influxdb/tsdb/series_partition.go

938 lines
24 KiB
Go

package tsdb
import (
"context"
"encoding/binary"
"errors"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"sync"
"time"
"github.com/influxdata/influxdb/kit/tracing"
"github.com/influxdata/influxdb/logger"
"github.com/influxdata/influxdb/models"
"github.com/influxdata/influxdb/pkg/fs"
"github.com/influxdata/influxdb/pkg/rhh"
"github.com/prometheus/client_golang/prometheus"
"go.uber.org/zap"
)
var (
ErrSeriesPartitionClosed = errors.New("tsdb: series partition closed")
ErrSeriesPartitionCompactionCancelled = errors.New("tsdb: series partition compaction cancelled")
)
// DefaultSeriesPartitionCompactThreshold is the number of series IDs to hold in the in-memory
// series map before compacting and rebuilding the on-disk representation.
const DefaultSeriesPartitionCompactThreshold = 1 << 17 // 128K
// SeriesPartition represents a subset of series file data.
type SeriesPartition struct {
mu sync.RWMutex
wg sync.WaitGroup
id int
path string
closed bool
closing chan struct{}
once sync.Once
segments []*SeriesSegment
index *SeriesIndex
seq uint64 // series id sequence
compacting bool
compactionsDisabled int
CompactThreshold int
LargeWriteThreshold int
tracker *seriesPartitionTracker
Logger *zap.Logger
}
// NewSeriesPartition returns a new instance of SeriesPartition.
func NewSeriesPartition(id int, path string) *SeriesPartition {
p := &SeriesPartition{
id: id,
path: path,
closing: make(chan struct{}),
CompactThreshold: DefaultSeriesPartitionCompactThreshold,
LargeWriteThreshold: DefaultLargeSeriesWriteThreshold,
tracker: newSeriesPartitionTracker(newSeriesFileMetrics(nil), nil),
Logger: zap.NewNop(),
seq: uint64(id) + 1,
}
p.index = NewSeriesIndex(p.IndexPath())
return p
}
// Open memory maps the data file at the partition's path.
func (p *SeriesPartition) Open() error {
if p.closed {
return errors.New("tsdb: cannot reopen series partition")
}
// Create path if it doesn't exist.
if err := os.MkdirAll(filepath.Join(p.path), 0777); err != nil {
return err
}
// Open components.
if err := func() (err error) {
if err := p.openSegments(); err != nil {
return err
}
// Init last segment for writes.
if err := p.activeSegment().InitForWrite(); err != nil {
return err
}
if err := p.index.Open(); err != nil {
return err
} else if p.index.Recover(p.segments); err != nil {
return err
}
return nil
}(); err != nil {
p.Close()
return err
}
p.tracker.SetSeries(p.index.Count()) // Set series count metric.
p.tracker.SetDiskSize(p.DiskSize()) // Set on-disk size metric.
return nil
}
func (p *SeriesPartition) openSegments() error {
fis, err := ioutil.ReadDir(p.path)
if err != nil {
return err
}
for _, fi := range fis {
segmentID, err := ParseSeriesSegmentFilename(fi.Name())
if err != nil {
continue
}
segment := NewSeriesSegment(segmentID, filepath.Join(p.path, fi.Name()))
if err := segment.Open(); err != nil {
return err
}
p.segments = append(p.segments, segment)
}
// Find max series id by searching segments in reverse order.
for i := len(p.segments) - 1; i >= 0; i-- {
if seq := p.segments[i].MaxSeriesID(); seq.RawID() >= p.seq {
// Reset our sequence num to the next one to assign
p.seq = seq.RawID() + SeriesFilePartitionN
break
}
}
// Create initial segment if none exist.
if len(p.segments) == 0 {
segment, err := CreateSeriesSegment(0, filepath.Join(p.path, "0000"))
if err != nil {
return err
}
p.segments = append(p.segments, segment)
}
p.tracker.SetSegments(uint64(len(p.segments)))
return nil
}
// Close unmaps the data files.
func (p *SeriesPartition) Close() (err error) {
p.once.Do(func() { close(p.closing) })
p.wg.Wait()
p.mu.Lock()
defer p.mu.Unlock()
p.closed = true
for _, s := range p.segments {
if e := s.Close(); e != nil && err == nil {
err = e
}
}
p.segments = nil
if p.index != nil {
if e := p.index.Close(); e != nil && err == nil {
err = e
}
}
p.index = nil
return err
}
// ID returns the partition id.
func (p *SeriesPartition) ID() int { return p.id }
// Path returns the path to the partition.
func (p *SeriesPartition) Path() string { return p.path }
// IndexPath returns the path to the series index.
func (p *SeriesPartition) IndexPath() string { return filepath.Join(p.path, "index") }
// CreateSeriesListIfNotExists creates a list of series in bulk if they don't exist.
// The ids parameter is modified to contain series IDs for all keys belonging to this partition.
// If the type does not match the existing type for the key, a zero id is stored.
func (p *SeriesPartition) CreateSeriesListIfNotExists(collection *SeriesCollection, keyPartitionIDs []int) error {
p.mu.RLock()
if p.closed {
p.mu.RUnlock()
return ErrSeriesPartitionClosed
}
span, ctx := tracing.StartSpanFromContext(context.TODO())
defer span.Finish()
writeRequired := 0
for iter := collection.Iterator(); iter.Next(); {
index := iter.Index()
if keyPartitionIDs[index] != p.id {
continue
}
id := p.index.FindIDBySeriesKey(p.segments, iter.SeriesKey())
if id.IsZero() {
writeRequired++
continue
}
if id.HasType() && id.Type() != iter.Type() {
iter.Invalid(fmt.Sprintf(
"series type mismatch: already %s but got %s",
id.Type(), iter.Type()))
continue
}
collection.SeriesIDs[index] = id.SeriesID()
}
p.mu.RUnlock()
// Exit if all series for this partition already exist.
if writeRequired == 0 {
return nil
}
type keyRange struct {
key []byte
id SeriesIDTyped
offset int64
}
// Preallocate the space we'll need before grabbing the lock.
newKeyRanges := make([]keyRange, 0, writeRequired)
newIDs := make(map[string]SeriesIDTyped, writeRequired)
// Pre-grow index for large writes.
if writeRequired >= p.LargeWriteThreshold {
p.mu.Lock()
p.index.GrowBy(writeRequired)
p.mu.Unlock()
}
// Obtain write lock to create new series.
p.mu.Lock()
defer p.mu.Unlock()
if p.closed {
return ErrSeriesPartitionClosed
}
for iter := collection.Iterator(); iter.Next(); {
index := iter.Index()
// Skip series that don't belong to the partition or have already been created.
if keyPartitionIDs[index] != p.id || !iter.SeriesID().IsZero() {
continue
}
// Re-attempt lookup under write lock. Be sure to double check the type. If the type
// doesn't match what we found, we should not set the ids field for it, but we should
// stop processing the key.
key, typ := iter.SeriesKey(), iter.Type()
// First check the map, then the index.
id := newIDs[string(key)]
if id.IsZero() {
id = p.index.FindIDBySeriesKey(p.segments, key)
}
// If the id is found, we are done processing this key. We should only set the ids slice
// if the type matches.
if !id.IsZero() {
if id.HasType() && id.Type() != typ {
iter.Invalid(fmt.Sprintf(
"series type mismatch: already %s but got %s",
id.Type(), iter.Type()))
continue
}
collection.SeriesIDs[index] = id.SeriesID()
continue
}
// Write to series log and save offset.
id, offset, err := p.insert(key, typ)
if err != nil {
return err
}
// Append new key to be added to hash map after flush.
collection.SeriesIDs[index] = id.SeriesID()
newIDs[string(key)] = id
newKeyRanges = append(newKeyRanges, keyRange{key, id, offset})
}
// Flush active segment writes so we can access data in mmap.
if segment := p.activeSegment(); segment != nil {
if err := segment.Flush(); err != nil {
return err
}
}
// Add keys to hash map(s).
for _, keyRange := range newKeyRanges {
p.index.Insert(keyRange.key, keyRange.id, keyRange.offset)
}
p.tracker.AddSeriesCreated(uint64(len(newKeyRanges))) // Track new series in metric.
p.tracker.AddSeries(uint64(len(newKeyRanges)))
// Check if we've crossed the compaction threshold.
if p.compactionsEnabled() && !p.compacting && p.CompactThreshold != 0 && p.index.InMemCount() >= uint64(p.CompactThreshold) {
p.compacting = true
log, logEnd := logger.NewOperation(ctx, p.Logger, "Series partition compaction", "series_partition_compaction", zap.String("path", p.path))
p.wg.Add(1)
p.tracker.IncCompactionsActive()
go func() {
defer p.wg.Done()
compactor := NewSeriesPartitionCompactor()
compactor.cancel = p.closing
duration, err := compactor.Compact(p)
if err != nil {
p.tracker.IncCompactionErr()
log.Error("series partition compaction failed", zap.Error(err))
} else {
p.tracker.IncCompactionOK(duration)
}
logEnd()
// Clear compaction flag.
p.mu.Lock()
p.compacting = false
p.mu.Unlock()
p.tracker.DecCompactionsActive()
// Disk size may have changed due to compaction.
p.tracker.SetDiskSize(p.DiskSize())
}()
}
return nil
}
// Compacting returns if the SeriesPartition is currently compacting.
func (p *SeriesPartition) Compacting() bool {
p.mu.RLock()
defer p.mu.RUnlock()
return p.compacting
}
// DeleteSeriesID flags a series as permanently deleted.
// If the series is reintroduced later then it must create a new id.
func (p *SeriesPartition) DeleteSeriesID(id SeriesID) error {
p.mu.Lock()
defer p.mu.Unlock()
if p.closed {
return ErrSeriesPartitionClosed
}
// Already tombstoned, ignore.
if p.index.IsDeleted(id) {
return nil
}
// Write tombstone entry. The type is ignored in tombstones.
_, err := p.writeLogEntry(AppendSeriesEntry(nil, SeriesEntryTombstoneFlag, id.WithType(models.Empty), nil))
if err != nil {
return err
}
// Flush active segment write.
if segment := p.activeSegment(); segment != nil {
if err := segment.Flush(); err != nil {
return err
}
}
// Mark tombstone in memory.
p.index.Delete(id)
p.tracker.SubSeries(1)
return nil
}
// IsDeleted returns true if the ID has been deleted before.
func (p *SeriesPartition) IsDeleted(id SeriesID) bool {
p.mu.RLock()
if p.closed {
p.mu.RUnlock()
return false
}
v := p.index.IsDeleted(id)
p.mu.RUnlock()
return v
}
// SeriesKey returns the series key for a given id.
func (p *SeriesPartition) SeriesKey(id SeriesID) []byte {
if id.IsZero() {
return nil
}
p.mu.RLock()
if p.closed {
p.mu.RUnlock()
return nil
}
key := p.seriesKeyByOffset(p.index.FindOffsetByID(id))
p.mu.RUnlock()
return key
}
// Series returns the parsed series name and tags for an offset.
func (p *SeriesPartition) Series(id SeriesID) ([]byte, models.Tags) {
key := p.SeriesKey(id)
if key == nil {
return nil, nil
}
return ParseSeriesKey(key)
}
// FindIDBySeriesKey return the series id for the series key.
func (p *SeriesPartition) FindIDBySeriesKey(key []byte) SeriesID {
return p.FindIDTypedBySeriesKey(key).SeriesID()
}
// FindIDTypedBySeriesKey return the typed series id for the series key.
func (p *SeriesPartition) FindIDTypedBySeriesKey(key []byte) SeriesIDTyped {
p.mu.RLock()
if p.closed {
p.mu.RUnlock()
return SeriesIDTyped{}
}
id := p.index.FindIDBySeriesKey(p.segments, key)
p.mu.RUnlock()
return id
}
// SeriesCount returns the number of series.
func (p *SeriesPartition) SeriesCount() uint64 {
p.mu.RLock()
if p.closed {
p.mu.RUnlock()
return 0
}
n := p.index.Count()
p.mu.RUnlock()
return n
}
// DiskSize returns the number of bytes taken up on disk by the partition.
func (p *SeriesPartition) DiskSize() uint64 {
p.mu.RLock()
defer p.mu.RUnlock()
return p.diskSize()
}
func (p *SeriesPartition) diskSize() uint64 {
totalSize := p.index.OnDiskSize()
for _, segment := range p.segments {
totalSize += uint64(len(segment.Data()))
}
return totalSize
}
func (p *SeriesPartition) DisableCompactions() {
p.mu.Lock()
defer p.mu.Unlock()
p.compactionsDisabled++
}
func (p *SeriesPartition) EnableCompactions() {
p.mu.Lock()
defer p.mu.Unlock()
if p.compactionsEnabled() {
return
}
p.compactionsDisabled--
}
func (p *SeriesPartition) compactionsEnabled() bool {
return p.compactionsDisabled == 0
}
// AppendSeriesIDs returns a list of all series ids.
func (p *SeriesPartition) AppendSeriesIDs(a []SeriesID) []SeriesID {
for _, segment := range p.segments {
a = segment.AppendSeriesIDs(a)
}
return a
}
// activeSegment returns the last segment.
func (p *SeriesPartition) activeSegment() *SeriesSegment {
if len(p.segments) == 0 {
return nil
}
return p.segments[len(p.segments)-1]
}
func (p *SeriesPartition) insert(key []byte, typ models.FieldType) (id SeriesIDTyped, offset int64, err error) {
id = NewSeriesID(p.seq).WithType(typ)
offset, err = p.writeLogEntry(AppendSeriesEntry(nil, SeriesEntryInsertFlag, id, key))
if err != nil {
return SeriesIDTyped{}, 0, err
}
p.seq += SeriesFilePartitionN
return id, offset, nil
}
// writeLogEntry appends an entry to the end of the active segment.
// If there is no more room in the segment then a new segment is added.
func (p *SeriesPartition) writeLogEntry(data []byte) (offset int64, err error) {
segment := p.activeSegment()
if segment == nil || !segment.CanWrite(data) {
if segment, err = p.createSegment(); err != nil {
return 0, err
}
}
return segment.WriteLogEntry(data)
}
// createSegment appends a new segment
func (p *SeriesPartition) createSegment() (*SeriesSegment, error) {
// Close writer for active segment, if one exists.
if segment := p.activeSegment(); segment != nil {
if err := segment.CloseForWrite(); err != nil {
return nil, err
}
}
// Generate a new sequential segment identifier.
var id uint16
if len(p.segments) > 0 {
id = p.segments[len(p.segments)-1].ID() + 1
}
filename := fmt.Sprintf("%04x", id)
// Generate new empty segment.
segment, err := CreateSeriesSegment(id, filepath.Join(p.path, filename))
if err != nil {
return nil, err
}
p.segments = append(p.segments, segment)
// Allow segment to write.
if err := segment.InitForWrite(); err != nil {
return nil, err
}
p.tracker.SetSegments(uint64(len(p.segments)))
p.tracker.SetDiskSize(p.diskSize()) // Disk size will change with new segment.
return segment, nil
}
func (p *SeriesPartition) seriesKeyByOffset(offset int64) []byte {
if offset == 0 {
return nil
}
segmentID, pos := SplitSeriesOffset(offset)
for _, segment := range p.segments {
if segment.ID() != segmentID {
continue
}
key, _ := ReadSeriesKey(segment.Slice(pos + SeriesEntryHeaderSize))
return key
}
return nil
}
type seriesPartitionTracker struct {
metrics *seriesFileMetrics
labels prometheus.Labels
enabled bool
}
func newSeriesPartitionTracker(metrics *seriesFileMetrics, defaultLabels prometheus.Labels) *seriesPartitionTracker {
return &seriesPartitionTracker{
metrics: metrics,
labels: defaultLabels,
enabled: true,
}
}
// Labels returns a copy of labels for use with Series File metrics.
func (t *seriesPartitionTracker) Labels() prometheus.Labels {
l := make(map[string]string, len(t.labels))
for k, v := range t.labels {
l[k] = v
}
return l
}
// AddSeriesCreated increases the number of series created in the partition by n.
func (t *seriesPartitionTracker) AddSeriesCreated(n uint64) {
if !t.enabled {
return
}
labels := t.Labels()
t.metrics.SeriesCreated.With(labels).Add(float64(n))
}
// SetSeries sets the number of series in the partition.
func (t *seriesPartitionTracker) SetSeries(n uint64) {
if !t.enabled {
return
}
labels := t.Labels()
t.metrics.Series.With(labels).Set(float64(n))
}
// AddSeries increases the number of series in the partition by n.
func (t *seriesPartitionTracker) AddSeries(n uint64) {
if !t.enabled {
return
}
labels := t.Labels()
t.metrics.Series.With(labels).Add(float64(n))
}
// SubSeries decreases the number of series in the partition by n.
func (t *seriesPartitionTracker) SubSeries(n uint64) {
if !t.enabled {
return
}
labels := t.Labels()
t.metrics.Series.With(labels).Sub(float64(n))
}
// SetDiskSize sets the number of bytes used by files for in partition.
func (t *seriesPartitionTracker) SetDiskSize(sz uint64) {
if !t.enabled {
return
}
labels := t.Labels()
t.metrics.DiskSize.With(labels).Set(float64(sz))
}
// SetSegments sets the number of segments files for the partition.
func (t *seriesPartitionTracker) SetSegments(n uint64) {
if !t.enabled {
return
}
labels := t.Labels()
t.metrics.Segments.With(labels).Set(float64(n))
}
// IncCompactionsActive increments the number of active compactions for the
// components of a partition (index and segments).
func (t *seriesPartitionTracker) IncCompactionsActive() {
if !t.enabled {
return
}
labels := t.Labels()
labels["component"] = "index" // TODO(edd): when we add segment compactions we will add a new label value.
t.metrics.CompactionsActive.With(labels).Inc()
}
// DecCompactionsActive decrements the number of active compactions for the
// components of a partition (index and segments).
func (t *seriesPartitionTracker) DecCompactionsActive() {
if !t.enabled {
return
}
labels := t.Labels()
labels["component"] = "index" // TODO(edd): when we add segment compactions we will add a new label value.
t.metrics.CompactionsActive.With(labels).Dec()
}
// incCompactions increments the number of compactions for the partition.
// Callers should use IncCompactionOK and IncCompactionErr.
func (t *seriesPartitionTracker) incCompactions(status string, duration time.Duration) {
if !t.enabled {
return
}
if duration > 0 {
labels := t.Labels()
labels["component"] = "index"
t.metrics.CompactionDuration.With(labels).Observe(duration.Seconds())
}
labels := t.Labels()
labels["status"] = status
t.metrics.Compactions.With(labels).Inc()
}
// IncCompactionOK increments the number of successful compactions for the partition.
func (t *seriesPartitionTracker) IncCompactionOK(duration time.Duration) {
t.incCompactions("ok", duration)
}
// IncCompactionErr increments the number of failed compactions for the partition.
func (t *seriesPartitionTracker) IncCompactionErr() { t.incCompactions("error", 0) }
// SeriesPartitionCompactor represents an object reindexes a series partition and optionally compacts segments.
type SeriesPartitionCompactor struct {
cancel <-chan struct{}
}
// NewSeriesPartitionCompactor returns a new instance of SeriesPartitionCompactor.
func NewSeriesPartitionCompactor() *SeriesPartitionCompactor {
return &SeriesPartitionCompactor{}
}
// Compact rebuilds the series partition index.
func (c *SeriesPartitionCompactor) Compact(p *SeriesPartition) (time.Duration, error) {
// Snapshot the partitions and index so we can check tombstones and replay at the end under lock.
p.mu.RLock()
segments := CloneSeriesSegments(p.segments)
index := p.index.Clone()
seriesN := p.index.Count()
p.mu.RUnlock()
now := time.Now()
// Compact index to a temporary location.
indexPath := index.path + ".compacting"
if err := c.compactIndexTo(index, seriesN, segments, indexPath); err != nil {
return 0, err
}
duration := time.Since(now)
// Swap compacted index under lock & replay since compaction.
if err := func() error {
p.mu.Lock()
defer p.mu.Unlock()
// Reopen index with new file.
if err := p.index.Close(); err != nil {
return err
} else if err := fs.RenameFileWithReplacement(indexPath, index.path); err != nil {
return err
} else if err := p.index.Open(); err != nil {
return err
}
// Replay new entries.
if err := p.index.Recover(p.segments); err != nil {
return err
}
return nil
}(); err != nil {
return 0, err
}
return duration, nil
}
func (c *SeriesPartitionCompactor) compactIndexTo(index *SeriesIndex, seriesN uint64, segments []*SeriesSegment, path string) error {
hdr := NewSeriesIndexHeader()
hdr.Count = seriesN
hdr.Capacity = pow2((int64(hdr.Count) * 100) / SeriesIndexLoadFactor)
// Allocate space for maps.
keyIDMap := make([]byte, (hdr.Capacity * SeriesIndexElemSize))
idOffsetMap := make([]byte, (hdr.Capacity * SeriesIndexElemSize))
// Reindex all partitions.
var entryN int
for _, segment := range segments {
errDone := errors.New("done")
if err := segment.ForEachEntry(func(flag uint8, id SeriesIDTyped, offset int64, key []byte) error {
// Make sure we don't go past the offset where the compaction began.
if offset > index.maxOffset {
return errDone
}
// Check for cancellation periodically.
if entryN++; entryN%1000 == 0 {
select {
case <-c.cancel:
return ErrSeriesPartitionCompactionCancelled
default:
}
}
// Only process insert entries.
switch flag {
case SeriesEntryInsertFlag: // fallthrough
case SeriesEntryTombstoneFlag:
return nil
default:
return fmt.Errorf("unexpected series partition log entry flag: %d", flag)
}
untypedID := id.SeriesID()
// Save max series identifier processed.
hdr.MaxSeriesID, hdr.MaxOffset = untypedID, offset
// Ignore entry if tombstoned.
if index.IsDeleted(untypedID) {
return nil
}
// Insert into maps.
c.insertIDOffsetMap(idOffsetMap, hdr.Capacity, untypedID, offset)
return c.insertKeyIDMap(keyIDMap, hdr.Capacity, segments, key, offset, id)
}); err == errDone {
break
} else if err != nil {
return err
}
}
// Open file handler.
f, err := fs.CreateFile(path)
if err != nil {
return err
}
defer f.Close()
// Calculate map positions.
hdr.KeyIDMap.Offset, hdr.KeyIDMap.Size = SeriesIndexHeaderSize, int64(len(keyIDMap))
hdr.IDOffsetMap.Offset, hdr.IDOffsetMap.Size = hdr.KeyIDMap.Offset+hdr.KeyIDMap.Size, int64(len(idOffsetMap))
// Write header.
if _, err := hdr.WriteTo(f); err != nil {
return err
}
// Write maps.
if _, err := f.Write(keyIDMap); err != nil {
return err
} else if _, err := f.Write(idOffsetMap); err != nil {
return err
}
// Sync & close.
if err := f.Sync(); err != nil {
return err
} else if err := f.Close(); err != nil {
return err
}
return nil
}
func (c *SeriesPartitionCompactor) insertKeyIDMap(dst []byte, capacity int64, segments []*SeriesSegment, key []byte, offset int64, id SeriesIDTyped) error {
mask := capacity - 1
hash := rhh.HashKey(key)
// Continue searching until we find an empty slot or lower probe distance.
for i, dist, pos := int64(0), int64(0), hash&mask; ; i, dist, pos = i+1, dist+1, (pos+1)&mask {
assert(i <= capacity, "key/id map full")
elem := dst[(pos * SeriesIndexElemSize):]
// If empty slot found or matching offset, insert and exit.
elemOffset := int64(binary.BigEndian.Uint64(elem[:SeriesOffsetSize]))
elemID := NewSeriesIDTyped(binary.BigEndian.Uint64(elem[SeriesOffsetSize:]))
if elemOffset == 0 || elemOffset == offset {
binary.BigEndian.PutUint64(elem[:SeriesOffsetSize], uint64(offset))
binary.BigEndian.PutUint64(elem[SeriesOffsetSize:], id.RawID())
return nil
}
// Read key at position & hash.
elemKey := ReadSeriesKeyFromSegments(segments, elemOffset+SeriesEntryHeaderSize)
elemHash := rhh.HashKey(elemKey)
// If the existing elem has probed less than us, then swap places with
// existing elem, and keep going to find another slot for that elem.
if d := rhh.Dist(elemHash, pos, capacity); d < dist {
// Insert current values.
binary.BigEndian.PutUint64(elem[:SeriesOffsetSize], uint64(offset))
binary.BigEndian.PutUint64(elem[SeriesOffsetSize:], id.RawID())
// Swap with values in that position.
hash, key, offset, id = elemHash, elemKey, elemOffset, elemID
// Update current distance.
dist = d
}
}
}
func (c *SeriesPartitionCompactor) insertIDOffsetMap(dst []byte, capacity int64, id SeriesID, offset int64) {
mask := capacity - 1
hash := rhh.HashUint64(id.RawID())
// Continue searching until we find an empty slot or lower probe distance.
for i, dist, pos := int64(0), int64(0), hash&mask; ; i, dist, pos = i+1, dist+1, (pos+1)&mask {
assert(i <= capacity, "id/offset map full")
elem := dst[(pos * SeriesIndexElemSize):]
// If empty slot found or matching id, insert and exit.
elemID := NewSeriesID(binary.BigEndian.Uint64(elem[:SeriesIDSize]))
elemOffset := int64(binary.BigEndian.Uint64(elem[SeriesIDSize:]))
if elemOffset == 0 || elemOffset == offset {
binary.BigEndian.PutUint64(elem[:SeriesIDSize], id.RawID())
binary.BigEndian.PutUint64(elem[SeriesIDSize:], uint64(offset))
return
}
// Hash key.
elemHash := rhh.HashUint64(elemID.RawID())
// If the existing elem has probed less than us, then swap places with
// existing elem, and keep going to find another slot for that elem.
if d := rhh.Dist(elemHash, pos, capacity); d < dist {
// Insert current values.
binary.BigEndian.PutUint64(elem[:SeriesIDSize], id.RawID())
binary.BigEndian.PutUint64(elem[SeriesIDSize:], uint64(offset))
// Swap with values in that position.
hash, id, offset = elemHash, elemID, elemOffset
// Update current distance.
dist = d
}
}
}
// pow2 returns the number that is the next highest power of 2.
// Returns v if it is a power of 2.
func pow2(v int64) int64 {
for i := int64(2); i < 1<<62; i *= 2 {
if i >= v {
return i
}
}
panic("unreachable")
}