influxdb/tsdb/engine/tsm1/timestamp.go

415 lines
10 KiB
Go

package tsm1
// Timestamp encoding is adaptive and based on structure of the timestamps that are encoded. It
// uses a combination of delta encoding, scaling and compression using simple8b, run length encoding
// as well as falling back to no compression if needed.
//
// Timestamp values to be encoded should be sorted before encoding. When encoded, the values are
// first delta-encoded. The first value is the starting timestamp, subsequent values are the difference
// from the prior value.
//
// Timestamp resolution can also be in the nanosecond. Many timestamps are monotonically increasing
// and fall on even boundaries of time such as every 10s. When the timestamps have this structure,
// they are scaled by the largest common divisor that is also a factor of 10. This has the effect
// of converting very large integer deltas into very small one that can be reversed by multiplying them
// by the scaling factor.
//
// Using these adjusted values, if all the deltas are the same, the time range is stored using run
// length encoding. If run length encoding is not possible and all values are less than 1 << 60 - 1
// (~36.5 yrs in nanosecond resolution), then the timestamps are encoded using simple8b encoding. If
// any value exceeds the maximum values, the deltas are stored uncompressed using 8b each.
//
// Each compressed byte slice has a 1 byte header indicating the compression type. The 4 high bits
// indicate the encoding type. The 4 low bits are used by the encoding type.
//
// For run-length encoding, the 4 low bits store the log10 of the scaling factor. The next 8 bytes are
// the starting timestamp, next 1-10 bytes is the delta value using variable-length encoding, finally the
// next 1-10 bytes is the count of values.
//
// For simple8b encoding, the 4 low bits store the log10 of the scaling factor. The next 8 bytes is the
// first delta value stored uncompressed, the remaining bytes are 64bit words containg compressed delta
// values.
//
// For uncompressed encoding, the delta values are stored using 8 bytes each.
import (
"encoding/binary"
"fmt"
"math"
"github.com/jwilder/encoding/simple8b"
)
const (
// timeUncompressed is a an uncompressed format using 8 bytes per timestamp
timeUncompressed = 0
// timeCompressedPackedSimple is a bit-packed format using simple8b encoding
timeCompressedPackedSimple = 1
// timeCompressedRLE is a run-length encoding format
timeCompressedRLE = 2
)
// TimeEncoder encodes time.Time to byte slices.
type TimeEncoder interface {
Write(t int64)
Bytes() ([]byte, error)
Reset()
}
type encoder struct {
ts []uint64
bytes []byte
enc *simple8b.Encoder
}
// NewTimeEncoder returns a TimeEncoder with an initial buffer ready to hold sz bytes.
func NewTimeEncoder(sz int) TimeEncoder {
return &encoder{
ts: make([]uint64, 0, sz),
enc: simple8b.NewEncoder(),
}
}
// Reset sets the encoder back to its initial state.
func (e *encoder) Reset() {
e.ts = e.ts[:0]
e.bytes = e.bytes[:0]
e.enc.Reset()
}
// Write adds a timestamp to the compressed stream.
func (e *encoder) Write(t int64) {
e.ts = append(e.ts, uint64(t))
}
func (e *encoder) reduce() (max, divisor uint64, rle bool, deltas []uint64) {
// Compute the deltas in place to avoid allocating another slice
deltas = e.ts
// Starting values for a max and divisor
max, divisor = 0, 1e12
// Indicates whether the the deltas can be run-length encoded
rle = true
// Iterate in reverse so we can apply deltas in place
for i := len(deltas) - 1; i > 0; i-- {
// First differential encode the values
deltas[i] = deltas[i] - deltas[i-1]
// We also need to keep track of the max value and largest common divisor
v := deltas[i]
if v > max {
max = v
}
// If our value is divisible by 10, break. Otherwise, try the next smallest divisor.
for divisor > 1 && v%divisor != 0 {
divisor /= 10
}
// Skip the first value || see if prev = curr. The deltas can be RLE if the are all equal.
rle = i == len(deltas)-1 || rle && (deltas[i+1] == deltas[i])
}
return
}
// Bytes returns the encoded bytes of all written times.
func (e *encoder) Bytes() ([]byte, error) {
if len(e.ts) == 0 {
return e.bytes[:0], nil
}
// Maximum and largest common divisor. rle is true if dts (the delta timestamps),
// are all the same.
max, div, rle, dts := e.reduce()
// The deltas are all the same, so we can run-length encode them
if rle && len(e.ts) > 1 {
return e.encodeRLE(e.ts[0], e.ts[1], div, len(e.ts))
}
// We can't compress this time-range, the deltas exceed 1 << 60
if max > simple8b.MaxValue {
return e.encodeRaw()
}
return e.encodePacked(div, dts)
}
func (e *encoder) encodePacked(div uint64, dts []uint64) ([]byte, error) {
// Only apply the divisor if it's greater than 1 since division is expensive.
if div > 1 {
for _, v := range dts[1:] {
if err := e.enc.Write(v / div); err != nil {
return nil, err
}
}
} else {
for _, v := range dts[1:] {
if err := e.enc.Write(v); err != nil {
return nil, err
}
}
}
// The compressed deltas
deltas, err := e.enc.Bytes()
if err != nil {
return nil, err
}
sz := 8 + 1 + len(deltas)
if cap(e.bytes) < sz {
e.bytes = make([]byte, sz)
}
b := e.bytes[:sz]
// 4 high bits used for the encoding type
b[0] = byte(timeCompressedPackedSimple) << 4
// 4 low bits are the log10 divisor
b[0] |= byte(math.Log10(float64(div)))
// The first delta value
binary.BigEndian.PutUint64(b[1:9], uint64(dts[0]))
copy(b[9:], deltas)
return b[:9+len(deltas)], nil
}
func (e *encoder) encodeRaw() ([]byte, error) {
sz := 1 + len(e.ts)*8
if cap(e.bytes) < sz {
e.bytes = make([]byte, sz)
}
b := e.bytes[:sz]
b[0] = byte(timeUncompressed) << 4
for i, v := range e.ts {
binary.BigEndian.PutUint64(b[1+i*8:1+i*8+8], uint64(v))
}
return b, nil
}
func (e *encoder) encodeRLE(first, delta, div uint64, n int) ([]byte, error) {
// Large varints can take up to 10 bytes, we're encoding 3 + 1 byte type
sz := 31
if cap(e.bytes) < sz {
e.bytes = make([]byte, sz)
}
b := e.bytes[:sz]
// 4 high bits used for the encoding type
b[0] = byte(timeCompressedRLE) << 4
// 4 low bits are the log10 divisor
b[0] |= byte(math.Log10(float64(div)))
i := 1
// The first timestamp
binary.BigEndian.PutUint64(b[i:], uint64(first))
i += 8
// The first delta
i += binary.PutUvarint(b[i:], uint64(delta/div))
// The number of times the delta is repeated
i += binary.PutUvarint(b[i:], uint64(n))
return b[:i], nil
}
// TimeDecoder decodes a byte slice into timestamps.
type TimeDecoder struct {
v int64
i, n int
ts []uint64
dec simple8b.Decoder
err error
// The delta value for a run-length encoded byte slice
rleDelta int64
encoding byte
}
// Init initializes the decoder with bytes to read from.
func (d *TimeDecoder) Init(b []byte) {
d.v = 0
d.i = 0
d.ts = d.ts[:0]
d.err = nil
if len(b) > 0 {
// Encoding type is stored in the 4 high bits of the first byte
d.encoding = b[0] >> 4
}
d.decode(b)
}
// Next returns true if there are any timestamps remaining to be decoded.
func (d *TimeDecoder) Next() bool {
if d.err != nil {
return false
}
if d.encoding == timeCompressedRLE {
if d.i >= d.n {
return false
}
d.i++
d.v += d.rleDelta
return d.i < d.n
}
if d.i >= len(d.ts) {
return false
}
d.v = int64(d.ts[d.i])
d.i++
return true
}
// Read returns the next timestamp from the decoder.
func (d *TimeDecoder) Read() int64 {
return d.v
}
// Error returns the last error encountered by the decoder.
func (d *TimeDecoder) Error() error {
return d.err
}
func (d *TimeDecoder) decode(b []byte) {
if len(b) == 0 {
return
}
switch d.encoding {
case timeUncompressed:
d.decodeRaw(b[1:])
case timeCompressedRLE:
d.decodeRLE(b)
case timeCompressedPackedSimple:
d.decodePacked(b)
default:
d.err = fmt.Errorf("unknown encoding: %v", d.encoding)
}
}
func (d *TimeDecoder) decodePacked(b []byte) {
if len(b) < 9 {
d.err = fmt.Errorf("TimeDecoder: not enough data to decode packed timestamps")
return
}
div := uint64(math.Pow10(int(b[0] & 0xF)))
first := uint64(binary.BigEndian.Uint64(b[1:9]))
d.dec.SetBytes(b[9:])
d.i = 0
deltas := d.ts[:0]
deltas = append(deltas, first)
for d.dec.Next() {
deltas = append(deltas, d.dec.Read())
}
// Compute the prefix sum and scale the deltas back up
last := deltas[0]
if div > 1 {
for i := 1; i < len(deltas); i++ {
dgap := deltas[i] * div
deltas[i] = last + dgap
last = deltas[i]
}
} else {
for i := 1; i < len(deltas); i++ {
deltas[i] += last
last = deltas[i]
}
}
d.i = 0
d.ts = deltas
}
func (d *TimeDecoder) decodeRLE(b []byte) {
if len(b) < 9 {
d.err = fmt.Errorf("TimeDecoder: not enough data for initial RLE timestamp")
return
}
var i, n int
// Lower 4 bits hold the 10 based exponent so we can scale the values back up
mod := int64(math.Pow10(int(b[i] & 0xF)))
i++
// Next 8 bytes is the starting timestamp
first := binary.BigEndian.Uint64(b[i : i+8])
i += 8
// Next 1-10 bytes is our (scaled down by factor of 10) run length values
value, n := binary.Uvarint(b[i:])
if n <= 0 {
d.err = fmt.Errorf("TimeDecoder: invalid run length in decodeRLE")
return
}
// Scale the value back up
value *= uint64(mod)
i += n
// Last 1-10 bytes is how many times the value repeats
count, n := binary.Uvarint(b[i:])
if n <= 0 {
d.err = fmt.Errorf("TimeDecoder: invalid repeat value in decodeRLE")
return
}
d.v = int64(first - value)
d.rleDelta = int64(value)
d.i = -1
d.n = int(count)
}
func (d *TimeDecoder) decodeRaw(b []byte) {
d.i = 0
d.ts = make([]uint64, len(b)/8)
for i := range d.ts {
d.ts[i] = binary.BigEndian.Uint64(b[i*8 : i*8+8])
delta := d.ts[i]
// Compute the prefix sum and scale the deltas back up
if i > 0 {
d.ts[i] = d.ts[i-1] + delta
}
}
}
func CountTimestamps(b []byte) int {
if len(b) == 0 {
return 0
}
// Encoding type is stored in the 4 high bits of the first byte
encoding := b[0] >> 4
switch encoding {
case timeUncompressed:
// Uncompressed timestamps are just 8 bytes each
return len(b[1:]) / 8
case timeCompressedRLE:
// First 9 bytes are the starting timestamp and scaling factor, skip over them
i := 9
// Next 1-10 bytes is our (scaled down by factor of 10) run length values
_, n := binary.Uvarint(b[9:])
i += n
// Last 1-10 bytes is how many times the value repeats
count, _ := binary.Uvarint(b[i:])
return int(count)
case timeCompressedPackedSimple:
// First 9 bytes are the starting timestamp and scaling factor, skip over them
count, _ := simple8b.CountBytes(b[9:])
return count + 1 // +1 is for the first uncompressed timestamp, starting timestamep in b[1:9]
default:
return 0
}
}