influxdb/ingester/tests/write.rs

553 lines
18 KiB
Rust

use std::ffi::OsString;
use std::fs::read_dir;
use std::path::Path;
use std::sync::Arc;
use std::time::Duration;
use arrow_util::assert_batches_sorted_eq;
use assert_matches::assert_matches;
use data_types::{PartitionKey, TableId, Timestamp};
use ingester_query_grpc::influxdata::iox::ingester::v1::IngesterQueryRequest;
use ingester_test_ctx::{TestContextBuilder, DEFAULT_MAX_PERSIST_QUEUE_DEPTH};
use iox_catalog::interface::Catalog;
use itertools::Itertools;
use metric::{
assert_counter, assert_histogram, DurationHistogram, U64Counter, U64Gauge, U64Histogram,
};
use parquet_file::ParquetFilePath;
use test_helpers::timeout::FutureTimeout;
use trace::{ctx::SpanContext, RingBufferTraceCollector};
// Write data to an ingester through the RPC interface and persist the data.
#[tokio::test]
async fn write_persist() {
let namespace_name = "write_query_test_namespace";
let mut ctx = TestContextBuilder::default().build().await;
let ns = ctx.ensure_namespace(namespace_name, None).await;
let partition_key = PartitionKey::from("1970-01-01");
ctx.write_lp(
namespace_name,
r#"bananas count=42,greatness="inf" 200"#,
partition_key.clone(),
42,
None,
)
.await;
// Perform a query to validate the actual data buffered.
let table_id = ctx.table_id(namespace_name, "bananas").await.get();
let data: Vec<_> = ctx
.query(IngesterQueryRequest {
namespace_id: ns.id.get(),
table_id,
columns: vec![],
predicate: None,
})
.await
.expect("query request failed");
let expected = vec![
"+-------+-----------+--------------------------------+",
"| count | greatness | time |",
"+-------+-----------+--------------------------------+",
"| 42.0 | inf | 1970-01-01T00:00:00.000000200Z |",
"+-------+-----------+--------------------------------+",
];
assert_batches_sorted_eq!(&expected, &data);
// Persist the data.
ctx.persist(namespace_name).await;
// Ensure the data is no longer buffered.
let data: Vec<_> = ctx
.query(IngesterQueryRequest {
namespace_id: ns.id.get(),
table_id,
columns: vec![],
predicate: None,
})
.await
.expect("query request failed");
assert!(data.is_empty());
// Validate the parquet file was added to the catalog
let parquet_files = ctx.catalog_parquet_file_records(namespace_name).await;
let (path, want_file_size) = assert_matches!(parquet_files.as_slice(), [f] => {
assert_eq!(f.namespace_id, ns.id);
assert_eq!(f.table_id, TableId::new(table_id));
assert_eq!(f.min_time, Timestamp::new(200));
assert_eq!(f.max_time, Timestamp::new(200));
assert_eq!(f.to_delete, None);
assert_eq!(f.row_count, 1);
assert_eq!(f.column_set.len(), 3);
assert_eq!(f.max_l0_created_at, f.created_at);
(ParquetFilePath::from(f), f.file_size_bytes)
});
// Validate the file exists at the expected object store path.
let file_size = ctx
.object_store()
.get(&path.object_store_path())
.await
.expect("parquet file must exist in object store")
.bytes()
.await
.expect("failed to read parquet file bytes")
.len();
assert_eq!(file_size, want_file_size as usize);
// And that the persist metrics were recorded.
let metrics = ctx.metrics();
////////////////////////////////////////////////////////////////////////////
// Config reflection metrics
assert_counter!(
metrics,
U64Gauge,
"ingester_persist_max_parallelism",
value = 5,
);
assert_counter!(
metrics,
U64Gauge,
"ingester_persist_max_queue_depth",
value = DEFAULT_MAX_PERSIST_QUEUE_DEPTH as u64,
);
////////////////////////////////////////////////////////////////////////////
// Persist worker metrics
assert_histogram!(
metrics,
DurationHistogram,
"ingester_persist_active_duration",
samples = 1,
);
assert_histogram!(
metrics,
DurationHistogram,
"ingester_persist_enqueue_duration",
samples = 1,
);
assert_counter!(
metrics,
U64Counter,
"ingester_persist_enqueued_jobs",
value = 1,
);
////////////////////////////////////////////////////////////////////////////
// Parquet file metrics
assert_histogram!(
metrics,
DurationHistogram,
"ingester_persist_parquet_file_time_range",
samples = 1,
sum = Duration::from_secs(0),
);
assert_histogram!(
metrics,
U64Histogram,
"ingester_persist_parquet_file_size_bytes",
samples = 1,
);
assert_histogram!(
metrics,
U64Histogram,
"ingester_persist_parquet_file_row_count",
samples = 1,
sum = 1,
);
assert_histogram!(
metrics,
U64Histogram,
"ingester_persist_parquet_file_column_count",
samples = 1,
sum = 3,
);
}
// Write data to the ingester, which writes it to the WAL, then drop and recreate the WAL and
// validate the data is replayed from the WAL into memory.
#[tokio::test]
async fn wal_replay() {
let wal_dir = Arc::new(test_helpers::tmp_dir().unwrap());
let metrics: Arc<metric::Registry> = Default::default();
let catalog: Arc<dyn Catalog> =
Arc::new(iox_catalog::mem::MemCatalog::new(Arc::clone(&metrics)));
let namespace_name = "wal_replay_test_namespace";
{
let mut ctx = TestContextBuilder::default()
.with_wal_dir(Arc::clone(&wal_dir))
.with_catalog(Arc::clone(&catalog))
.build()
.await;
let ns = ctx.ensure_namespace(namespace_name, None).await;
// Initial write
let partition_key = PartitionKey::from("1970-01-01");
ctx.write_lp(
namespace_name,
"bananas greatness=\"unbounded\" 10",
partition_key.clone(),
0,
None,
)
.await;
// A subsequent write with a non-contiguous sequence number to a different table.
ctx.write_lp(
namespace_name,
"cpu bar=2 20\ncpu bar=3 30",
partition_key.clone(),
7,
None,
)
.await;
// And a third write that appends more data to the table in the initial
// write.
ctx.write_lp(
namespace_name,
"bananas count=42 200",
partition_key.clone(),
42,
None,
)
.await;
// Perform a query to validate the actual data buffered.
let data: Vec<_> = ctx
.query(IngesterQueryRequest {
namespace_id: ns.id.get(),
table_id: ctx.table_id(namespace_name, "bananas").await.get(),
columns: vec![],
predicate: None,
})
.await
.expect("query request failed");
let expected = vec![
"+-------+-----------+--------------------------------+",
"| count | greatness | time |",
"+-------+-----------+--------------------------------+",
"| | unbounded | 1970-01-01T00:00:00.000000010Z |",
"| 42.0 | | 1970-01-01T00:00:00.000000200Z |",
"+-------+-----------+--------------------------------+",
];
assert_batches_sorted_eq!(&expected, &data);
} // Drop the first ingester instance
// Restart the ingester and perform replay by creating another ingester using the same WAL
// directory and catalog
let ctx = TestContextBuilder::default()
.with_wal_dir(wal_dir)
.with_catalog(catalog)
.build()
.await;
// Validate the data has been replayed and is now in object storage (it won't be in the
// ingester's memory because replaying the WAL also persists).
let parquet_files = ctx.catalog_parquet_file_records(namespace_name).await;
assert_eq!(parquet_files.len(), 2);
let mut expected_table_ids = vec![
ctx.table_id(namespace_name, "bananas").await,
ctx.table_id(namespace_name, "cpu").await,
];
expected_table_ids.sort();
let mut actual_table_ids: Vec<_> = parquet_files.iter().map(|pf| pf.table_id).collect();
actual_table_ids.sort();
assert_eq!(actual_table_ids, expected_table_ids);
}
// Ensure that data applied to an ingester is persisted at shutdown, and the WAL
// files are cleared.
#[tokio::test]
async fn graceful_shutdown() {
let wal_dir = Arc::new(test_helpers::tmp_dir().unwrap());
let metrics: Arc<metric::Registry> = Default::default();
let catalog: Arc<dyn Catalog> =
Arc::new(iox_catalog::mem::MemCatalog::new(Arc::clone(&metrics)));
let namespace_name = "wal_replay_test_namespace";
let mut ctx = TestContextBuilder::default()
.with_wal_dir(Arc::clone(&wal_dir))
.with_catalog(Arc::clone(&catalog))
.build()
.await;
let ns = ctx.ensure_namespace(namespace_name, None).await;
let namespace_id = ns.id;
// Initial write
let partition_key = PartitionKey::from("1970-01-01");
ctx.write_lp(
namespace_name,
"bananas greatness=\"unbounded\" 10",
partition_key.clone(),
0,
None,
)
.await;
// Persist the data
ctx.persist(namespace_name).await;
// A subsequent write with a non-contiguous sequence number to a different table.
ctx.write_lp(
namespace_name,
"cpu bar=2 20\ncpu bar=3 30",
partition_key.clone(),
7,
None,
)
.await;
// And a third write that appends more data to the table in the initial
// write.
ctx.write_lp(
namespace_name,
"bananas count=42 200",
partition_key.clone(),
42,
None,
)
.await;
// Perform a query to validate the actual data buffered.
let data: Vec<_> = ctx
.query(IngesterQueryRequest {
namespace_id: ns.id.get(),
table_id: ctx.table_id(namespace_name, "bananas").await.get(),
columns: vec![],
predicate: None,
})
.await
.expect("query request failed");
let expected = vec![
"+-------+--------------------------------+",
"| count | time |",
"+-------+--------------------------------+",
"| 42.0 | 1970-01-01T00:00:00.000000200Z |",
"+-------+--------------------------------+",
];
assert_batches_sorted_eq!(&expected, &data);
// Gracefully stop the ingester.
ctx.shutdown().await;
// Inspect the WAL files.
//
// There should be one WAL file, containing no operations.
let wal = wal::Wal::new(wal_dir.path())
.await
.expect("failed to reinitialise WAL");
let wal_files = wal.closed_segments();
assert_eq!(wal_files.len(), 1);
let mut reader = wal
.reader_for_segment(wal_files[0].id())
.expect("failed to open wal segment");
// Assert the file contains no operations
assert_matches!(reader.next(), None);
// Validate the parquet files were added to the catalog during shutdown.
let parquet_files = catalog
.repositories()
.await
.parquet_files()
.list_by_namespace_not_to_delete(namespace_id)
.await
.unwrap();
assert_eq!(parquet_files.len(), 3);
}
#[tokio::test]
async fn wal_reference_dropping() {
let wal_dir = Arc::new(test_helpers::tmp_dir().unwrap());
let metrics = Arc::new(metric::Registry::default());
let catalog: Arc<dyn Catalog> =
Arc::new(iox_catalog::mem::MemCatalog::new(Arc::clone(&metrics)));
// Test-local namespace name
const TEST_NAMESPACE_NAME: &str = "wal_reference_dropping_test_namespace";
// Create an ingester using a fairly low write-ahead log rotation interval
const WAL_ROTATION_PERIOD: Duration = Duration::from_secs(15);
// Create an ingester with a low
let mut ctx = TestContextBuilder::default()
.with_wal_dir(Arc::clone(&wal_dir))
.with_catalog(Arc::clone(&catalog))
.with_wal_rotation_period(WAL_ROTATION_PERIOD)
.build()
.await;
let ns = ctx.ensure_namespace(TEST_NAMESPACE_NAME, None).await;
// Initial write
let partition_key = PartitionKey::from("1970-01-01");
ctx.write_lp(
TEST_NAMESPACE_NAME,
"bananas greatness=\"unbounded\" 10",
partition_key.clone(),
0,
None,
)
.await;
// A subsequent write with a non-contiguous sequence number to a different table.
ctx.write_lp(
TEST_NAMESPACE_NAME,
"cpu bar=2 20\ncpu bar=3 30",
partition_key.clone(),
7,
None,
)
.await;
// And a third write that appends more data to the table in the initial
// write.
ctx.write_lp(
TEST_NAMESPACE_NAME,
"bananas count=42 200",
partition_key.clone(),
42,
None,
)
.await;
// Perform a query to validate the actual data buffered.
let data: Vec<_> = ctx
.query(IngesterQueryRequest {
namespace_id: ns.id.get(),
table_id: ctx.table_id(TEST_NAMESPACE_NAME, "bananas").await.get(),
columns: vec![],
predicate: None,
})
.await
.expect("query request failed");
let expected = vec![
"+-------+-----------+--------------------------------+",
"| count | greatness | time |",
"+-------+-----------+--------------------------------+",
"| | unbounded | 1970-01-01T00:00:00.000000010Z |",
"| 42.0 | | 1970-01-01T00:00:00.000000200Z |",
"+-------+-----------+--------------------------------+",
];
assert_batches_sorted_eq!(&expected, &data);
let initial_segment_names =
get_file_names_in_dir(wal_dir.path()).expect("should be able to get file names");
assert_eq!(initial_segment_names.len(), 1); // Ensure a single (open) segment is present
tokio::time::pause();
tokio::time::advance(WAL_ROTATION_PERIOD).await;
tokio::time::resume();
// Wait for the rotation to result in the initial segment no longer being present in
// the write-ahead log directory
async {
loop {
let segments =
get_file_names_in_dir(wal_dir.path()).expect("should be able to get file names");
if !segments
.iter()
.any(|name| initial_segment_names.contains(name))
{
break;
}
tokio::task::yield_now().await;
}
}
.with_timeout_panic(Duration::from_secs(5))
.await;
let final_segment_names =
get_file_names_in_dir(wal_dir.path()).expect("should be able to get file names");
assert_eq!(final_segment_names.len(), 1); // Ensure a single (open) segment is present after the old one has been dropped
}
fn get_file_names_in_dir(dir: &Path) -> Result<Vec<OsString>, std::io::Error> {
read_dir(dir)?
.filter_map_ok(|f| {
if let Ok(file_type) = f.file_type() {
if file_type.is_file() {
return Some(f.file_name());
}
}
None
})
.collect::<Result<Vec<_>, std::io::Error>>()
}
#[tokio::test]
async fn write_tracing() {
let namespace_name = "write_tracing_test_namespace";
let mut ctx = TestContextBuilder::default().build().await;
let ns = ctx.ensure_namespace(namespace_name, None).await;
let trace_collector = Arc::new(RingBufferTraceCollector::new(5));
let span_ctx = SpanContext::new(Arc::new(Arc::clone(&trace_collector)));
let request_span = span_ctx.child("write request span");
let partition_key = PartitionKey::from("1970-01-01");
ctx.write_lp(
namespace_name,
r#"bananas count=42,greatness="inf" 200"#,
partition_key.clone(),
42,
Some(request_span.ctx.clone()),
)
.await;
// Perform a query to validate the actual data buffered.
let table_id = ctx.table_id(namespace_name, "bananas").await.get();
let data: Vec<_> = ctx
.query(IngesterQueryRequest {
namespace_id: ns.id.get(),
table_id,
columns: vec![],
predicate: None,
})
.await
.expect("query request failed");
let expected = vec![
"+-------+-----------+--------------------------------+",
"| count | greatness | time |",
"+-------+-----------+--------------------------------+",
"| 42.0 | inf | 1970-01-01T00:00:00.000000200Z |",
"+-------+-----------+--------------------------------+",
];
assert_batches_sorted_eq!(&expected, &data);
// Check the spans emitted for the write request align capture what is expected
let spans = trace_collector.spans();
assert_matches!(spans.as_slice(), [span3, span2, span1, handler_span] => {
// Check that the DML handlers are hit, and that they inherit from the
// handler span, which in turn inherits from the request
assert_eq!(handler_span.name, "ingester write");
assert_eq!(span1.name, "write_apply");
assert_eq!(span2.name, "wal");
assert_eq!(span3.name, "buffer");
assert_eq!(handler_span.ctx.parent_span_id, Some(request_span.ctx.span_id));
assert_eq!(span1.ctx.parent_span_id, Some(handler_span.ctx.span_id));
assert_eq!(span2.ctx.parent_span_id, Some(handler_span.ctx.span_id));
assert_eq!(span3.ctx.parent_span_id, Some(handler_span.ctx.span_id));
})
}