influxdb/query/benchmarks/flux
Nathaniel Cook d1ca38c71f chore(ifql): Rename IFQL to Flux 2018-06-11 09:26:10 -06:00
..
README.md chore(ifql): Rename IFQL to Flux 2018-06-11 09:26:10 -06:00
config.toml chore(ifql): Rename IFQL to Flux 2018-06-11 09:26:10 -06:00
curl-format.txt chore(ifql): Rename IFQL to Flux 2018-06-11 09:26:10 -06:00
telegraf.conf chore(ifql): Rename IFQL to Flux 2018-06-11 09:26:10 -06:00

README.md

Benchmarks

The output generated by curl uses curl-format.txt, present along side this readme.

Telegraf is configured with the supplied telegraf.conf to capture metrics from fluxd and influxdb using the Prometheus /metrics HTTP endpoint and machine metrics including CPU usage and disk I/O. Note that influxd is running on port 8186, allowing a separate influxd on the default port to receive metrics from Telegraf.

Dataset #1

series 100,000
pps 3,000
shards 12
pps / shard 250
total points 300,000,000

pps: points per series

Hardware

AWS instance type c3.4xlarge

Generate dataset

  1. Use ingen to populate a database with data.

    $ ingen -p=250 -t=1000,100 -shards=12 -start-time="2017-11-01T00:00:00Z" -data-path=~/.influxdb/data -meta-path=~/.influxdb/meta
    

    The previous command will

    • populate a database named db (default),
    • create 100,000 series (1000×100),
    • made up of 2 tag keys (tag0 and tag1) each with 1000 and 100 tag values respectively.
    • 250 points per series, per shard, for a total of 3,000 points per series.
    • Points will start from 2017-11-01 00:00:00 UTC and
    • span 12 shards.

Flux queries

Query #1

HOST=localhost:8093; curl -w "@curl-format.txt" -H 'Accept: text/plain' -o /dev/null -s http://${HOST}/query \
    --data-urlencode 'q=from(db:"db").range(start:2017-11-01T00:00:00Z, stop:2017-11-02T00:00:00Z).filter(exp:{"_measurement" == "m0" and "_field" == "v0" and $ > 0}).sum()'

    
time_starttransfer: 0.138
size_download:      5800000
time_total:         7.578

Query #2

HOST=localhost:8093; curl -w "@curl-format.txt" -H 'Accept: text/plain' -o /dev/null -s http://${HOST}/query \
    --data-urlencode 'q=from(db:"db").range(start:2017-11-01T00:00:00Z, stop:2017-11-05T00:00:00Z).filter(exp:{"_measurement" == "m0" and "_field" == "v0" and $ > 0}).sum()'

    
time_starttransfer: 0.305
size_download:      5900000
time_total:         17.909

Query #3

HOST=localhost:8093; curl -w "@curl-format.txt" -H 'Accept: text/plain' -o /dev/null -s http://${HOST}/query \
    --data-urlencode 'q=from(db:"db").range(start:2017-11-01T00:00:00Z, stop:2017-11-05T00:00:00Z).filter(exp:{"_measurement" == "m0" and "_field" == "v0" and $ > 0}).group(by:["tag0"]).sum()'

    
time_starttransfer: 22.727
size_download:      60000
time_total:         22.730

Query #4

HOST=localhost:8093; curl -w "@curl-format.txt" -H 'Accept: text/plain' -o /dev/null -s http://${HOST}/query \
    --data-urlencode 'q=from(db:"db").range(start:2017-11-01T00:00:00Z, stop:2017-11-13T00:00:00Z).filter(exp:{"_measurement" == "m0" and "_field" == "v0" and $ > 0}).sum()'

    
time_starttransfer: 0.713
size_download:      5900000
time_total:         44.159

Query #5

HOST=localhost:8093; curl -w "@curl-format.txt" -H 'Accept: text/plain' -o /dev/null -s http://${HOST}/query \
    --data-urlencode 'q=from(db:"db").range(start:2017-11-01T00:00:00Z, stop:2017-11-13T00:00:00Z).filter(exp:{"_measurement" == "m0" and "_field" == "v0" and $ > 0}).group(by:["tag0"]).sum()'

    
time_starttransfer: 56.257
size_download:      60000
time_total:         56.261

Dataset #2

series 10,000,000
pps 1,000
shards 4
pps / shard 250
total points 10,000,000,000

pps: points per series

Hardware

AWS instance type c5.4xlarge

Generate dataset

  1. Use ingen to populate a database with data.

    $ ingen -p=250 -t=10000,100,10 -shards=4 -start-time="2017-11-01T00:00:00Z" -data-path=~/.influxdb/data -meta-path=~/.influxdb/meta
    

    The previous command will

    • populate a database named db (default),
    • create 10,000,000 series (10000×100×10),
    • made up of 3 tag keys (tag0, tag1, tag2) each with 10000, 100 and 10 tag values respectively.
    • 250 points per series, per shard, for a total of 1,000 points per series.
    • Points will start from 2017-11-01 00:00:00 UTC and
    • span 4 shards.

Flux queries

Query #1

HOST=localhost:8093; curl -w "@curl-format.txt" -H 'Accept: text/plain' -o /dev/null -s http://${HOST}/query \
    --data-urlencode 'q=from(db:"db").range(start:2017-11-01T00:00:00Z, stop:2017-11-05T00:00:00Z).filter(exp:{"_measurement" == "m0" and "_field" == "v0" and "tag1" == "value00"}).group(by:["tag0"]).sum()'

    
time_starttransfer: 0.325
size_download:      7200000
time_total:         11.437

Query #2

HOST=localhost:8093; curl -w "@curl-format.txt" -H 'Accept: text/plain' -o /dev/null -s http://${HOST}/query \
    --data-urlencode 'q=from(db:"db").range(start:2017-11-01T00:00:00Z, stop:2017-11-05T00:00:00Z).filter(exp:{"_measurement" == "m0" and "_field" == "v0" and "tag1" == "value00"}).group(by:["tag0"]).sum()'

    
time_starttransfer: 13.174
size_download:      600000
time_total:         13.215

Query #3

HOST=localhost:8093; curl -w "@curl-format.txt" -H 'Accept: text/plain' -o /dev/null -s http://${HOST}/query \
    --data-urlencode 'q=from(db:"db").range(start:2017-11-01T00:00:00Z, stop:2017-11-05T00:00:00Z).filter(exp:{"_measurement" == "m0" and "_field" == "v0"}).group(by:["tag0"]).sum()'

    
time_starttransfer: 1190.204
size_download:      620000
time_total:         1190.244

Query #4

HOST=localhost:8093; curl -w "@curl-format.txt" -H 'Accept: text/plain' -o /dev/null -s http://${HOST}/query \
    --data-urlencode 'q=from(db:"db").range(start:2017-11-01T00:00:00Z, stop:2017-11-05T00:00:00Z).filter(exp:{"_measurement" == "m0" and "_field" == "v0"}).sum()'

    
time_starttransfer: 23.975
size_download:      720000000
time_total:         803.254