close closes the iterator and all child iterators.
|
|
func (itr *floatFastDedupeIterator) Close() error { return itr.input.Close() }
|
|
|
|
// Next returns the next unique point from the input iterator.
|
|
func (itr *floatFastDedupeIterator) Next() (*FloatPoint, error) {
|
|
for {
|
|
// Read next point.
|
|
// Skip if there are not any aux fields.
|
|
p, err := itr.input.Next()
|
|
if p == nil || err != nil {
|
|
return nil, err
|
|
} else if len(p.Aux) == 0 {
|
|
continue
|
|
}
|
|
|
|
// If the point has already been output then move to the next point.
|
|
key := fastDedupeKey{name: p.Name}
|
|
key.values[0] = p.Aux[0]
|
|
if len(p.Aux) > 1 {
|
|
key.values[1] = p.Aux[1]
|
|
}
|
|
if _, ok := itr.m[key]; ok {
|
|
continue
|
|
}
|
|
|
|
// Otherwise mark it as emitted and return point.
|
|
itr.m[key] = struct{}{}
|
|
return p, nil
|
|
}
|
|
}
|
|
|
|
type fastDedupeKey struct {
|
|
name string
|
|
values [2]interface{}
|
|
}
|
|
|
|
type reverseStringSlice []string
|
|
|
|
func (p reverseStringSlice) Len() int { return len(p) }
|
|
func (p reverseStringSlice) Less(i, j int) bool { return p[i] > p[j] }
|
|
func (p reverseStringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
func abs(v int64) int64 {
|
|
if v < 0 {
|
|
return -v
|
|
}
|
|
return v
|
|
}
|