influxdb/influxql/engine.go

965 lines
23 KiB
Go

package influxql
import (
"encoding/binary"
"fmt"
"hash/fnv"
"math"
"sort"
"strings"
"time"
)
// DB represents an interface for creating transactions.
type DB interface {
Begin() (Tx, error)
}
// Tx represents a transaction.
// The Tx must be opened before being used.
type Tx interface {
// Opens and closes the transaction.
Open() error
Close() error
// SetNow sets the current time to be used throughout the transaction.
SetNow(time.Time)
// Creates a list of iterators for a simple select statement.
//
// The statement must adhere to the following rules:
// 1. It can only have a single VarRef field.
// 2. It can only have a single source measurement.
CreateIterators(*SelectStatement) ([]Iterator, error)
}
// Iterator represents a forward-only iterator over a set of points.
type Iterator interface {
// Tags returns the encoded dimensional tag values.
Tags() string
// Next returns the next value from the iterator.
Next() (key int64, value interface{})
}
// Planner represents an object for creating execution plans.
type Planner struct {
DB DB
// Returns the current time. Defaults to time.Now().
Now func() time.Time
}
// NewPlanner returns a new instance of Planner.
func NewPlanner(db DB) *Planner {
return &Planner{
DB: db,
Now: time.Now,
}
}
func (p *Planner) Plan(stmt *SelectStatement) (*Executor, error) {
now := p.Now()
// Clone the statement to be planned.
// Replace instances of "now()" with the current time.
stmt = stmt.Clone()
stmt.Condition = Reduce(stmt.Condition, &nowValuer{Now: now})
// Begin an unopened transaction.
tx, err := p.DB.Begin()
if err != nil {
return nil, err
}
// Create the executor.
e := newExecutor(tx, stmt)
// Determine group by tag keys.
interval, tags, err := stmt.Dimensions.Normalize()
if err != nil {
return nil, err
}
e.interval = interval
e.tags = tags
// Generate a processor for each field.
e.processors = make([]Processor, len(stmt.Fields))
for i, f := range stmt.Fields {
p, err := p.planField(e, f)
if err != nil {
return nil, err
}
e.processors[i] = p
}
return e, nil
}
func (p *Planner) planField(e *Executor, f *Field) (Processor, error) {
return p.planExpr(e, f.Expr)
}
func (p *Planner) planExpr(e *Executor, expr Expr) (Processor, error) {
switch expr := expr.(type) {
case *VarRef:
return p.planRawQuery(e, expr)
case *Call:
return p.planCall(e, expr)
case *BinaryExpr:
return p.planBinaryExpr(e, expr)
case *ParenExpr:
return p.planExpr(e, expr.Expr)
case *NumberLiteral:
return newLiteralProcessor(expr.Val), nil
case *StringLiteral:
return newLiteralProcessor(expr.Val), nil
case *BooleanLiteral:
return newLiteralProcessor(expr.Val), nil
case *TimeLiteral:
return newLiteralProcessor(expr.Val), nil
case *DurationLiteral:
return newLiteralProcessor(expr.Val), nil
}
panic("unreachable")
}
// planCall generates a processor for a function call.
func (p *Planner) planRawQuery(e *Executor, v *VarRef) (Processor, error) {
// Convert the statement to a simplified substatement for the single field.
stmt, err := e.stmt.Substatement(v)
if err != nil {
return nil, err
}
// Retrieve a list of iterators for the substatement.
itrs, err := e.tx.CreateIterators(stmt)
if err != nil {
return nil, err
}
// Create mapper and reducer.
mappers := make([]*Mapper, len(itrs))
for i, itr := range itrs {
mappers[i] = NewMapper(MapRawQuery, itr, e.interval)
}
r := NewReducer(ReduceRawQuery, mappers)
r.name = stmt.Source.(*Measurement).Name
return r, nil
}
// planCall generates a processor for a function call.
func (p *Planner) planCall(e *Executor, c *Call) (Processor, error) {
// Ensure there is a single argument.
if c.Name == "percentile" {
if len(c.Args) != 2 {
return nil, fmt.Errorf("expected two arguments for percentile()")
}
} else if len(c.Args) != 1 {
return nil, fmt.Errorf("expected one argument for %s()", c.Name)
}
// Ensure the argument is a variable reference.
ref, ok := c.Args[0].(*VarRef)
if !ok {
return nil, fmt.Errorf("expected field argument in %s()", c.Name)
}
// Convert the statement to a simplified substatement for the single field.
stmt, err := e.stmt.Substatement(ref)
if err != nil {
return nil, err
}
// Retrieve a list of iterators for the substatement.
itrs, err := e.tx.CreateIterators(stmt)
if err != nil {
return nil, err
}
// Retrieve map & reduce functions by name.
var mapFn MapFunc
var reduceFn ReduceFunc
switch strings.ToLower(c.Name) {
case "count":
mapFn, reduceFn = MapCount, ReduceSum
case "sum":
mapFn, reduceFn = MapSum, ReduceSum
case "mean":
mapFn, reduceFn = MapMean, ReduceMean
case "percentile":
lit, ok := c.Args[1].(*NumberLiteral)
if !ok {
return nil, fmt.Errorf("expected float argument in percentile()")
}
mapFn, reduceFn = MapEcho, ReducePercentile(lit.Val)
default:
return nil, fmt.Errorf("function not found: %q", c.Name)
}
// Create mapper and reducer.
mappers := make([]*Mapper, len(itrs))
for i, itr := range itrs {
mappers[i] = NewMapper(mapFn, itr, e.interval)
}
r := NewReducer(reduceFn, mappers)
r.name = stmt.Source.(*Measurement).Name
return r, nil
}
// planBinaryExpr generates a processor for a binary expression.
// A binary expression represents a join operator between two processors.
func (p *Planner) planBinaryExpr(e *Executor, expr *BinaryExpr) (Processor, error) {
// Create processor for LHS.
lhs, err := p.planExpr(e, expr.LHS)
if err != nil {
return nil, fmt.Errorf("lhs: %s", err)
}
// Create processor for RHS.
rhs, err := p.planExpr(e, expr.RHS)
if err != nil {
return nil, fmt.Errorf("rhs: %s", err)
}
// Combine processors.
return newBinaryExprEvaluator(e, expr.Op, lhs, rhs), nil
}
// Executor represents the implementation of Executor.
// It executes all reducers and combines their result into a row.
type Executor struct {
tx Tx // transaction
stmt *SelectStatement // original statement
processors []Processor // per-field processors
interval time.Duration // group by interval
tags []string // dimensional tag keys
}
// newExecutor returns an executor associated with a transaction and statement.
func newExecutor(tx Tx, stmt *SelectStatement) *Executor {
return &Executor{
tx: tx,
stmt: stmt,
}
}
// Execute begins execution of the query and returns a channel to receive rows.
func (e *Executor) Execute() (<-chan *Row, error) {
// Open transaction.
if err := e.tx.Open(); err != nil {
return nil, err
}
// Initialize processors.
for _, p := range e.processors {
p.Process()
}
// Create output channel and stream data in a separate goroutine.
out := make(chan *Row, 0)
go e.execute(out)
return out, nil
}
// execute runs in a separate separate goroutine and streams data from processors.
func (e *Executor) execute(out chan *Row) {
// Ensure the transaction closes after execution.
defer e.tx.Close()
// TODO: Support multi-value rows.
// Initialize map of rows by encoded tagset.
rows := make(map[string]*Row)
// Combine values from each processor.
loop:
for {
// Retrieve values from processors and write them to the approprite
// row based on their tagset.
for i, p := range e.processors {
// Retrieve data from the processor.
m, ok := <-p.C()
if !ok {
break loop
}
// Set values on returned row.
for k, v := range m {
// Lookup row values and populate data.
values := e.createRowValuesIfNotExists(rows, e.processors[0].Name(), k.Timestamp, k.Values)
values[i+1] = v
}
}
}
// Normalize rows and values.
// This converts the timestamps from nanoseconds to microseconds.
a := make(Rows, 0, len(rows))
for _, row := range rows {
for _, values := range row.Values {
values[0] = values[0].(int64) / int64(time.Microsecond)
}
a = append(a, row)
}
sort.Sort(a)
// Send rows to the channel.
for _, row := range a {
out <- row
}
// Mark the end of the output channel.
close(out)
}
// creates a new value set if one does not already exist for a given tagset + timestamp.
func (e *Executor) createRowValuesIfNotExists(rows map[string]*Row, name string, timestamp int64, tagset string) []interface{} {
// TODO: Add "name" to lookup key.
// Find row by tagset.
var row *Row
if row = rows[tagset]; row == nil {
row = &Row{Name: name}
// Create tag map.
row.Tags = make(map[string]string)
for i, v := range UnmarshalStrings([]byte(tagset)) {
row.Tags[e.tags[i]] = v
}
// Create column names.
row.Columns = make([]string, 1, len(e.stmt.Fields)+1)
row.Columns[0] = "time"
for i, f := range e.stmt.Fields {
name := f.Name()
if name == "" {
name = fmt.Sprintf("col%d", i)
}
row.Columns = append(row.Columns, name)
}
// Save to lookup.
rows[tagset] = row
}
// If no values exist or last value doesn't match the timestamp then create new.
if len(row.Values) == 0 || row.Values[len(row.Values)-1][0] != timestamp {
values := make([]interface{}, len(e.processors)+1)
values[0] = timestamp
row.Values = append(row.Values, values)
}
return row.Values[len(row.Values)-1]
}
// Mapper represents an object for processing iterators.
type Mapper struct {
fn MapFunc // map function
itr Iterator // iterators
interval int64 // grouping interval
}
// NewMapper returns a new instance of Mapper with a given function and interval.
func NewMapper(fn MapFunc, itr Iterator, interval time.Duration) *Mapper {
return &Mapper{
fn: fn,
itr: itr,
interval: interval.Nanoseconds(),
}
}
// Map executes the mapper's function against the iterator.
// Returns a nil emitter if no data was found.
func (m *Mapper) Map() *Emitter {
e := NewEmitter(1)
go m.run(e)
return e
}
func (m *Mapper) run(e *Emitter) {
// Close emitter when we're done.
defer func() { _ = e.Close() }()
// Wrap iterator with buffer.
bufItr := &bufIterator{itr: m.itr}
// Determine the start time.
var tmin int64
if m.interval > 0 {
// Align start time to interval.
tmin, _ = bufItr.Peek()
tmin -= (tmin % m.interval)
}
for {
// Set the upper bound of the interval.
if m.interval > 0 {
bufItr.tmax = tmin + m.interval - 1
}
// Execute the map function.
m.fn(bufItr, e, tmin)
// Exit if there was only one interval or no more data is available.
if bufItr.EOF() {
break
}
// Move the interval forward.
tmin += m.interval
}
}
// bufIterator represents a buffer iterator.
type bufIterator struct {
itr Iterator // underlying iterator
tmax int64 // maximum key
buf struct {
key int64
value interface{}
}
buffered bool
}
// Tags returns the encoded dimensional values for the iterator.
func (i *bufIterator) Tags() string { return i.itr.Tags() }
// Next returns the next key/value pair from the iterator.
func (i *bufIterator) Next() (key int64, value interface{}) {
// Read the key/value pair off the buffer or underlying iterator.
if i.buffered {
i.buffered = false
} else {
i.buf.key, i.buf.value = i.itr.Next()
}
key, value = i.buf.key, i.buf.value
// If key is greater than tmax then put it back on the buffer.
if i.tmax != 0 && key > i.tmax {
i.buffered = true
return 0, nil
}
return key, value
}
// Peek returns the next key/value pair but does not move the iterator forward.
func (i *bufIterator) Peek() (key int64, value interface{}) {
key, value = i.Next()
i.buffered = true
return
}
// EOF returns true if there is no more data in the underlying iterator.
func (i *bufIterator) EOF() bool { i.Peek(); return i.buf.key == 0 }
// MapFunc represents a function used for mapping iterators.
type MapFunc func(Iterator, *Emitter, int64)
// MapCount computes the number of values in an iterator.
func MapCount(itr Iterator, e *Emitter, tmin int64) {
n := 0
for k, _ := itr.Next(); k != 0; k, _ = itr.Next() {
n++
}
e.Emit(Key{tmin, itr.Tags()}, float64(n))
}
// MapSum computes the summation of values in an iterator.
func MapSum(itr Iterator, e *Emitter, tmin int64) {
n := float64(0)
for k, v := itr.Next(); k != 0; k, v = itr.Next() {
n += v.(float64)
}
e.Emit(Key{tmin, itr.Tags()}, n)
}
// Processor represents an object for joining reducer output.
type Processor interface {
Process()
Name() string
C() <-chan map[Key]interface{}
}
// Reducer represents an object for processing mapper output.
// Implements processor.
type Reducer struct {
name string
fn ReduceFunc // reduce function
mappers []*Mapper // child mappers
c <-chan map[Key]interface{}
}
// NewReducer returns a new instance of reducer.
func NewReducer(fn ReduceFunc, mappers []*Mapper) *Reducer {
return &Reducer{
fn: fn,
mappers: mappers,
}
}
// C returns the output channel.
func (r *Reducer) C() <-chan map[Key]interface{} { return r.c }
// Name returns the source name.
func (r *Reducer) Name() string { return r.name }
func (r *Reducer) Process() { r.Reduce() }
// Reduce executes the reducer's function against all output from the mappers.
func (r *Reducer) Reduce() *Emitter {
inputs := make([]<-chan map[Key]interface{}, len(r.mappers))
for i, m := range r.mappers {
inputs[i] = m.Map().C()
}
e := NewEmitter(1)
r.c = e.C()
go r.run(e, inputs)
return e
}
func (r *Reducer) run(e *Emitter, inputs []<-chan map[Key]interface{}) {
// Close emitter when we're done.
defer func() { _ = e.Close() }()
// Buffer all the inputs.
bufInputs := make([]*bufInput, len(inputs))
for i, input := range inputs {
bufInputs[i] = &bufInput{c: input}
}
// Stream data from the inputs and reduce.
for {
// Read all data from the inputers with the same timestamp.
timestamp := int64(0)
for _, bufInput := range bufInputs {
rec := bufInput.peek()
if rec == nil {
continue
}
if timestamp == 0 || rec.Key.Timestamp < timestamp {
timestamp = rec.Key.Timestamp
}
}
data := make(map[Key][]interface{})
for _, bufInput := range bufInputs {
for {
rec := bufInput.read()
if rec == nil {
break
}
if rec.Key.Timestamp != timestamp {
bufInput.unread(rec)
break
}
data[rec.Key] = append(data[rec.Key], rec.Value)
}
}
if len(data) == 0 {
break
}
// Sort keys.
keys := make(keySlice, 0, len(data))
for k := range data {
keys = append(keys, k)
}
sort.Sort(keys)
// Reduce each key.
for _, k := range keys {
r.fn(k, data[k], e)
}
}
}
type bufInput struct {
buf *Record
c <-chan map[Key]interface{}
}
func (i *bufInput) read() *Record {
if i.buf != nil {
rec := i.buf
i.buf = nil
return rec
}
m, _ := <-i.c
return mapToRecord(m)
}
func (i *bufInput) unread(rec *Record) { i.buf = rec }
func (i *bufInput) peek() *Record {
rec := i.read()
i.unread(rec)
return rec
}
type Record struct {
Key Key
Value interface{}
}
func mapToRecord(m map[Key]interface{}) *Record {
for k, v := range m {
return &Record{k, v}
}
return nil
}
// ReduceFunc represents a function used for reducing mapper output.
type ReduceFunc func(Key, []interface{}, *Emitter)
// ReduceSum computes the sum of values for each key.
func ReduceSum(key Key, values []interface{}, e *Emitter) {
var n float64
for _, v := range values {
n += v.(float64)
}
e.Emit(key, n)
}
// MapMean computes the count and sum of values in an iterator to be combined by the reducer.
func MapMean(itr Iterator, e *Emitter, tmin int64) {
out := &meanMapOutput{}
for k, v := itr.Next(); k != 0; k, v = itr.Next() {
out.Count++
out.Sum += v.(float64)
}
e.Emit(Key{tmin, itr.Tags()}, out)
}
type meanMapOutput struct {
Count int
Sum float64
}
// ReduceMean computes the mean of values for each key.
func ReduceMean(key Key, values []interface{}, e *Emitter) {
out := &meanMapOutput{}
for _, v := range values {
val := v.(*meanMapOutput)
out.Count += val.Count
out.Sum += val.Sum
}
e.Emit(key, out.Sum/float64(out.Count))
}
// MapEcho emits the data points for each group by interval
func MapEcho(itr Iterator, e *Emitter, tmin int64) {
var values []interface{}
for k, v := itr.Next(); k != 0; k, v = itr.Next() {
values = append(values, v)
}
e.Emit(Key{tmin, itr.Tags()}, values)
}
// ReducePercentile computes the percentile of values for each key.
func ReducePercentile(percentile float64) ReduceFunc {
return func(key Key, values []interface{}, e *Emitter) {
var allValues []float64
for _, v := range values {
vals := v.([]interface{})
for _, v := range vals {
allValues = append(allValues, v.(float64))
}
}
sort.Float64s(allValues)
length := len(allValues)
index := int(math.Floor(float64(length)*percentile/100.0+0.5)) - 1
if index < 0 || index >= len(allValues) {
e.Emit(key, 0.0)
}
e.Emit(key, allValues[index])
}
}
func MapRawQuery(itr Iterator, e *Emitter, tmin int64) {
for k, v := itr.Next(); k != 0; k, v = itr.Next() {
e.Emit(Key{k, itr.Tags()}, v)
}
}
type rawQueryMapOutput struct {
timestamp int64
value interface{}
}
func ReduceRawQuery(key Key, values []interface{}, e *Emitter) {
for _, v := range values {
e.Emit(key, v)
}
}
// binaryExprEvaluator represents a processor for combining two processors.
type binaryExprEvaluator struct {
executor *Executor // parent executor
lhs, rhs Processor // processors
op Token // operation
c chan map[Key]interface{}
}
// newBinaryExprEvaluator returns a new instance of binaryExprEvaluator.
func newBinaryExprEvaluator(e *Executor, op Token, lhs, rhs Processor) *binaryExprEvaluator {
return &binaryExprEvaluator{
executor: e,
op: op,
lhs: lhs,
rhs: rhs,
c: make(chan map[Key]interface{}, 0),
}
}
// Process begins streaming values from the lhs/rhs processors
func (e *binaryExprEvaluator) Process() {
e.lhs.Process()
e.rhs.Process()
go e.run()
}
// C returns the streaming data channel.
func (e *binaryExprEvaluator) C() <-chan map[Key]interface{} { return e.c }
// name returns the source name.
func (e *binaryExprEvaluator) Name() string { return "" }
// run runs the processor loop to read subprocessor output and combine it.
func (e *binaryExprEvaluator) run() {
for {
// Read LHS value.
lhs, ok := <-e.lhs.C()
if !ok {
break
}
// Read RHS value.
rhs, ok := <-e.rhs.C()
if !ok {
break
}
// Merge maps.
m := make(map[Key]interface{})
for k, v := range lhs {
m[k] = e.eval(v, rhs[k])
}
for k, v := range rhs {
// Skip value if already processed in lhs loop.
if _, ok := m[k]; ok {
continue
}
m[k] = e.eval(float64(0), v)
}
// Return value.
e.c <- m
}
// Mark the channel as complete.
close(e.c)
}
// eval evaluates two values using the evaluator's operation.
func (e *binaryExprEvaluator) eval(lhs, rhs interface{}) interface{} {
switch e.op {
case ADD:
return lhs.(float64) + rhs.(float64)
case SUB:
return lhs.(float64) - rhs.(float64)
case MUL:
return lhs.(float64) * rhs.(float64)
case DIV:
rhs := rhs.(float64)
if rhs == 0 {
return float64(0)
}
return lhs.(float64) / rhs
default:
// TODO: Validate operation & data types.
panic("invalid operation: " + e.op.String())
}
}
// literalProcessor represents a processor that continually sends a literal value.
type literalProcessor struct {
val interface{}
c chan map[Key]interface{}
done chan chan struct{}
}
// newLiteralProcessor returns a literalProcessor for a given value.
func newLiteralProcessor(val interface{}) *literalProcessor {
return &literalProcessor{
val: val,
c: make(chan map[Key]interface{}, 0),
done: make(chan chan struct{}, 0),
}
}
// C returns the streaming data channel.
func (p *literalProcessor) C() <-chan map[Key]interface{} { return p.c }
// Process continually returns a literal value with a "0" key.
func (p *literalProcessor) Process() { go p.run() }
// run executes the processor loop.
func (p *literalProcessor) run() {
for {
select {
case ch := <-p.done:
close(ch)
return
case p.c <- map[Key]interface{}{Key{}: p.val}:
}
}
}
// stop stops the processor from sending values.
func (p *literalProcessor) stop() { syncClose(p.done) }
// name returns the source name.
func (p *literalProcessor) Name() string { return "" }
// syncClose closes a "done" channel and waits for a response.
func syncClose(done chan chan struct{}) {
ch := make(chan struct{}, 0)
done <- ch
<-ch
}
// Key represents a key returned by a Mapper or Reducer.
type Key struct {
Timestamp int64
Values string
}
type keySlice []Key
func (p keySlice) Len() int { return len(p) }
func (p keySlice) Less(i, j int) bool {
return p[i].Timestamp < p[j].Timestamp || p[i].Values < p[j].Values
}
func (p keySlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Emitter provides bufferred emit/flush of key/value pairs.
type Emitter struct {
c chan map[Key]interface{}
}
// NewEmitter returns a new instance of Emitter with a buffer size of n.
func NewEmitter(n int) *Emitter {
return &Emitter{
c: make(chan map[Key]interface{}, n),
}
}
// Close closes the emitter's output channel.
func (e *Emitter) Close() error { close(e.c); return nil }
// C returns the emitter's output channel.
func (e *Emitter) C() <-chan map[Key]interface{} { return e.c }
// Emit sets a key and value on the emitter's bufferred data.
func (e *Emitter) Emit(key Key, value interface{}) { e.c <- map[Key]interface{}{key: value} }
// Row represents a single row returned from the execution of a statement.
type Row struct {
Name string `json:"name,omitempty"`
Tags map[string]string `json:"tags,omitempty"`
Columns []string `json:"columns"`
Values [][]interface{} `json:"values,omitempty"`
Err error `json:"err,omitempty"`
}
// tagsHash returns a hash of tag key/value pairs.
func (r *Row) tagsHash() uint64 {
h := fnv.New64a()
keys := r.tagsKeys()
for _, k := range keys {
h.Write([]byte(k))
h.Write([]byte(r.Tags[k]))
}
return h.Sum64()
}
// tagKeys returns a sorted list of tag keys.
func (r *Row) tagsKeys() []string {
a := make([]string, len(r.Tags))
for k := range r.Tags {
a = append(a, k)
}
sort.Strings(a)
return a
}
// Rows represents a list of rows that can be sorted consistently by name/tag.
type Rows []*Row
func (p Rows) Len() int { return len(p) }
func (p Rows) Less(i, j int) bool {
// Sort by name first.
if p[i].Name != p[j].Name {
return p[i].Name < p[j].Name
}
// Sort by tag set hash. Tags don't have a meaningful sort order so we
// just compute a hash and sort by that instead. This allows the tests
// to receive rows in a predictable order every time.
return p[i].tagsHash() < p[j].tagsHash()
}
func (p Rows) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// MarshalStrings encodes an array of strings into a byte slice.
func MarshalStrings(a []string) (ret []byte) {
for _, s := range a {
// Create a slice for len+data
b := make([]byte, 2+len(s))
binary.BigEndian.PutUint16(b[0:2], uint16(len(s)))
copy(b[2:], s)
// Append it to the full byte slice.
ret = append(ret, b...)
}
return
}
// UnmarshalStrings decodes a byte slice into an array of strings.
func UnmarshalStrings(b []byte) (ret []string) {
for {
// If there's no more data then exit.
if len(b) == 0 {
return
}
// Decode size + data.
n := binary.BigEndian.Uint16(b[0:2])
ret = append(ret, string(b[2:n+2]))
// Move the byte slice forward and retry.
b = b[n+2:]
}
}