influxdb/influxql/ast.go

3892 lines
104 KiB
Go

package influxql
import (
"bytes"
"errors"
"fmt"
"regexp"
"sort"
"strconv"
"strings"
"time"
"github.com/gogo/protobuf/proto"
"github.com/influxdata/influxdb/influxql/internal"
)
// DataType represents the primitive data types available in InfluxQL.
type DataType int
const (
// Unknown primitive data type.
Unknown DataType = 0
// Float means the data type is a float
Float = 1
// Integer means the data type is a integer
Integer = 2
// String means the data type is a string of text.
String = 3
// Boolean means the data type is a boolean.
Boolean = 4
// Time means the data type is a time.
Time = 5
// Duration means the data type is a duration of time.
Duration = 6
)
// InspectDataType returns the data type of a given value.
func InspectDataType(v interface{}) DataType {
switch v.(type) {
case float64:
return Float
case int64, int32, int:
return Integer
case string:
return String
case bool:
return Boolean
case time.Time:
return Time
case time.Duration:
return Duration
default:
return Unknown
}
}
func InspectDataTypes(a []interface{}) []DataType {
dta := make([]DataType, len(a))
for i, v := range a {
dta[i] = InspectDataType(v)
}
return dta
}
func (d DataType) String() string {
switch d {
case Float:
return "float"
case Integer:
return "integer"
case String:
return "string"
case Boolean:
return "boolean"
case Time:
return "time"
case Duration:
return "duration"
}
return "unknown"
}
// Node represents a node in the InfluxDB abstract syntax tree.
type Node interface {
node()
String() string
}
func (*Query) node() {}
func (Statements) node() {}
func (*AlterRetentionPolicyStatement) node() {}
func (*CreateContinuousQueryStatement) node() {}
func (*CreateDatabaseStatement) node() {}
func (*CreateRetentionPolicyStatement) node() {}
func (*CreateSubscriptionStatement) node() {}
func (*CreateUserStatement) node() {}
func (*Distinct) node() {}
func (*DeleteStatement) node() {}
func (*DropContinuousQueryStatement) node() {}
func (*DropDatabaseStatement) node() {}
func (*DropMeasurementStatement) node() {}
func (*DropRetentionPolicyStatement) node() {}
func (*DropSeriesStatement) node() {}
func (*DropServerStatement) node() {}
func (*DropSubscriptionStatement) node() {}
func (*DropUserStatement) node() {}
func (*GrantStatement) node() {}
func (*GrantAdminStatement) node() {}
func (*RevokeStatement) node() {}
func (*RevokeAdminStatement) node() {}
func (*SelectStatement) node() {}
func (*SetPasswordUserStatement) node() {}
func (*ShowContinuousQueriesStatement) node() {}
func (*ShowGrantsForUserStatement) node() {}
func (*ShowServersStatement) node() {}
func (*ShowDatabasesStatement) node() {}
func (*ShowFieldKeysStatement) node() {}
func (*ShowRetentionPoliciesStatement) node() {}
func (*ShowMeasurementsStatement) node() {}
func (*ShowSeriesStatement) node() {}
func (*ShowShardGroupsStatement) node() {}
func (*ShowShardsStatement) node() {}
func (*ShowStatsStatement) node() {}
func (*ShowSubscriptionsStatement) node() {}
func (*ShowDiagnosticsStatement) node() {}
func (*ShowTagKeysStatement) node() {}
func (*ShowTagValuesStatement) node() {}
func (*ShowUsersStatement) node() {}
func (*BinaryExpr) node() {}
func (*BooleanLiteral) node() {}
func (*Call) node() {}
func (*Dimension) node() {}
func (Dimensions) node() {}
func (*DurationLiteral) node() {}
func (*Field) node() {}
func (Fields) node() {}
func (*Measurement) node() {}
func (Measurements) node() {}
func (*nilLiteral) node() {}
func (*NumberLiteral) node() {}
func (*ParenExpr) node() {}
func (*RegexLiteral) node() {}
func (*SortField) node() {}
func (SortFields) node() {}
func (Sources) node() {}
func (*StringLiteral) node() {}
func (*Target) node() {}
func (*TimeLiteral) node() {}
func (*VarRef) node() {}
func (*Wildcard) node() {}
// Query represents a collection of ordered statements.
type Query struct {
Statements Statements
}
// String returns a string representation of the query.
func (q *Query) String() string { return q.Statements.String() }
// Statements represents a list of statements.
type Statements []Statement
// String returns a string representation of the statements.
func (a Statements) String() string {
var str []string
for _, stmt := range a {
str = append(str, stmt.String())
}
return strings.Join(str, ";\n")
}
// Statement represents a single command in InfluxQL.
type Statement interface {
Node
stmt()
RequiredPrivileges() ExecutionPrivileges
}
// HasDefaultDatabase provides an interface to get the default database from a Statement.
type HasDefaultDatabase interface {
Node
stmt()
DefaultDatabase() string
}
// ExecutionPrivilege is a privilege required for a user to execute
// a statement on a database or resource.
type ExecutionPrivilege struct {
// Admin privilege required.
Admin bool
// Name of the database.
Name string
// Database privilege required.
Privilege Privilege
}
// ExecutionPrivileges is a list of privileges required to execute a statement.
type ExecutionPrivileges []ExecutionPrivilege
func (*AlterRetentionPolicyStatement) stmt() {}
func (*CreateContinuousQueryStatement) stmt() {}
func (*CreateDatabaseStatement) stmt() {}
func (*CreateRetentionPolicyStatement) stmt() {}
func (*CreateSubscriptionStatement) stmt() {}
func (*CreateUserStatement) stmt() {}
func (*DeleteStatement) stmt() {}
func (*DropContinuousQueryStatement) stmt() {}
func (*DropDatabaseStatement) stmt() {}
func (*DropMeasurementStatement) stmt() {}
func (*DropRetentionPolicyStatement) stmt() {}
func (*DropSeriesStatement) stmt() {}
func (*DropServerStatement) stmt() {}
func (*DropSubscriptionStatement) stmt() {}
func (*DropUserStatement) stmt() {}
func (*GrantStatement) stmt() {}
func (*GrantAdminStatement) stmt() {}
func (*ShowContinuousQueriesStatement) stmt() {}
func (*ShowGrantsForUserStatement) stmt() {}
func (*ShowServersStatement) stmt() {}
func (*ShowDatabasesStatement) stmt() {}
func (*ShowFieldKeysStatement) stmt() {}
func (*ShowMeasurementsStatement) stmt() {}
func (*ShowRetentionPoliciesStatement) stmt() {}
func (*ShowSeriesStatement) stmt() {}
func (*ShowShardGroupsStatement) stmt() {}
func (*ShowShardsStatement) stmt() {}
func (*ShowStatsStatement) stmt() {}
func (*ShowSubscriptionsStatement) stmt() {}
func (*ShowDiagnosticsStatement) stmt() {}
func (*ShowTagKeysStatement) stmt() {}
func (*ShowTagValuesStatement) stmt() {}
func (*ShowUsersStatement) stmt() {}
func (*RevokeStatement) stmt() {}
func (*RevokeAdminStatement) stmt() {}
func (*SelectStatement) stmt() {}
func (*SetPasswordUserStatement) stmt() {}
// Expr represents an expression that can be evaluated to a value.
type Expr interface {
Node
expr()
}
func (*BinaryExpr) expr() {}
func (*BooleanLiteral) expr() {}
func (*Call) expr() {}
func (*Distinct) expr() {}
func (*DurationLiteral) expr() {}
func (*nilLiteral) expr() {}
func (*NumberLiteral) expr() {}
func (*ParenExpr) expr() {}
func (*RegexLiteral) expr() {}
func (*StringLiteral) expr() {}
func (*TimeLiteral) expr() {}
func (*VarRef) expr() {}
func (*Wildcard) expr() {}
// Literal represents a static literal.
type Literal interface {
Expr
literal()
}
func (*BooleanLiteral) literal() {}
func (*DurationLiteral) literal() {}
func (*nilLiteral) literal() {}
func (*NumberLiteral) literal() {}
func (*RegexLiteral) literal() {}
func (*StringLiteral) literal() {}
func (*TimeLiteral) literal() {}
// Source represents a source of data for a statement.
type Source interface {
Node
source()
}
func (*Measurement) source() {}
// Sources represents a list of sources.
type Sources []Source
// Names returns a list of source names.
func (a Sources) Names() []string {
names := make([]string, 0, len(a))
for _, s := range a {
switch s := s.(type) {
case *Measurement:
names = append(names, s.Name)
}
}
return names
}
// HasSystemSource returns true if any of the sources are internal, system sources.
func (a Sources) HasSystemSource() bool {
for _, s := range a {
switch s := s.(type) {
case *Measurement:
if IsSystemName(s.Name) {
return true
}
}
}
return false
}
// String returns a string representation of a Sources array.
func (a Sources) String() string {
var buf bytes.Buffer
ubound := len(a) - 1
for i, src := range a {
_, _ = buf.WriteString(src.String())
if i < ubound {
_, _ = buf.WriteString(", ")
}
}
return buf.String()
}
// MarshalBinary encodes a list of sources to a binary format.
func (a Sources) MarshalBinary() ([]byte, error) {
var pb internal.Measurements
pb.Items = make([]*internal.Measurement, len(a))
for i, source := range a {
pb.Items[i] = encodeMeasurement(source.(*Measurement))
}
return proto.Marshal(&pb)
}
// UnmarshalBinary decodes binary data into a list of sources.
func (a *Sources) UnmarshalBinary(buf []byte) error {
var pb internal.Measurements
if err := proto.Unmarshal(buf, &pb); err != nil {
return err
}
*a = make(Sources, len(pb.GetItems()))
for i := range pb.GetItems() {
mm, err := decodeMeasurement(pb.GetItems()[i])
if err != nil {
return err
}
(*a)[i] = mm
}
return nil
}
// IsSystemName returns true if name is an internal system name.
// System names are prefixed with an underscore.
func IsSystemName(name string) bool { return strings.HasPrefix(name, "_") }
// SortField represents a field to sort results by.
type SortField struct {
// Name of the field
Name string
// Sort order.
Ascending bool
}
// String returns a string representation of a sort field
func (field *SortField) String() string {
var buf bytes.Buffer
if field.Name != "" {
_, _ = buf.WriteString(field.Name)
_, _ = buf.WriteString(" ")
}
if field.Ascending {
_, _ = buf.WriteString("ASC")
} else {
_, _ = buf.WriteString("DESC")
}
return buf.String()
}
// SortFields represents an ordered list of ORDER BY fields
type SortFields []*SortField
// String returns a string representation of sort fields
func (a SortFields) String() string {
fields := make([]string, 0, len(a))
for _, field := range a {
fields = append(fields, field.String())
}
return strings.Join(fields, ", ")
}
// CreateDatabaseStatement represents a command for creating a new database.
type CreateDatabaseStatement struct {
// Name of the database to be created.
Name string
// IfNotExists indicates whether to return without error if the database
// already exists.
IfNotExists bool
// RetentionPolicyCreate indicates whether the user explicitly wants to create a retention policy
RetentionPolicyCreate bool
// RetentionPolicyDuration indicates retention duration for the new database
RetentionPolicyDuration time.Duration
// RetentionPolicyReplication indicates retention replication for the new database
RetentionPolicyReplication int
// RetentionPolicyName indicates retention name for the new database
RetentionPolicyName string
}
// String returns a string representation of the create database statement.
func (s *CreateDatabaseStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE DATABASE ")
if s.IfNotExists {
_, _ = buf.WriteString("IF NOT EXISTS ")
}
_, _ = buf.WriteString(QuoteIdent(s.Name))
if s.RetentionPolicyCreate {
_, _ = buf.WriteString(" WITH DURATION ")
_, _ = buf.WriteString(s.RetentionPolicyDuration.String())
_, _ = buf.WriteString(" REPLICATION ")
_, _ = buf.WriteString(strconv.Itoa(s.RetentionPolicyReplication))
_, _ = buf.WriteString(" NAME ")
_, _ = buf.WriteString(QuoteIdent(s.RetentionPolicyName))
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a CreateDatabaseStatement.
func (s *CreateDatabaseStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// DropDatabaseStatement represents a command to drop a database.
type DropDatabaseStatement struct {
// Name of the database to be dropped.
Name string
// IfExists indicates whether to return without error if the database
// does not exists.
IfExists bool
}
// String returns a string representation of the drop database statement.
func (s *DropDatabaseStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP DATABASE ")
if s.IfExists {
_, _ = buf.WriteString("IF EXISTS ")
}
_, _ = buf.WriteString(QuoteIdent(s.Name))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DropDatabaseStatement.
func (s *DropDatabaseStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// DropRetentionPolicyStatement represents a command to drop a retention policy from a database.
type DropRetentionPolicyStatement struct {
// Name of the policy to drop.
Name string
// Name of the database to drop the policy from.
Database string
}
// String returns a string representation of the drop retention policy statement.
func (s *DropRetentionPolicyStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP RETENTION POLICY ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DropRetentionPolicyStatement.
func (s *DropRetentionPolicyStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: s.Database, Privilege: WritePrivilege}}
}
// CreateUserStatement represents a command for creating a new user.
type CreateUserStatement struct {
// Name of the user to be created.
Name string
// User's password.
Password string
// User's admin privilege.
Admin bool
}
// String returns a string representation of the create user statement.
func (s *CreateUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE USER ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" WITH PASSWORD ")
_, _ = buf.WriteString("[REDACTED]")
if s.Admin {
_, _ = buf.WriteString(" WITH ALL PRIVILEGES")
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a CreateUserStatement.
func (s *CreateUserStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// DropUserStatement represents a command for dropping a user.
type DropUserStatement struct {
// Name of the user to drop.
Name string
}
// String returns a string representation of the drop user statement.
func (s *DropUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP USER ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a DropUserStatement.
func (s *DropUserStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// Privilege is a type of action a user can be granted the right to use.
type Privilege int
const (
// NoPrivileges means no privileges required / granted / revoked.
NoPrivileges Privilege = iota
// ReadPrivilege means read privilege required / granted / revoked.
ReadPrivilege
// WritePrivilege means write privilege required / granted / revoked.
WritePrivilege
// AllPrivileges means all privileges required / granted / revoked.
AllPrivileges
)
// NewPrivilege returns an initialized *Privilege.
func NewPrivilege(p Privilege) *Privilege { return &p }
// String returns a string representation of a Privilege.
func (p Privilege) String() string {
switch p {
case NoPrivileges:
return "NO PRIVILEGES"
case ReadPrivilege:
return "READ"
case WritePrivilege:
return "WRITE"
case AllPrivileges:
return "ALL PRIVILEGES"
}
return ""
}
// GrantStatement represents a command for granting a privilege.
type GrantStatement struct {
// The privilege to be granted.
Privilege Privilege
// Database to grant the privilege to.
On string
// Who to grant the privilege to.
User string
}
// String returns a string representation of the grant statement.
func (s *GrantStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("GRANT ")
_, _ = buf.WriteString(s.Privilege.String())
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.On))
_, _ = buf.WriteString(" TO ")
_, _ = buf.WriteString(QuoteIdent(s.User))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a GrantStatement.
func (s *GrantStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// GrantAdminStatement represents a command for granting admin privilege.
type GrantAdminStatement struct {
// Who to grant the privilege to.
User string
}
// String returns a string representation of the grant admin statement.
func (s *GrantAdminStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("GRANT ALL PRIVILEGES TO ")
_, _ = buf.WriteString(QuoteIdent(s.User))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a GrantAdminStatement.
func (s *GrantAdminStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// SetPasswordUserStatement represents a command for changing user password.
type SetPasswordUserStatement struct {
// Plain Password
Password string
// Who to grant the privilege to.
Name string
}
// String returns a string representation of the set password statement.
func (s *SetPasswordUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SET PASSWORD FOR ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" = ")
_, _ = buf.WriteString("[REDACTED]")
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a SetPasswordUserStatement.
func (s *SetPasswordUserStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// RevokeStatement represents a command to revoke a privilege from a user.
type RevokeStatement struct {
// The privilege to be revoked.
Privilege Privilege
// Database to revoke the privilege from.
On string
// Who to revoke privilege from.
User string
}
// String returns a string representation of the revoke statement.
func (s *RevokeStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("REVOKE ")
_, _ = buf.WriteString(s.Privilege.String())
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.On))
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(QuoteIdent(s.User))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a RevokeStatement.
func (s *RevokeStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// RevokeAdminStatement represents a command to revoke admin privilege from a user.
type RevokeAdminStatement struct {
// Who to revoke admin privilege from.
User string
}
// String returns a string representation of the revoke admin statement.
func (s *RevokeAdminStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("REVOKE ALL PRIVILEGES FROM ")
_, _ = buf.WriteString(QuoteIdent(s.User))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a RevokeAdminStatement.
func (s *RevokeAdminStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// CreateRetentionPolicyStatement represents a command to create a retention policy.
type CreateRetentionPolicyStatement struct {
// Name of policy to create.
Name string
// Name of database this policy belongs to.
Database string
// Duration data written to this policy will be retained.
Duration time.Duration
// Replication factor for data written to this policy.
Replication int
// Should this policy be set as default for the database?
Default bool
}
// String returns a string representation of the create retention policy.
func (s *CreateRetentionPolicyStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE RETENTION POLICY ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
_, _ = buf.WriteString(" DURATION ")
_, _ = buf.WriteString(FormatDuration(s.Duration))
_, _ = buf.WriteString(" REPLICATION ")
_, _ = buf.WriteString(strconv.Itoa(s.Replication))
if s.Default {
_, _ = buf.WriteString(" DEFAULT")
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a CreateRetentionPolicyStatement.
func (s *CreateRetentionPolicyStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// AlterRetentionPolicyStatement represents a command to alter an existing retention policy.
type AlterRetentionPolicyStatement struct {
// Name of policy to alter.
Name string
// Name of the database this policy belongs to.
Database string
// Duration data written to this policy will be retained.
Duration *time.Duration
// Replication factor for data written to this policy.
Replication *int
// Should this policy be set as defalut for the database?
Default bool
}
// String returns a string representation of the alter retention policy statement.
func (s *AlterRetentionPolicyStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("ALTER RETENTION POLICY ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
if s.Duration != nil {
_, _ = buf.WriteString(" DURATION ")
_, _ = buf.WriteString(FormatDuration(*s.Duration))
}
if s.Replication != nil {
_, _ = buf.WriteString(" REPLICATION ")
_, _ = buf.WriteString(strconv.Itoa(*s.Replication))
}
if s.Default {
_, _ = buf.WriteString(" DEFAULT")
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute an AlterRetentionPolicyStatement.
func (s *AlterRetentionPolicyStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// FillOption represents different options for aggregate windows.
type FillOption int
const (
// NullFill means that empty aggregate windows will just have null values.
NullFill FillOption = iota
// NoFill means that empty aggregate windows will be purged from the result.
NoFill
// NumberFill means that empty aggregate windows will be filled with the given number
NumberFill
// PreviousFill means that empty aggregate windows will be filled with whatever the previous aggregate window had
PreviousFill
)
// SelectStatement represents a command for extracting data from the database.
type SelectStatement struct {
// Expressions returned from the selection.
Fields Fields
// Target (destination) for the result of the select.
Target *Target
// Expressions used for grouping the selection.
Dimensions Dimensions
// Data sources that fields are extracted from.
Sources Sources
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned. Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
// Maxiumum number of series to be returned. Unlimited if zero.
SLimit int
// Returns series starting at an offset from the first one.
SOffset int
// memoize the group by interval
groupByInterval time.Duration
// if it's a query for raw data values (i.e. not an aggregate)
IsRawQuery bool
// What fill option the select statement uses, if any
Fill FillOption
// The value to fill empty aggregate buckets with, if any
FillValue interface{}
// Removes the "time" column from the output.
OmitTime bool
// Removes duplicate rows from raw queries.
Dedupe bool
}
// HasDerivative returns true if one of the function calls in the statement is a
// derivative aggregate
func (s *SelectStatement) HasDerivative() bool {
for _, f := range s.FunctionCalls() {
if f.Name == "derivative" || f.Name == "non_negative_derivative" {
return true
}
}
return false
}
// IsSimpleDerivative return true if one of the function call is a derivative function with a
// variable ref as the first arg
func (s *SelectStatement) IsSimpleDerivative() bool {
for _, f := range s.FunctionCalls() {
if f.Name == "derivative" || f.Name == "non_negative_derivative" {
// it's nested if the first argument is an aggregate function
if _, ok := f.Args[0].(*VarRef); ok {
return true
}
}
}
return false
}
// HasSimpleCount return true if one of the function calls is a count function with a
// variable ref as the first arg
func (s *SelectStatement) HasSimpleCount() bool {
// recursively check for a simple count(varref) function
var hasCount func(f *Call) bool
hasCount = func(f *Call) bool {
if f.Name == "count" {
// it's nested if the first argument is an aggregate function
if _, ok := f.Args[0].(*VarRef); ok {
return true
}
} else {
for _, arg := range f.Args {
if child, ok := arg.(*Call); ok {
return hasCount(child)
}
}
}
return false
}
for _, f := range s.FunctionCalls() {
if hasCount(f) {
return true
}
}
return false
}
// TimeAscending returns true if the time field is sorted in chronological order.
func (s *SelectStatement) TimeAscending() bool {
return len(s.SortFields) == 0 || s.SortFields[0].Ascending
}
// Clone returns a deep copy of the statement.
func (s *SelectStatement) Clone() *SelectStatement {
clone := &SelectStatement{
Fields: make(Fields, 0, len(s.Fields)),
Dimensions: make(Dimensions, 0, len(s.Dimensions)),
Sources: cloneSources(s.Sources),
SortFields: make(SortFields, 0, len(s.SortFields)),
Condition: CloneExpr(s.Condition),
Limit: s.Limit,
Offset: s.Offset,
SLimit: s.SLimit,
SOffset: s.SOffset,
Fill: s.Fill,
FillValue: s.FillValue,
IsRawQuery: s.IsRawQuery,
}
if s.Target != nil {
clone.Target = &Target{
Measurement: &Measurement{
Database: s.Target.Measurement.Database,
RetentionPolicy: s.Target.Measurement.RetentionPolicy,
Name: s.Target.Measurement.Name,
Regex: CloneRegexLiteral(s.Target.Measurement.Regex),
},
}
}
for _, f := range s.Fields {
clone.Fields = append(clone.Fields, &Field{Expr: CloneExpr(f.Expr), Alias: f.Alias})
}
for _, d := range s.Dimensions {
clone.Dimensions = append(clone.Dimensions, &Dimension{Expr: CloneExpr(d.Expr)})
}
for _, f := range s.SortFields {
clone.SortFields = append(clone.SortFields, &SortField{Name: f.Name, Ascending: f.Ascending})
}
return clone
}
func cloneSources(sources Sources) Sources {
clone := make(Sources, 0, len(sources))
for _, s := range sources {
clone = append(clone, cloneSource(s))
}
return clone
}
func cloneSource(s Source) Source {
if s == nil {
return nil
}
switch s := s.(type) {
case *Measurement:
m := &Measurement{Database: s.Database, RetentionPolicy: s.RetentionPolicy, Name: s.Name}
if s.Regex != nil {
m.Regex = &RegexLiteral{Val: regexp.MustCompile(s.Regex.Val.String())}
}
return m
default:
panic("unreachable")
}
}
// RewriteWildcards returns the re-written form of the select statement. Any wildcard query
// fields are replaced with the supplied fields, and any wildcard GROUP BY fields are replaced
// with the supplied dimensions.
func (s *SelectStatement) RewriteWildcards(ic IteratorCreator) (*SelectStatement, error) {
// Ignore if there are no wildcards.
hasFieldWildcard := s.HasFieldWildcard()
hasDimensionWildcard := s.HasDimensionWildcard()
if !hasFieldWildcard && !hasDimensionWildcard {
return s, nil
}
// Retrieve a list of unique field and dimensions.
fieldSet, dimensionSet, err := ic.FieldDimensions(s.Sources)
if err != nil {
return s, err
}
// If there are no dimension wildcards then merge dimensions to fields.
if !hasDimensionWildcard {
// Remove the dimensions present in the group by so they don't get added as fields.
for _, d := range s.Dimensions {
switch expr := d.Expr.(type) {
case *VarRef:
if _, ok := dimensionSet[expr.Val]; ok {
delete(dimensionSet, expr.Val)
}
}
}
for k := range dimensionSet {
fieldSet[k] = struct{}{}
}
dimensionSet = nil
}
fields := stringSetSlice(fieldSet)
dimensions := stringSetSlice(dimensionSet)
other := s.Clone()
// Rewrite all wildcard query fields
if hasFieldWildcard {
// Allocate a slice assuming there is exactly one wildcard for efficiency.
rwFields := make(Fields, 0, len(s.Fields)+len(fields)-1)
for _, f := range s.Fields {
switch f.Expr.(type) {
case *Wildcard:
for _, name := range fields {
rwFields = append(rwFields, &Field{Expr: &VarRef{Val: name}})
}
default:
rwFields = append(rwFields, f)
}
}
other.Fields = rwFields
}
// Rewrite all wildcard GROUP BY fields
if hasDimensionWildcard {
// Allocate a slice assuming there is exactly one wildcard for efficiency.
rwDimensions := make(Dimensions, 0, len(s.Dimensions)+len(dimensions)-1)
for _, d := range s.Dimensions {
switch d.Expr.(type) {
case *Wildcard:
for _, name := range dimensions {
rwDimensions = append(rwDimensions, &Dimension{Expr: &VarRef{Val: name}})
}
default:
rwDimensions = append(rwDimensions, d)
}
}
other.Dimensions = rwDimensions
}
return other, nil
}
// RewriteDistinct rewrites the expression to be a call for map/reduce to work correctly
// This method assumes all validation has passed
func (s *SelectStatement) RewriteDistinct() {
WalkFunc(s.Fields, func(n Node) {
switch n := n.(type) {
case *Field:
if expr, ok := n.Expr.(*Distinct); ok {
n.Expr = expr.NewCall()
s.IsRawQuery = false
}
case *Call:
for i, arg := range n.Args {
if arg, ok := arg.(*Distinct); ok {
n.Args[i] = arg.NewCall()
}
}
}
})
}
// RewriteTimeFields removes any "time" field references.
func (s *SelectStatement) RewriteTimeFields() {
for i := 0; i < len(s.Fields); i++ {
switch expr := s.Fields[i].Expr.(type) {
case *VarRef:
if expr.Val == "time" {
s.Fields = append(s.Fields[:i], s.Fields[i+1:]...)
}
}
}
}
// ColumnNames will walk all fields and functions and return the appropriate field names for the select statement
// while maintaining order of the field names
func (s *SelectStatement) ColumnNames() []string {
// First walk each field to determine the number of columns.
columnFields := Fields{}
for _, field := range s.Fields {
columnFields = append(columnFields, field)
switch f := field.Expr.(type) {
case *Call:
if f.Name == "top" || f.Name == "bottom" {
for _, arg := range f.Args[1:] {
ref, ok := arg.(*VarRef)
if ok {
columnFields = append(columnFields, &Field{Expr: ref})
}
}
}
}
}
// Determine if we should add an extra column for an implicit time.
offset := 0
if !s.OmitTime {
offset++
}
columnNames := make([]string, len(columnFields)+offset)
if !s.OmitTime {
// Add the implicit time if requested.
columnNames[0] = "time"
}
// Keep track of the encountered column names.
names := make(map[string]int)
// Resolve aliases first.
for i, col := range columnFields {
if col.Alias != "" {
columnNames[i+offset] = col.Alias
names[col.Alias] = 1
}
}
// Resolve any generated names and resolve conflicts.
for i, col := range columnFields {
if columnNames[i+offset] != "" {
continue
}
name := col.Name()
count, conflict := names[name]
if conflict {
for {
resolvedName := fmt.Sprintf("%s_%d", name, count)
_, conflict = names[resolvedName]
if !conflict {
names[name] = count + 1
name = resolvedName
break
}
count++
}
}
names[name] += 1
columnNames[i+offset] = name
}
return columnNames
}
// HasTimeFieldSpecified will walk all fields and determine if the user explicitly asked for time
// This is needed to determine re-write behaviors for functions like TOP and BOTTOM
func (s *SelectStatement) HasTimeFieldSpecified() bool {
for _, f := range s.Fields {
if f.Name() == "time" {
return true
}
}
return false
}
// String returns a string representation of the select statement.
func (s *SelectStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SELECT ")
_, _ = buf.WriteString(s.Fields.String())
if s.Target != nil {
_, _ = buf.WriteString(" ")
_, _ = buf.WriteString(s.Target.String())
}
if len(s.Sources) > 0 {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.Dimensions) > 0 {
_, _ = buf.WriteString(" GROUP BY ")
_, _ = buf.WriteString(s.Dimensions.String())
}
switch s.Fill {
case NoFill:
_, _ = buf.WriteString(" fill(none)")
case NumberFill:
_, _ = buf.WriteString(fmt.Sprintf(" fill(%v)", s.FillValue))
case PreviousFill:
_, _ = buf.WriteString(" fill(previous)")
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = fmt.Fprintf(&buf, " LIMIT %d", s.Limit)
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
if s.SLimit > 0 {
_, _ = fmt.Fprintf(&buf, " SLIMIT %d", s.SLimit)
}
if s.SOffset > 0 {
_, _ = fmt.Fprintf(&buf, " SOFFSET %d", s.SOffset)
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute the SelectStatement.
func (s *SelectStatement) RequiredPrivileges() ExecutionPrivileges {
ep := ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}
if s.Target != nil {
p := ExecutionPrivilege{Admin: false, Name: s.Target.Measurement.Database, Privilege: WritePrivilege}
ep = append(ep, p)
}
return ep
}
// HasWildcard returns whether or not the select statement has at least 1 wildcard
func (s *SelectStatement) HasWildcard() bool {
return s.HasFieldWildcard() || s.HasDimensionWildcard()
}
// HasFieldWildcard returns whether or not the select statement has at least 1 wildcard in the fields
func (s *SelectStatement) HasFieldWildcard() bool {
for _, f := range s.Fields {
_, ok := f.Expr.(*Wildcard)
if ok {
return true
}
}
return false
}
// HasDimensionWildcard returns whether or not the select statement has
// at least 1 wildcard in the dimensions aka `GROUP BY`
func (s *SelectStatement) HasDimensionWildcard() bool {
for _, d := range s.Dimensions {
_, ok := d.Expr.(*Wildcard)
if ok {
return true
}
}
return false
}
func (s *SelectStatement) validate(tr targetRequirement) error {
if err := s.validateFields(); err != nil {
return err
}
if err := s.validateDimensions(); err != nil {
return err
}
if err := s.validateDistinct(); err != nil {
return err
}
if err := s.validateCountDistinct(); err != nil {
return err
}
if err := s.validateAggregates(tr); err != nil {
return err
}
if err := s.validateDerivative(); err != nil {
return err
}
return nil
}
func (s *SelectStatement) validateFields() error {
ns := s.NamesInSelect()
if len(ns) == 1 && ns[0] == "time" {
return fmt.Errorf("at least 1 non-time field must be queried")
}
return nil
}
func (s *SelectStatement) validateDimensions() error {
var dur time.Duration
for _, dim := range s.Dimensions {
switch expr := dim.Expr.(type) {
case *Call:
// Ensure the call is time() and it only has one duration argument.
// If we already have a duration
if expr.Name != "time" {
return errors.New("only time() calls allowed in dimensions")
} else if len(expr.Args) != 1 {
return errors.New("time dimension expected one argument")
} else if lit, ok := expr.Args[0].(*DurationLiteral); !ok {
return errors.New("time dimension must have one duration argument")
} else if dur != 0 {
return errors.New("multiple time dimensions not allowed")
} else {
dur = lit.Val
}
case *VarRef:
if strings.ToLower(expr.Val) == "time" {
return errors.New("time() is a function and expects at least one argument")
}
case *Wildcard:
default:
return errors.New("only time and tag dimensions allowed")
}
}
return nil
}
// validSelectWithAggregate determines if a SELECT statement has the correct
// combination of aggregate functions combined with selected fields and tags
// Currently we don't have support for all aggregates, but aggregates that
// can be combined with fields/tags are:
// TOP, BOTTOM, MAX, MIN, FIRST, LAST
func (s *SelectStatement) validSelectWithAggregate() error {
calls := map[string]struct{}{}
numAggregates := 0
for _, f := range s.Fields {
fieldCalls := walkFunctionCalls(f.Expr)
for _, c := range fieldCalls {
calls[c.Name] = struct{}{}
}
if len(fieldCalls) != 0 {
numAggregates++
}
}
// For TOP, BOTTOM, MAX, MIN, FIRST, LAST (selector functions) it is ok to ask for fields and tags
// but only if one function is specified. Combining multiple functions and fields and tags is not currently supported
onlySelectors := true
for k := range calls {
switch k {
case "top", "bottom", "max", "min", "first", "last":
default:
onlySelectors = false
break
}
}
if onlySelectors {
// If they only have one selector, they can have as many fields or tags as they want
if numAggregates == 1 {
return nil
}
// If they have multiple selectors, they are not allowed to have any other fields or tags specified
if numAggregates > 1 && len(s.Fields) != numAggregates {
return fmt.Errorf("mixing multiple selector functions with tags or fields is not supported")
}
}
if numAggregates != 0 && numAggregates != len(s.Fields) {
return fmt.Errorf("mixing aggregate and non-aggregate queries is not supported")
}
return nil
}
// validTopBottomAggr determines if TOP or BOTTOM aggregates have valid arguments.
func (s *SelectStatement) validTopBottomAggr(expr *Call) error {
if exp, got := 2, len(expr.Args); got < exp {
return fmt.Errorf("invalid number of arguments for %s, expected at least %d, got %d", expr.Name, exp, got)
}
if len(expr.Args) > 1 {
callLimit, ok := expr.Args[len(expr.Args)-1].(*NumberLiteral)
if !ok {
return fmt.Errorf("expected integer as last argument in %s(), found %s", expr.Name, expr.Args[len(expr.Args)-1])
}
// Check if they asked for a limit smaller than what they passed into the call
if int64(callLimit.Val) > int64(s.Limit) && s.Limit != 0 {
return fmt.Errorf("limit (%d) in %s function can not be larger than the LIMIT (%d) in the select statement", int64(callLimit.Val), expr.Name, int64(s.Limit))
}
for _, v := range expr.Args[:len(expr.Args)-1] {
if _, ok := v.(*VarRef); !ok {
return fmt.Errorf("only fields or tags are allowed in %s(), found %s", expr.Name, v)
}
}
}
return nil
}
// validPercentileAggr determines if PERCENTILE have valid arguments.
func (s *SelectStatement) validPercentileAggr(expr *Call) error {
if err := s.validSelectWithAggregate(); err != nil {
return err
}
if exp, got := 2, len(expr.Args); got != exp {
return fmt.Errorf("invalid number of arguments for %s, expected %d, got %d", expr.Name, exp, got)
}
_, ok := expr.Args[1].(*NumberLiteral)
if !ok {
return fmt.Errorf("expected float argument in percentile()")
}
return nil
}
func (s *SelectStatement) validateAggregates(tr targetRequirement) error {
for _, f := range s.Fields {
for _, expr := range walkFunctionCalls(f.Expr) {
switch expr.Name {
case "derivative", "non_negative_derivative":
if err := s.validSelectWithAggregate(); err != nil {
return err
}
if min, max, got := 1, 2, len(expr.Args); got > max || got < min {
return fmt.Errorf("invalid number of arguments for %s, expected at least %d but no more than %d, got %d", expr.Name, min, max, got)
}
// Validate that if they have grouping by time, they need a sub-call like min/max, etc.
groupByInterval, err := s.GroupByInterval()
if err != nil {
return fmt.Errorf("invalid group interval: %v", err)
}
if groupByInterval > 0 {
c, ok := expr.Args[0].(*Call)
if !ok {
return fmt.Errorf("aggregate function required inside the call to %s", expr.Name)
}
switch c.Name {
case "top", "bottom":
if err := s.validTopBottomAggr(c); err != nil {
return err
}
case "percentile":
if err := s.validPercentileAggr(c); err != nil {
return err
}
default:
if exp, got := 1, len(c.Args); got != exp {
return fmt.Errorf("invalid number of arguments for %s, expected %d, got %d", c.Name, exp, got)
}
}
}
case "top", "bottom":
if err := s.validTopBottomAggr(expr); err != nil {
return err
}
case "percentile":
if err := s.validPercentileAggr(expr); err != nil {
return err
}
default:
if err := s.validSelectWithAggregate(); err != nil {
return err
}
if exp, got := 1, len(expr.Args); got != exp {
return fmt.Errorf("invalid number of arguments for %s, expected %d, got %d", expr.Name, exp, got)
}
switch fc := expr.Args[0].(type) {
case *VarRef:
// do nothing
case *Call:
if fc.Name != "distinct" {
return fmt.Errorf("expected field argument in %s()", expr.Name)
}
case *Distinct:
if expr.Name != "count" {
return fmt.Errorf("expected field argument in %s()", expr.Name)
}
default:
return fmt.Errorf("expected field argument in %s()", expr.Name)
}
}
}
}
// Check that we have valid duration and where clauses for aggregates
// fetch the group by duration
groupByDuration, _ := s.GroupByInterval()
// If we have a group by interval, but no aggregate function, it's an invalid statement
if s.IsRawQuery && groupByDuration > 0 {
return fmt.Errorf("GROUP BY requires at least one aggregate function")
}
// If we have an aggregate function with a group by time without a where clause, it's an invalid statement
if tr == targetNotRequired { // ignore create continuous query statements
if !s.IsRawQuery && groupByDuration > 0 && !HasTimeExpr(s.Condition) {
return fmt.Errorf("aggregate functions with GROUP BY time require a WHERE time clause")
}
}
return nil
}
// HasDistinct checks if a select statement contains DISTINCT
func (s *SelectStatement) HasDistinct() bool {
// determine if we have a call named distinct
for _, f := range s.Fields {
switch c := f.Expr.(type) {
case *Call:
if c.Name == "distinct" {
return true
}
case *Distinct:
return true
}
}
return false
}
func (s *SelectStatement) validateDistinct() error {
if !s.HasDistinct() {
return nil
}
if len(s.Fields) > 1 {
return fmt.Errorf("aggregate function distinct() can not be combined with other functions or fields")
}
switch c := s.Fields[0].Expr.(type) {
case *Call:
if len(c.Args) == 0 {
return fmt.Errorf("distinct function requires at least one argument")
}
if len(c.Args) != 1 {
return fmt.Errorf("distinct function can only have one argument")
}
}
return nil
}
// HasCountDistinct checks if a select statement contains COUNT and DISTINCT
func (s *SelectStatement) HasCountDistinct() bool {
for _, f := range s.Fields {
if c, ok := f.Expr.(*Call); ok {
if c.Name == "count" {
for _, a := range c.Args {
if _, ok := a.(*Distinct); ok {
return true
}
if c, ok := a.(*Call); ok {
if c.Name == "distinct" {
return true
}
}
}
}
}
}
return false
}
func (s *SelectStatement) validateCountDistinct() error {
if !s.HasCountDistinct() {
return nil
}
valid := func(e Expr) bool {
c, ok := e.(*Call)
if !ok {
return true
}
if c.Name != "count" {
return true
}
for _, a := range c.Args {
if _, ok := a.(*Distinct); ok {
return len(c.Args) == 1
}
if d, ok := a.(*Call); ok {
if d.Name == "distinct" {
return len(d.Args) == 1
}
}
}
return true
}
for _, f := range s.Fields {
if !valid(f.Expr) {
return fmt.Errorf("count(distinct <field>) can only have one argument")
}
}
return nil
}
func (s *SelectStatement) validateDerivative() error {
if !s.HasDerivative() {
return nil
}
// If a derivative is requested, it must be the only field in the query. We don't support
// multiple fields in combination w/ derivaties yet.
if len(s.Fields) != 1 {
return fmt.Errorf("derivative cannot be used with other fields")
}
aggr := s.FunctionCalls()
if len(aggr) != 1 {
return fmt.Errorf("derivative cannot be used with other fields")
}
// Derivative requires two arguments
derivativeCall := aggr[0]
if len(derivativeCall.Args) == 0 {
return fmt.Errorf("derivative requires a field argument")
}
// First arg must be a field or aggr over a field e.g. (mean(field))
_, callOk := derivativeCall.Args[0].(*Call)
_, varOk := derivativeCall.Args[0].(*VarRef)
if !(callOk || varOk) {
return fmt.Errorf("derivative requires a field argument")
}
// If a duration arg is pased, make sure it's a duration
if len(derivativeCall.Args) == 2 {
// Second must be a duration .e.g (1h)
if _, ok := derivativeCall.Args[1].(*DurationLiteral); !ok {
return fmt.Errorf("derivative requires a duration argument")
}
}
return nil
}
// GroupByInterval extracts the time interval, if specified.
func (s *SelectStatement) GroupByInterval() (time.Duration, error) {
// return if we've already pulled it out
if s.groupByInterval != 0 {
return s.groupByInterval, nil
}
// Ignore if there are no dimensions.
if len(s.Dimensions) == 0 {
return 0, nil
}
for _, d := range s.Dimensions {
if call, ok := d.Expr.(*Call); ok && call.Name == "time" {
// Make sure there is exactly one argument.
if len(call.Args) != 1 {
return 0, errors.New("time dimension expected one argument")
}
// Ensure the argument is a duration.
lit, ok := call.Args[0].(*DurationLiteral)
if !ok {
return 0, errors.New("time dimension must have one duration argument")
}
s.groupByInterval = lit.Val
return lit.Val, nil
}
}
return 0, nil
}
// SetTimeRange sets the start and end time of the select statement to [start, end). i.e. start inclusive, end exclusive.
// This is used commonly for continuous queries so the start and end are in buckets.
func (s *SelectStatement) SetTimeRange(start, end time.Time) error {
cond := fmt.Sprintf("time >= '%s' AND time < '%s'", start.UTC().Format(time.RFC3339Nano), end.UTC().Format(time.RFC3339Nano))
if s.Condition != nil {
cond = fmt.Sprintf("%s AND %s", s.rewriteWithoutTimeDimensions(), cond)
}
expr, err := NewParser(strings.NewReader(cond)).ParseExpr()
if err != nil {
return err
}
// fold out any previously replaced time dimensios and set the condition
s.Condition = Reduce(expr, nil)
return nil
}
// rewriteWithoutTimeDimensions will remove any WHERE time... clauses from the select statement
// This is necessary when setting an explicit time range to override any that previously existed.
func (s *SelectStatement) rewriteWithoutTimeDimensions() string {
n := RewriteFunc(s.Condition, func(n Node) Node {
switch n := n.(type) {
case *BinaryExpr:
if n.LHS.String() == "time" {
return &BooleanLiteral{Val: true}
}
return n
case *Call:
return &BooleanLiteral{Val: true}
default:
return n
}
})
return n.String()
}
/*
BinaryExpr
SELECT mean(xxx.value) + avg(yyy.value) FROM xxx JOIN yyy WHERE xxx.host = 123
from xxx where host = 123
select avg(value) from yyy where host = 123
SELECT xxx.value FROM xxx WHERE xxx.host = 123
SELECT yyy.value FROM yyy
---
SELECT MEAN(xxx.value) + MEAN(cpu.load.value)
FROM xxx JOIN yyy
GROUP BY host
WHERE (xxx.region == "uswest" OR yyy.region == "uswest") AND xxx.otherfield == "XXX"
select * from (
select mean + mean from xxx join yyy
group by time(5m), host
) (xxx.region == "uswest" OR yyy.region == "uswest") AND xxx.otherfield == "XXX"
(seriesIDS for xxx.region = 'uswest' union seriesIDs for yyy.regnion = 'uswest') | seriesIDS xxx.otherfield = 'XXX'
WHERE xxx.region == "uswest" AND xxx.otherfield == "XXX"
WHERE yyy.region == "uswest"
*/
// Substatement returns a single-series statement for a given variable reference.
func (s *SelectStatement) Substatement(ref *VarRef) (*SelectStatement, error) {
// Copy dimensions and properties to new statement.
other := &SelectStatement{
Fields: Fields{{Expr: ref}},
Dimensions: s.Dimensions,
Limit: s.Limit,
Offset: s.Offset,
SortFields: s.SortFields,
}
// If there is only one series source then return it with the whole condition.
if len(s.Sources) == 1 {
other.Sources = s.Sources
other.Condition = s.Condition
return other, nil
}
// Find the matching source.
name := MatchSource(s.Sources, ref.Val)
if name == "" {
return nil, fmt.Errorf("field source not found: %s", ref.Val)
}
other.Sources = append(other.Sources, &Measurement{Name: name})
// Filter out conditions.
if s.Condition != nil {
other.Condition = filterExprBySource(name, s.Condition)
}
return other, nil
}
// NamesInWhere returns the field and tag names (idents) referenced in the where clause
func (s *SelectStatement) NamesInWhere() []string {
var a []string
if s.Condition != nil {
a = walkNames(s.Condition)
}
return a
}
// NamesInSelect returns the field and tag names (idents) in the select clause
func (s *SelectStatement) NamesInSelect() []string {
var a []string
for _, f := range s.Fields {
a = append(a, walkNames(f.Expr)...)
}
return a
}
// NamesInDimension returns the field and tag names (idents) in the group by
func (s *SelectStatement) NamesInDimension() []string {
var a []string
for _, d := range s.Dimensions {
a = append(a, walkNames(d.Expr)...)
}
return a
}
// LimitTagSets returns a tag set list with SLIMIT and SOFFSET applied.
func LimitTagSets(a []*TagSet, slimit, soffset int) []*TagSet {
// Ignore if no limit or offset is specified.
if slimit == 0 && soffset == 0 {
return a
}
// If offset is beyond the number of tag sets then return nil.
if soffset > len(a) {
return nil
}
// Clamp limit to the max number of tag sets.
if soffset+slimit > len(a) {
slimit = len(a) - soffset
}
return a[soffset : soffset+slimit]
}
// walkNames will walk the Expr and return the database fields
func walkNames(exp Expr) []string {
switch expr := exp.(type) {
case *VarRef:
return []string{expr.Val}
case *Call:
if len(expr.Args) == 0 {
return nil
}
lit, ok := expr.Args[0].(*VarRef)
if !ok {
return nil
}
return []string{lit.Val}
case *BinaryExpr:
var ret []string
ret = append(ret, walkNames(expr.LHS)...)
ret = append(ret, walkNames(expr.RHS)...)
return ret
case *ParenExpr:
return walkNames(expr.Expr)
}
return nil
}
// ExprNames returns a list of non-"time" field names from an expression.
func ExprNames(expr Expr) []string {
m := make(map[string]struct{})
for _, name := range walkNames(expr) {
if name == "time" {
continue
}
m[name] = struct{}{}
}
a := make([]string, 0, len(m))
for k := range m {
a = append(a, k)
}
sort.Strings(a)
return a
}
// FunctionCalls returns the Call objects from the query
func (s *SelectStatement) FunctionCalls() []*Call {
var a []*Call
for _, f := range s.Fields {
a = append(a, walkFunctionCalls(f.Expr)...)
}
return a
}
// FunctionCallsByPosition returns the Call objects from the query in the order they appear in the select statement
func (s *SelectStatement) FunctionCallsByPosition() [][]*Call {
var a [][]*Call
for _, f := range s.Fields {
a = append(a, walkFunctionCalls(f.Expr))
}
return a
}
// walkFunctionCalls walks the Field of a query for any function calls made
func walkFunctionCalls(exp Expr) []*Call {
switch expr := exp.(type) {
case *VarRef:
return nil
case *Call:
return []*Call{expr}
case *BinaryExpr:
var ret []*Call
ret = append(ret, walkFunctionCalls(expr.LHS)...)
ret = append(ret, walkFunctionCalls(expr.RHS)...)
return ret
case *ParenExpr:
return walkFunctionCalls(expr.Expr)
}
return nil
}
// filters an expression to exclude expressions unrelated to a source.
func filterExprBySource(name string, expr Expr) Expr {
switch expr := expr.(type) {
case *VarRef:
if !strings.HasPrefix(expr.Val, name) {
return nil
}
case *BinaryExpr:
lhs := filterExprBySource(name, expr.LHS)
rhs := filterExprBySource(name, expr.RHS)
// If an expr is logical then return either LHS/RHS or both.
// If an expr is arithmetic or comparative then require both sides.
if expr.Op == AND || expr.Op == OR {
if lhs == nil && rhs == nil {
return nil
} else if lhs != nil && rhs == nil {
return lhs
} else if lhs == nil && rhs != nil {
return rhs
}
} else {
if lhs == nil || rhs == nil {
return nil
}
}
return &BinaryExpr{Op: expr.Op, LHS: lhs, RHS: rhs}
case *ParenExpr:
exp := filterExprBySource(name, expr.Expr)
if exp == nil {
return nil
}
return &ParenExpr{Expr: exp}
}
return expr
}
// MatchSource returns the source name that matches a field name.
// Returns a blank string if no sources match.
func MatchSource(sources Sources, name string) string {
for _, src := range sources {
switch src := src.(type) {
case *Measurement:
if strings.HasPrefix(name, src.Name) {
return src.Name
}
}
}
return ""
}
// Target represents a target (destination) policy, measurement, and DB.
type Target struct {
// Measurement to write into.
Measurement *Measurement
}
// String returns a string representation of the Target.
func (t *Target) String() string {
if t == nil {
return ""
}
var buf bytes.Buffer
_, _ = buf.WriteString("INTO ")
_, _ = buf.WriteString(t.Measurement.String())
if t.Measurement.Name == "" {
_, _ = buf.WriteString(":MEASUREMENT")
}
return buf.String()
}
// DeleteStatement represents a command for removing data from the database.
type DeleteStatement struct {
// Data source that values are removed from.
Source Source
// An expression evaluated on data point.
Condition Expr
}
// String returns a string representation of the delete statement.
func (s *DeleteStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DELETE FROM ")
_, _ = buf.WriteString(s.Source.String())
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DeleteStatement.
func (s *DeleteStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: WritePrivilege}}
}
// ShowSeriesStatement represents a command for listing series in the database.
type ShowSeriesStatement struct {
// Measurement(s) the series are listed for.
Sources Sources
// An expression evaluated on a series name or tag.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the list series statement.
func (s *ShowSeriesStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW SERIES")
if s.Sources != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a ShowSeriesStatement.
func (s *ShowSeriesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}
}
// DropSeriesStatement represents a command for removing a series from the database.
type DropSeriesStatement struct {
// Data source that fields are extracted from (optional)
Sources Sources
// An expression evaluated on data point (optional)
Condition Expr
}
// String returns a string representation of the drop series statement.
func (s *DropSeriesStatement) String() string {
var buf bytes.Buffer
buf.WriteString("DROP SERIES")
if s.Sources != nil {
buf.WriteString(" FROM ")
buf.WriteString(s.Sources.String())
}
if s.Condition != nil {
buf.WriteString(" WHERE ")
buf.WriteString(s.Condition.String())
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DropSeriesStatement.
func (s DropSeriesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: WritePrivilege}}
}
// DropServerStatement represents a command for removing a server from the cluster.
type DropServerStatement struct {
// ID of the node to be dropped.
NodeID uint64
// Meta indicates if the server being dropped is a meta or data node
Meta bool
}
// String returns a string representation of the drop series statement.
func (s *DropServerStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP ")
if s.Meta {
_, _ = buf.WriteString(" META SERVER ")
} else {
_, _ = buf.WriteString(" DATA SERVER ")
}
_, _ = buf.WriteString(strconv.FormatUint(s.NodeID, 10))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DropServerStatement.
func (s *DropServerStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Name: "", Privilege: AllPrivileges}}
}
// ShowContinuousQueriesStatement represents a command for listing continuous queries.
type ShowContinuousQueriesStatement struct{}
// String returns a string representation of the list continuous queries statement.
func (s *ShowContinuousQueriesStatement) String() string { return "SHOW CONTINUOUS QUERIES" }
// RequiredPrivileges returns the privilege required to execute a ShowContinuousQueriesStatement.
func (s *ShowContinuousQueriesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}
}
// ShowGrantsForUserStatement represents a command for listing user privileges.
type ShowGrantsForUserStatement struct {
// Name of the user to display privileges.
Name string
}
// String returns a string representation of the show grants for user.
func (s *ShowGrantsForUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW GRANTS FOR ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a ShowGrantsForUserStatement
func (s *ShowGrantsForUserStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// ShowServersStatement represents a command for listing all servers.
type ShowServersStatement struct{}
// String returns a string representation of the show servers command.
func (s *ShowServersStatement) String() string { return "SHOW SERVERS" }
// RequiredPrivileges returns the privilege required to execute a ShowServersStatement
func (s *ShowServersStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// ShowDatabasesStatement represents a command for listing all databases in the cluster.
type ShowDatabasesStatement struct{}
// String returns a string representation of the list databases command.
func (s *ShowDatabasesStatement) String() string { return "SHOW DATABASES" }
// RequiredPrivileges returns the privilege required to execute a ShowDatabasesStatement
func (s *ShowDatabasesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// CreateContinuousQueryStatement represents a command for creating a continuous query.
type CreateContinuousQueryStatement struct {
// Name of the continuous query to be created.
Name string
// Name of the database to create the continuous query on.
Database string
// Source of data (SELECT statement).
Source *SelectStatement
// Interval to resample previous queries
ResampleEvery time.Duration
// Maximum duration to resample previous queries
ResampleFor time.Duration
}
// String returns a string representation of the statement.
func (s *CreateContinuousQueryStatement) String() string {
var buf bytes.Buffer
fmt.Fprintf(&buf, "CREATE CONTINUOUS QUERY %s ON %s ", QuoteIdent(s.Name), QuoteIdent(s.Database))
if s.ResampleEvery > 0 || s.ResampleFor > 0 {
buf.WriteString("RESAMPLE ")
if s.ResampleEvery > 0 {
fmt.Fprintf(&buf, "EVERY %s ", FormatDuration(s.ResampleEvery))
}
if s.ResampleFor > 0 {
fmt.Fprintf(&buf, "FOR %s ", FormatDuration(s.ResampleFor))
}
}
fmt.Fprintf(&buf, "BEGIN %s END", s.Source.String())
return buf.String()
}
// DefaultDatabase returns the default database from the statement.
func (s *CreateContinuousQueryStatement) DefaultDatabase() string {
return s.Database
}
// RequiredPrivileges returns the privilege required to execute a CreateContinuousQueryStatement.
func (s *CreateContinuousQueryStatement) RequiredPrivileges() ExecutionPrivileges {
ep := ExecutionPrivileges{{Admin: false, Name: s.Database, Privilege: ReadPrivilege}}
// Selecting into a database that's different from the source?
if s.Source.Target.Measurement.Database != "" {
// Change source database privilege requirement to read.
ep[0].Privilege = ReadPrivilege
// Add destination database privilege requirement and set it to write.
p := ExecutionPrivilege{
Admin: false,
Name: s.Source.Target.Measurement.Database,
Privilege: WritePrivilege,
}
ep = append(ep, p)
}
return ep
}
func (s *CreateContinuousQueryStatement) validate() error {
interval, err := s.Source.GroupByInterval()
if err != nil {
return err
}
if s.ResampleFor != 0 {
if s.ResampleEvery != 0 && s.ResampleEvery > interval {
interval = s.ResampleEvery
}
if interval > s.ResampleFor {
return fmt.Errorf("FOR duration must be >= GROUP BY time duration: must be a minimum of %s, got %s", FormatDuration(interval), FormatDuration(s.ResampleFor))
}
}
return nil
}
// DropContinuousQueryStatement represents a command for removing a continuous query.
type DropContinuousQueryStatement struct {
Name string
Database string
}
// String returns a string representation of the statement.
func (s *DropContinuousQueryStatement) String() string {
return fmt.Sprintf("DROP CONTINUOUS QUERY %s ON %s", QuoteIdent(s.Name), QuoteIdent(s.Database))
}
// RequiredPrivileges returns the privilege(s) required to execute a DropContinuousQueryStatement
func (s *DropContinuousQueryStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: WritePrivilege}}
}
// ShowMeasurementsStatement represents a command for listing measurements.
type ShowMeasurementsStatement struct {
// Measurement name or regex.
Source Source
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowMeasurementsStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW MEASUREMENTS")
if s.Source != nil {
_, _ = buf.WriteString(" WITH MEASUREMENT ")
if m, ok := s.Source.(*Measurement); ok && m.Regex != nil {
_, _ = buf.WriteString("=~ ")
} else {
_, _ = buf.WriteString("= ")
}
_, _ = buf.WriteString(s.Source.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowMeasurementsStatement
func (s *ShowMeasurementsStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}
}
// DropMeasurementStatement represents a command to drop a measurement.
type DropMeasurementStatement struct {
// Name of the measurement to be dropped.
Name string
}
// String returns a string representation of the drop measurement statement.
func (s *DropMeasurementStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP MEASUREMENT ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a DropMeasurementStatement
func (s *DropMeasurementStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// ShowRetentionPoliciesStatement represents a command for listing retention policies.
type ShowRetentionPoliciesStatement struct {
// Name of the database to list policies for.
Database string
}
// String returns a string representation of a ShowRetentionPoliciesStatement.
func (s *ShowRetentionPoliciesStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW RETENTION POLICIES ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowRetentionPoliciesStatement
func (s *ShowRetentionPoliciesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}
}
// ShowStatsStatement displays statistics for a given module.
type ShowStatsStatement struct {
// Module
Module string
}
// String returns a string representation of a ShowStatsStatement.
func (s *ShowStatsStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW STATS ")
if s.Module != "" {
_, _ = buf.WriteString("FOR ")
_, _ = buf.WriteString(s.Module)
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowStatsStatement
func (s *ShowStatsStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// ShowShardGroupsStatement represents a command for displaying shard groups in the cluster.
type ShowShardGroupsStatement struct{}
// String returns a string representation of the SHOW SHARD GROUPS command.
func (s *ShowShardGroupsStatement) String() string { return "SHOW SHARD GROUPS" }
// RequiredPrivileges returns the privileges required to execute the statement.
func (s *ShowShardGroupsStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// ShowShardsStatement represents a command for displaying shards in the cluster.
type ShowShardsStatement struct{}
// String returns a string representation.
func (s *ShowShardsStatement) String() string { return "SHOW SHARDS" }
// RequiredPrivileges returns the privileges required to execute the statement.
func (s *ShowShardsStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// ShowDiagnosticsStatement represents a command for show node diagnostics.
type ShowDiagnosticsStatement struct {
// Module
Module string
}
// String returns a string representation of the ShowDiagnosticsStatement.
func (s *ShowDiagnosticsStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW DIAGNOSTICS ")
if s.Module != "" {
_, _ = buf.WriteString("FOR ")
_, _ = buf.WriteString(s.Module)
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a ShowDiagnosticsStatement
func (s *ShowDiagnosticsStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// CreateSubscriptionStatement represents a command to add a subscription to the incoming data stream
type CreateSubscriptionStatement struct {
Name string
Database string
RetentionPolicy string
Destinations []string
Mode string
}
// String returns a string representation of the CreateSubscriptionStatement.
func (s *CreateSubscriptionStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE SUBSCRIPTION ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
_, _ = buf.WriteString(".")
_, _ = buf.WriteString(QuoteIdent(s.RetentionPolicy))
_, _ = buf.WriteString(" DESTINATIONS ")
_, _ = buf.WriteString(s.Mode)
_, _ = buf.WriteString(" ")
for i, dest := range s.Destinations {
if i != 0 {
_, _ = buf.WriteString(", ")
}
_, _ = buf.WriteString(QuoteString(dest))
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a CreateSubscriptionStatement
func (s *CreateSubscriptionStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// DropSubscriptionStatement represents a command to drop a subscription to the incoming data stream.
type DropSubscriptionStatement struct {
Name string
Database string
RetentionPolicy string
}
// String returns a string representation of the DropSubscriptionStatement.
func (s *DropSubscriptionStatement) String() string {
return fmt.Sprintf(`DROP SUBSCRIPTION %s ON %s.%s`, QuoteIdent(s.Name), QuoteIdent(s.Database), QuoteIdent(s.RetentionPolicy))
}
// RequiredPrivileges returns the privilege required to execute a DropSubscriptionStatement
func (s *DropSubscriptionStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// ShowSubscriptionsStatement represents a command to show a list of subscriptions.
type ShowSubscriptionsStatement struct {
}
// String returns a string representation of the ShowSubscriptionStatement.
func (s *ShowSubscriptionsStatement) String() string {
return "SHOW SUBSCRIPTIONS"
}
// RequiredPrivileges returns the privilege required to execute a ShowSubscriptionStatement
func (s *ShowSubscriptionsStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// ShowTagKeysStatement represents a command for listing tag keys.
type ShowTagKeysStatement struct {
// Data sources that fields are extracted from.
Sources Sources
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of tag keys per measurement. Unlimited if zero.
Limit int
// Returns tag keys starting at an offset from the first row.
Offset int
// Maxiumum number of series to be returned. Unlimited if zero.
SLimit int
// Returns series starting at an offset from the first one.
SOffset int
}
// String returns a string representation of the statement.
func (s *ShowTagKeysStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW TAG KEYS")
if s.Sources != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
if s.SLimit > 0 {
_, _ = buf.WriteString(" SLIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.SLimit))
}
if s.SOffset > 0 {
_, _ = buf.WriteString(" SOFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.SOffset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowTagKeysStatement
func (s *ShowTagKeysStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}
}
// ShowTagValuesStatement represents a command for listing tag values.
type ShowTagValuesStatement struct {
// Data source that fields are extracted from.
Sources Sources
// Tag key(s) to pull values from.
TagKeys []string
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowTagValuesStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW TAG VALUES")
if s.Sources != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
_, _ = buf.WriteString(" WITH KEY IN (")
for idx, tagKey := range s.TagKeys {
if idx != 0 {
_, _ = buf.WriteString(", ")
}
_, _ = buf.WriteString(QuoteIdent(tagKey))
}
_, _ = buf.WriteString(")")
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowTagValuesStatement
func (s *ShowTagValuesStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}
}
// ShowUsersStatement represents a command for listing users.
type ShowUsersStatement struct{}
// String returns a string representation of the ShowUsersStatement.
func (s *ShowUsersStatement) String() string {
return "SHOW USERS"
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowUsersStatement
func (s *ShowUsersStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}
}
// ShowFieldKeysStatement represents a command for listing field keys.
type ShowFieldKeysStatement struct {
// Data sources that fields are extracted from.
Sources Sources
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowFieldKeysStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW FIELD KEYS")
if s.Sources != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowFieldKeysStatement
func (s *ShowFieldKeysStatement) RequiredPrivileges() ExecutionPrivileges {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}
}
// Fields represents a list of fields.
type Fields []*Field
// AliasNames returns a list of calculated field names in
// order of alias, function name, then field.
func (a Fields) AliasNames() []string {
names := []string{}
for _, f := range a {
names = append(names, f.Name())
}
return names
}
// Names returns a list of field names.
func (a Fields) Names() []string {
names := []string{}
for _, f := range a {
switch expr := f.Expr.(type) {
case *Call:
names = append(names, expr.Name)
case *VarRef:
names = append(names, expr.Val)
case *BinaryExpr:
names = append(names, walkNames(expr)...)
case *ParenExpr:
names = append(names, walkNames(expr)...)
}
}
return names
}
// String returns a string representation of the fields.
func (a Fields) String() string {
var str []string
for _, f := range a {
str = append(str, f.String())
}
return strings.Join(str, ", ")
}
// Field represents an expression retrieved from a select statement.
type Field struct {
Expr Expr
Alias string
}
// Name returns the name of the field. Returns alias, if set.
// Otherwise uses the function name or variable name.
func (f *Field) Name() string {
// Return alias, if set.
if f.Alias != "" {
return f.Alias
}
// Return the function name or variable name, if available.
switch expr := f.Expr.(type) {
case *Call:
return expr.Name
case *BinaryExpr:
return BinaryExprName(expr)
case *ParenExpr:
f := Field{Expr: expr.Expr}
return f.Name()
case *VarRef:
return expr.Val
}
// Otherwise return a blank name.
return ""
}
// String returns a string representation of the field.
func (f *Field) String() string {
str := f.Expr.String()
if f.Alias == "" {
return str
}
return fmt.Sprintf("%s AS %s", str, QuoteIdent(f.Alias))
}
// Sort Interface for Fields
func (a Fields) Len() int { return len(a) }
func (a Fields) Less(i, j int) bool { return a[i].Name() < a[j].Name() }
func (a Fields) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// Dimensions represents a list of dimensions.
type Dimensions []*Dimension
// String returns a string representation of the dimensions.
func (a Dimensions) String() string {
var str []string
for _, d := range a {
str = append(str, d.String())
}
return strings.Join(str, ", ")
}
// Normalize returns the interval and tag dimensions separately.
// Returns 0 if no time interval is specified.
func (a Dimensions) Normalize() (time.Duration, []string) {
var dur time.Duration
var tags []string
for _, dim := range a {
switch expr := dim.Expr.(type) {
case *Call:
lit, _ := expr.Args[0].(*DurationLiteral)
dur = lit.Val
case *VarRef:
tags = append(tags, expr.Val)
}
}
return dur, tags
}
// Dimension represents an expression that a select statement is grouped by.
type Dimension struct {
Expr Expr
}
// String returns a string representation of the dimension.
func (d *Dimension) String() string { return d.Expr.String() }
// Measurements represents a list of measurements.
type Measurements []*Measurement
// String returns a string representation of the measurements.
func (a Measurements) String() string {
var str []string
for _, m := range a {
str = append(str, m.String())
}
return strings.Join(str, ", ")
}
// Measurement represents a single measurement used as a datasource.
type Measurement struct {
Database string
RetentionPolicy string
Name string
Regex *RegexLiteral
IsTarget bool
}
// String returns a string representation of the measurement.
func (m *Measurement) String() string {
var buf bytes.Buffer
if m.Database != "" {
_, _ = buf.WriteString(QuoteIdent(m.Database))
_, _ = buf.WriteString(".")
}
if m.RetentionPolicy != "" {
_, _ = buf.WriteString(QuoteIdent(m.RetentionPolicy))
}
if m.Database != "" || m.RetentionPolicy != "" {
_, _ = buf.WriteString(`.`)
}
if m.Name != "" {
_, _ = buf.WriteString(QuoteIdent(m.Name))
} else if m.Regex != nil {
_, _ = buf.WriteString(m.Regex.String())
}
return buf.String()
}
func encodeMeasurement(mm *Measurement) *internal.Measurement {
pb := &internal.Measurement{
Database: proto.String(mm.Database),
RetentionPolicy: proto.String(mm.RetentionPolicy),
Name: proto.String(mm.Name),
IsTarget: proto.Bool(mm.IsTarget),
}
if mm.Regex != nil {
pb.Regex = proto.String(mm.Regex.String())
}
return pb
}
func decodeMeasurement(pb *internal.Measurement) (*Measurement, error) {
mm := &Measurement{
Database: pb.GetDatabase(),
RetentionPolicy: pb.GetRetentionPolicy(),
Name: pb.GetName(),
IsTarget: pb.GetIsTarget(),
}
if pb.Regex != nil {
regex, err := regexp.Compile(pb.GetRegex())
if err != nil {
return nil, fmt.Errorf("invalid binary measurement regex: value=%q, err=%s", pb.GetRegex(), err)
}
mm.Regex = &RegexLiteral{Val: regex}
}
return mm, nil
}
// VarRef represents a reference to a variable.
type VarRef struct {
Val string
}
// String returns a string representation of the variable reference.
func (r *VarRef) String() string {
return QuoteIdent(r.Val)
}
// Call represents a function call.
type Call struct {
Name string
Args []Expr
}
// String returns a string representation of the call.
func (c *Call) String() string {
// Join arguments.
var str []string
for _, arg := range c.Args {
str = append(str, arg.String())
}
// Write function name and args.
return fmt.Sprintf("%s(%s)", c.Name, strings.Join(str, ", "))
}
// Fields will extract any field names from the call. Only specific calls support this.
func (c *Call) Fields() []string {
switch c.Name {
case "top", "bottom":
// maintain the order the user specified in the query
keyMap := make(map[string]struct{})
keys := []string{}
for i, a := range c.Args {
if i == 0 {
// special case, first argument is always the name of the function regardless of the field name
keys = append(keys, c.Name)
continue
}
switch v := a.(type) {
case *VarRef:
if _, ok := keyMap[v.Val]; !ok {
keyMap[v.Val] = struct{}{}
keys = append(keys, v.Val)
}
}
}
return keys
case "min", "max", "first", "last", "sum", "mean":
// maintain the order the user specified in the query
keyMap := make(map[string]struct{})
keys := []string{}
for _, a := range c.Args {
switch v := a.(type) {
case *VarRef:
if _, ok := keyMap[v.Val]; !ok {
keyMap[v.Val] = struct{}{}
keys = append(keys, v.Val)
}
}
}
return keys
default:
panic(fmt.Sprintf("*call.Fields is unable to provide information on %s", c.Name))
}
}
// Distinct represents a DISTINCT expression.
type Distinct struct {
// Identifier following DISTINCT
Val string
}
// String returns a string representation of the expression.
func (d *Distinct) String() string {
return fmt.Sprintf("DISTINCT %s", d.Val)
}
// NewCall returns a new call expression from this expressions.
func (d *Distinct) NewCall() *Call {
return &Call{
Name: "distinct",
Args: []Expr{
&VarRef{Val: d.Val},
},
}
}
// NumberLiteral represents a numeric literal.
type NumberLiteral struct {
Val float64
}
// String returns a string representation of the literal.
func (l *NumberLiteral) String() string { return strconv.FormatFloat(l.Val, 'f', 3, 64) }
// BooleanLiteral represents a boolean literal.
type BooleanLiteral struct {
Val bool
}
// String returns a string representation of the literal.
func (l *BooleanLiteral) String() string {
if l.Val {
return "true"
}
return "false"
}
// isTrueLiteral returns true if the expression is a literal "true" value.
func isTrueLiteral(expr Expr) bool {
if expr, ok := expr.(*BooleanLiteral); ok {
return expr.Val == true
}
return false
}
// isFalseLiteral returns true if the expression is a literal "false" value.
func isFalseLiteral(expr Expr) bool {
if expr, ok := expr.(*BooleanLiteral); ok {
return expr.Val == false
}
return false
}
// StringLiteral represents a string literal.
type StringLiteral struct {
Val string
}
// String returns a string representation of the literal.
func (l *StringLiteral) String() string { return QuoteString(l.Val) }
// TimeLiteral represents a point-in-time literal.
type TimeLiteral struct {
Val time.Time
}
// String returns a string representation of the literal.
func (l *TimeLiteral) String() string {
return `'` + l.Val.UTC().Format(time.RFC3339Nano) + `'`
}
// DurationLiteral represents a duration literal.
type DurationLiteral struct {
Val time.Duration
}
// String returns a string representation of the literal.
func (l *DurationLiteral) String() string { return FormatDuration(l.Val) }
// nilLiteral represents a nil literal.
// This is not available to the query language itself. It's only used internally.
type nilLiteral struct{}
// String returns a string representation of the literal.
func (l *nilLiteral) String() string { return `nil` }
// BinaryExpr represents an operation between two expressions.
type BinaryExpr struct {
Op Token
LHS Expr
RHS Expr
}
// String returns a string representation of the binary expression.
func (e *BinaryExpr) String() string {
return fmt.Sprintf("%s %s %s", e.LHS.String(), e.Op.String(), e.RHS.String())
}
func BinaryExprName(expr *BinaryExpr) string {
v := binaryExprNameVisitor{}
Walk(&v, expr)
return strings.Join(v.names, "_")
}
type binaryExprNameVisitor struct {
names []string
}
func (v *binaryExprNameVisitor) Visit(n Node) Visitor {
switch n := n.(type) {
case *VarRef:
v.names = append(v.names, n.Val)
case *Call:
v.names = append(v.names, n.Name)
return nil
}
return v
}
// ParenExpr represents a parenthesized expression.
type ParenExpr struct {
Expr Expr
}
// String returns a string representation of the parenthesized expression.
func (e *ParenExpr) String() string { return fmt.Sprintf("(%s)", e.Expr.String()) }
// RegexLiteral represents a regular expression.
type RegexLiteral struct {
Val *regexp.Regexp
}
// String returns a string representation of the literal.
func (r *RegexLiteral) String() string {
if r.Val != nil {
return fmt.Sprintf("/%s/", strings.Replace(r.Val.String(), `/`, `\/`, -1))
}
return ""
}
// CloneRegexLiteral returns a clone of the RegexLiteral.
func CloneRegexLiteral(r *RegexLiteral) *RegexLiteral {
if r == nil {
return nil
}
clone := &RegexLiteral{}
if r.Val != nil {
clone.Val = regexp.MustCompile(r.Val.String())
}
return clone
}
// Wildcard represents a wild card expression.
type Wildcard struct{}
// String returns a string representation of the wildcard.
func (e *Wildcard) String() string { return "*" }
// CloneExpr returns a deep copy of the expression.
func CloneExpr(expr Expr) Expr {
if expr == nil {
return nil
}
switch expr := expr.(type) {
case *BinaryExpr:
return &BinaryExpr{Op: expr.Op, LHS: CloneExpr(expr.LHS), RHS: CloneExpr(expr.RHS)}
case *BooleanLiteral:
return &BooleanLiteral{Val: expr.Val}
case *Call:
args := make([]Expr, len(expr.Args))
for i, arg := range expr.Args {
args[i] = CloneExpr(arg)
}
return &Call{Name: expr.Name, Args: args}
case *Distinct:
return &Distinct{Val: expr.Val}
case *DurationLiteral:
return &DurationLiteral{Val: expr.Val}
case *NumberLiteral:
return &NumberLiteral{Val: expr.Val}
case *ParenExpr:
return &ParenExpr{Expr: CloneExpr(expr.Expr)}
case *RegexLiteral:
return &RegexLiteral{Val: expr.Val}
case *StringLiteral:
return &StringLiteral{Val: expr.Val}
case *TimeLiteral:
return &TimeLiteral{Val: expr.Val}
case *VarRef:
return &VarRef{Val: expr.Val}
case *Wildcard:
return &Wildcard{}
}
panic("unreachable")
}
// HasTimeExpr returns true if the expression has a time term.
func HasTimeExpr(expr Expr) bool {
switch n := expr.(type) {
case *BinaryExpr:
if n.Op == AND || n.Op == OR {
return HasTimeExpr(n.LHS) || HasTimeExpr(n.RHS)
}
if ref, ok := n.LHS.(*VarRef); ok && strings.ToLower(ref.Val) == "time" {
return true
}
return false
case *ParenExpr:
// walk down the tree
return HasTimeExpr(n.Expr)
default:
return false
}
}
// OnlyTimeExpr returns true if the expression only has time constraints.
func OnlyTimeExpr(expr Expr) bool {
if expr == nil {
return false
}
switch n := expr.(type) {
case *BinaryExpr:
if n.Op == AND || n.Op == OR {
return OnlyTimeExpr(n.LHS) && OnlyTimeExpr(n.RHS)
}
if ref, ok := n.LHS.(*VarRef); ok && strings.ToLower(ref.Val) == "time" {
return true
}
return false
case *ParenExpr:
// walk down the tree
return OnlyTimeExpr(n.Expr)
default:
return false
}
}
// TimeRange returns the minimum and maximum times specified by an expression.
// Returns zero times if there is no bound.
func TimeRange(expr Expr) (min, max time.Time) {
WalkFunc(expr, func(n Node) {
if n, ok := n.(*BinaryExpr); ok {
// Extract literal expression & operator on LHS.
// Check for "time" on the left-hand side first.
// Otherwise check for for the right-hand side and flip the operator.
value, op := timeExprValue(n.LHS, n.RHS), n.Op
if value.IsZero() {
if value = timeExprValue(n.RHS, n.LHS); value.IsZero() {
return
} else if op == LT {
op = GT
} else if op == LTE {
op = GTE
} else if op == GT {
op = LT
} else if op == GTE {
op = LTE
}
}
// Update the min/max depending on the operator.
// The GT & LT update the value by +/- 1ns not make them "not equal".
switch op {
case GT:
if min.IsZero() || value.After(min) {
min = value.Add(time.Nanosecond)
}
case GTE:
if min.IsZero() || value.After(min) {
min = value
}
case LT:
if max.IsZero() || value.Before(max) {
max = value.Add(-time.Nanosecond)
}
case LTE:
if max.IsZero() || value.Before(max) {
max = value
}
case EQ:
if min.IsZero() || value.After(min) {
min = value
}
if max.IsZero() || value.Add(1*time.Nanosecond).Before(max) {
max = value.Add(1 * time.Nanosecond)
}
}
}
})
return
}
// TimeRangeAsEpochNano returns the minimum and maximum times, as epoch nano, specified by
// and expression. If there is no lower bound, the start of the epoch is returned
// for minimum. If there is no higher bound, now is returned for maximum.
func TimeRangeAsEpochNano(expr Expr) (min, max int64) {
tmin, tmax := TimeRange(expr)
if tmin.IsZero() {
min = time.Unix(0, 0).UnixNano()
} else {
min = tmin.UnixNano()
}
if tmax.IsZero() {
max = time.Now().UnixNano()
} else {
max = tmax.UnixNano()
}
return
}
// timeExprValue returns the time literal value of a "time == <TimeLiteral>" expression.
// Returns zero time if the expression is not a time expression.
func timeExprValue(ref Expr, lit Expr) time.Time {
if ref, ok := ref.(*VarRef); ok && strings.ToLower(ref.Val) == "time" {
switch lit := lit.(type) {
case *TimeLiteral:
return lit.Val
case *DurationLiteral:
return time.Unix(0, int64(lit.Val)).UTC()
case *NumberLiteral:
return time.Unix(0, int64(lit.Val)).UTC()
}
}
return time.Time{}
}
// Visitor can be called by Walk to traverse an AST hierarchy.
// The Visit() function is called once per node.
type Visitor interface {
Visit(Node) Visitor
}
// Walk traverses a node hierarchy in depth-first order.
func Walk(v Visitor, node Node) {
if node == nil {
return
}
if v = v.Visit(node); v == nil {
return
}
switch n := node.(type) {
case *BinaryExpr:
Walk(v, n.LHS)
Walk(v, n.RHS)
case *Call:
for _, expr := range n.Args {
Walk(v, expr)
}
case *CreateContinuousQueryStatement:
Walk(v, n.Source)
case *Dimension:
Walk(v, n.Expr)
case Dimensions:
for _, c := range n {
Walk(v, c)
}
case *DropSeriesStatement:
Walk(v, n.Sources)
Walk(v, n.Condition)
case *Field:
Walk(v, n.Expr)
case Fields:
for _, c := range n {
Walk(v, c)
}
case *ParenExpr:
Walk(v, n.Expr)
case *Query:
Walk(v, n.Statements)
case *SelectStatement:
Walk(v, n.Fields)
Walk(v, n.Target)
Walk(v, n.Dimensions)
Walk(v, n.Sources)
Walk(v, n.Condition)
Walk(v, n.SortFields)
case *ShowSeriesStatement:
Walk(v, n.Sources)
Walk(v, n.Condition)
case *ShowTagKeysStatement:
Walk(v, n.Sources)
Walk(v, n.Condition)
Walk(v, n.SortFields)
case *ShowTagValuesStatement:
Walk(v, n.Sources)
Walk(v, n.Condition)
Walk(v, n.SortFields)
case *ShowFieldKeysStatement:
Walk(v, n.Sources)
Walk(v, n.SortFields)
case SortFields:
for _, sf := range n {
Walk(v, sf)
}
case Sources:
for _, s := range n {
Walk(v, s)
}
case Statements:
for _, s := range n {
Walk(v, s)
}
case *Target:
if n != nil {
Walk(v, n.Measurement)
}
}
}
// WalkFunc traverses a node hierarchy in depth-first order.
func WalkFunc(node Node, fn func(Node)) {
Walk(walkFuncVisitor(fn), node)
}
type walkFuncVisitor func(Node)
func (fn walkFuncVisitor) Visit(n Node) Visitor { fn(n); return fn }
// Rewriter can be called by Rewrite to replace nodes in the AST hierarchy.
// The Rewrite() function is called once per node.
type Rewriter interface {
Rewrite(Node) Node
}
// Rewrite recursively invokes the rewriter to replace each node.
// Nodes are traversed depth-first and rewritten from leaf to root.
func Rewrite(r Rewriter, node Node) Node {
switch n := node.(type) {
case *Query:
n.Statements = Rewrite(r, n.Statements).(Statements)
case Statements:
for i, s := range n {
n[i] = Rewrite(r, s).(Statement)
}
case *SelectStatement:
n.Fields = Rewrite(r, n.Fields).(Fields)
n.Dimensions = Rewrite(r, n.Dimensions).(Dimensions)
n.Sources = Rewrite(r, n.Sources).(Sources)
n.Condition = Rewrite(r, n.Condition).(Expr)
case Fields:
for i, f := range n {
n[i] = Rewrite(r, f).(*Field)
}
case *Field:
n.Expr = Rewrite(r, n.Expr).(Expr)
case Dimensions:
for i, d := range n {
n[i] = Rewrite(r, d).(*Dimension)
}
case *Dimension:
n.Expr = Rewrite(r, n.Expr).(Expr)
case *BinaryExpr:
n.LHS = Rewrite(r, n.LHS).(Expr)
n.RHS = Rewrite(r, n.RHS).(Expr)
case *ParenExpr:
n.Expr = Rewrite(r, n.Expr).(Expr)
case *Call:
for i, expr := range n.Args {
n.Args[i] = Rewrite(r, expr).(Expr)
}
}
return r.Rewrite(node)
}
// RewriteFunc rewrites a node hierarchy.
func RewriteFunc(node Node, fn func(Node) Node) Node {
return Rewrite(rewriterFunc(fn), node)
}
type rewriterFunc func(Node) Node
func (fn rewriterFunc) Rewrite(n Node) Node { return fn(n) }
// Eval evaluates expr against a map.
func Eval(expr Expr, m map[string]interface{}) interface{} {
if expr == nil {
return nil
}
switch expr := expr.(type) {
case *BinaryExpr:
return evalBinaryExpr(expr, m)
case *BooleanLiteral:
return expr.Val
case *NumberLiteral:
return expr.Val
case *ParenExpr:
return Eval(expr.Expr, m)
case *StringLiteral:
return expr.Val
case *VarRef:
return m[expr.Val]
default:
return nil
}
}
func evalBinaryExpr(expr *BinaryExpr, m map[string]interface{}) interface{} {
lhs := Eval(expr.LHS, m)
rhs := Eval(expr.RHS, m)
// Evaluate if both sides are simple types.
switch lhs := lhs.(type) {
case bool:
rhs, _ := rhs.(bool)
switch expr.Op {
case AND:
return lhs && rhs
case OR:
return lhs || rhs
case EQ:
return lhs == rhs
case NEQ:
return lhs != rhs
}
case float64:
rhs, _ := rhs.(float64)
switch expr.Op {
case EQ:
return lhs == rhs
case NEQ:
return lhs != rhs
case LT:
return lhs < rhs
case LTE:
return lhs <= rhs
case GT:
return lhs > rhs
case GTE:
return lhs >= rhs
case ADD:
return lhs + rhs
case SUB:
return lhs - rhs
case MUL:
return lhs * rhs
case DIV:
if rhs == 0 {
return float64(0)
}
return lhs / rhs
}
case int64:
// we parse all number literals as float 64, so we have to convert from
// an interface to the float64, then cast to an int64 for comparison
rhsf, _ := rhs.(float64)
rhs := int64(rhsf)
switch expr.Op {
case EQ:
return lhs == rhs
case NEQ:
return lhs != rhs
case LT:
return lhs < rhs
case LTE:
return lhs <= rhs
case GT:
return lhs > rhs
case GTE:
return lhs >= rhs
case ADD:
return lhs + rhs
case SUB:
return lhs - rhs
case MUL:
return lhs * rhs
case DIV:
if rhs == 0 {
return int64(0)
}
return lhs / rhs
}
case string:
rhs, _ := rhs.(string)
switch expr.Op {
case EQ:
return lhs == rhs
case NEQ:
return lhs != rhs
}
}
return nil
}
// EvalBool evaluates expr and returns true if result is a boolean true.
// Otherwise returns false.
func EvalBool(expr Expr, m map[string]interface{}) bool {
v, _ := Eval(expr, m).(bool)
return v
}
// Reduce evaluates expr using the available values in valuer.
// References that don't exist in valuer are ignored.
func Reduce(expr Expr, valuer Valuer) Expr {
expr = reduce(expr, valuer)
// Unwrap parens at top level.
if expr, ok := expr.(*ParenExpr); ok {
return expr.Expr
}
return expr
}
func reduce(expr Expr, valuer Valuer) Expr {
if expr == nil {
return nil
}
switch expr := expr.(type) {
case *BinaryExpr:
return reduceBinaryExpr(expr, valuer)
case *Call:
return reduceCall(expr, valuer)
case *ParenExpr:
return reduceParenExpr(expr, valuer)
case *VarRef:
return reduceVarRef(expr, valuer)
default:
return CloneExpr(expr)
}
}
func reduceBinaryExpr(expr *BinaryExpr, valuer Valuer) Expr {
// Reduce both sides first.
op := expr.Op
lhs := reduce(expr.LHS, valuer)
rhs := reduce(expr.RHS, valuer)
// Do not evaluate if one side is nil.
if lhs == nil || rhs == nil {
return &BinaryExpr{LHS: lhs, RHS: rhs, Op: expr.Op}
}
// If we have a logical operator (AND, OR) and one side is a boolean literal
// then we need to have special handling.
if op == AND {
if isFalseLiteral(lhs) || isFalseLiteral(rhs) {
return &BooleanLiteral{Val: false}
} else if isTrueLiteral(lhs) {
return rhs
} else if isTrueLiteral(rhs) {
return lhs
}
} else if op == OR {
if isTrueLiteral(lhs) || isTrueLiteral(rhs) {
return &BooleanLiteral{Val: true}
} else if isFalseLiteral(lhs) {
return rhs
} else if isFalseLiteral(rhs) {
return lhs
}
}
// Evaluate if both sides are simple types.
switch lhs := lhs.(type) {
case *BooleanLiteral:
return reduceBinaryExprBooleanLHS(op, lhs, rhs)
case *DurationLiteral:
return reduceBinaryExprDurationLHS(op, lhs, rhs)
case *nilLiteral:
return reduceBinaryExprNilLHS(op, lhs, rhs)
case *NumberLiteral:
return reduceBinaryExprNumberLHS(op, lhs, rhs)
case *StringLiteral:
return reduceBinaryExprStringLHS(op, lhs, rhs)
case *TimeLiteral:
return reduceBinaryExprTimeLHS(op, lhs, rhs)
default:
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
}
func reduceBinaryExprBooleanLHS(op Token, lhs *BooleanLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *BooleanLiteral:
switch op {
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case AND:
return &BooleanLiteral{Val: lhs.Val && rhs.Val}
case OR:
return &BooleanLiteral{Val: lhs.Val || rhs.Val}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprDurationLHS(op Token, lhs *DurationLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *DurationLiteral:
switch op {
case ADD:
return &DurationLiteral{Val: lhs.Val + rhs.Val}
case SUB:
return &DurationLiteral{Val: lhs.Val - rhs.Val}
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case GT:
return &BooleanLiteral{Val: lhs.Val > rhs.Val}
case GTE:
return &BooleanLiteral{Val: lhs.Val >= rhs.Val}
case LT:
return &BooleanLiteral{Val: lhs.Val < rhs.Val}
case LTE:
return &BooleanLiteral{Val: lhs.Val <= rhs.Val}
}
case *NumberLiteral:
switch op {
case MUL:
return &DurationLiteral{Val: lhs.Val * time.Duration(rhs.Val)}
case DIV:
if rhs.Val == 0 {
return &DurationLiteral{Val: 0}
}
return &DurationLiteral{Val: lhs.Val / time.Duration(rhs.Val)}
}
case *TimeLiteral:
switch op {
case ADD:
return &TimeLiteral{Val: rhs.Val.Add(lhs.Val)}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprNilLHS(op Token, lhs *nilLiteral, rhs Expr) Expr {
switch op {
case EQ, NEQ:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprNumberLHS(op Token, lhs *NumberLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *NumberLiteral:
switch op {
case ADD:
return &NumberLiteral{Val: lhs.Val + rhs.Val}
case SUB:
return &NumberLiteral{Val: lhs.Val - rhs.Val}
case MUL:
return &NumberLiteral{Val: lhs.Val * rhs.Val}
case DIV:
if rhs.Val == 0 {
return &NumberLiteral{Val: 0}
}
return &NumberLiteral{Val: lhs.Val / rhs.Val}
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case GT:
return &BooleanLiteral{Val: lhs.Val > rhs.Val}
case GTE:
return &BooleanLiteral{Val: lhs.Val >= rhs.Val}
case LT:
return &BooleanLiteral{Val: lhs.Val < rhs.Val}
case LTE:
return &BooleanLiteral{Val: lhs.Val <= rhs.Val}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprStringLHS(op Token, lhs *StringLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *StringLiteral:
switch op {
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case ADD:
return &StringLiteral{Val: lhs.Val + rhs.Val}
}
case *nilLiteral:
switch op {
case EQ, NEQ:
return &BooleanLiteral{Val: false}
}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprTimeLHS(op Token, lhs *TimeLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *DurationLiteral:
switch op {
case ADD:
return &TimeLiteral{Val: lhs.Val.Add(rhs.Val)}
case SUB:
return &TimeLiteral{Val: lhs.Val.Add(-rhs.Val)}
}
case *TimeLiteral:
switch op {
case SUB:
return &DurationLiteral{Val: lhs.Val.Sub(rhs.Val)}
case EQ:
return &BooleanLiteral{Val: lhs.Val.Equal(rhs.Val)}
case NEQ:
return &BooleanLiteral{Val: !lhs.Val.Equal(rhs.Val)}
case GT:
return &BooleanLiteral{Val: lhs.Val.After(rhs.Val)}
case GTE:
return &BooleanLiteral{Val: lhs.Val.After(rhs.Val) || lhs.Val.Equal(rhs.Val)}
case LT:
return &BooleanLiteral{Val: lhs.Val.Before(rhs.Val)}
case LTE:
return &BooleanLiteral{Val: lhs.Val.Before(rhs.Val) || lhs.Val.Equal(rhs.Val)}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceCall(expr *Call, valuer Valuer) Expr {
// Evaluate "now()" if valuer is set.
if expr.Name == "now" && len(expr.Args) == 0 && valuer != nil {
if v, ok := valuer.Value("now()"); ok {
v, _ := v.(time.Time)
return &TimeLiteral{Val: v}
}
}
// Otherwise reduce arguments.
args := make([]Expr, len(expr.Args))
for i, arg := range expr.Args {
args[i] = reduce(arg, valuer)
}
return &Call{Name: expr.Name, Args: args}
}
func reduceParenExpr(expr *ParenExpr, valuer Valuer) Expr {
subexpr := reduce(expr.Expr, valuer)
if subexpr, ok := subexpr.(*BinaryExpr); ok {
return &ParenExpr{Expr: subexpr}
}
return subexpr
}
func reduceVarRef(expr *VarRef, valuer Valuer) Expr {
// Ignore if there is no valuer.
if valuer == nil {
return &VarRef{Val: expr.Val}
}
// Retrieve the value of the ref.
// Ignore if the value doesn't exist.
v, ok := valuer.Value(expr.Val)
if !ok {
return &VarRef{Val: expr.Val}
}
// Return the value as a literal.
switch v := v.(type) {
case bool:
return &BooleanLiteral{Val: v}
case time.Duration:
return &DurationLiteral{Val: v}
case float64:
return &NumberLiteral{Val: v}
case string:
return &StringLiteral{Val: v}
case time.Time:
return &TimeLiteral{Val: v}
default:
return &nilLiteral{}
}
}
// Valuer is the interface that wraps the Value() method.
//
// Value returns the value and existence flag for a given key.
type Valuer interface {
Value(key string) (interface{}, bool)
}
// NowValuer returns only the value for "now()".
type NowValuer struct {
Now time.Time
}
// Value is a method that returns the value and existence flag for a given key.
func (v *NowValuer) Value(key string) (interface{}, bool) {
if key == "now()" {
return v.Now, true
}
return nil, false
}
// ContainsVarRef returns true if expr is a VarRef or contains one.
func ContainsVarRef(expr Expr) bool {
var v containsVarRefVisitor
Walk(&v, expr)
return v.contains
}
type containsVarRefVisitor struct {
contains bool
}
func (v *containsVarRefVisitor) Visit(n Node) Visitor {
switch n.(type) {
case *Call:
return nil
case *VarRef:
v.contains = true
}
return v
}