influxdb/tsdb/cursor.go

320 lines
7.7 KiB
Go

package tsdb
import (
"container/heap"
"math"
"github.com/influxdata/influxdb/influxql"
)
// EOF represents a "not found" key returned by a Cursor.
const EOF = int64(-1)
// Cursor represents an iterator over a series.
type Cursor interface {
SeekTo(seek int64) (key int64, value interface{})
Next() (key int64, value interface{})
Ascending() bool
}
// MultiCursor returns a single cursor that combines the results of all cursors in order.
//
// If the same key is returned from multiple cursors then the first cursor
// specified will take precendence. A key will only be returned once from the
// returned cursor.
func MultiCursor(cursors ...Cursor) Cursor {
return &multiCursor{
cursors: cursors,
}
}
// multiCursor represents a cursor that combines multiple cursors into one.
type multiCursor struct {
cursors []Cursor
heap cursorHeap
prev int64 // previously read key
}
// Seek moves the cursor to a given key.
func (mc *multiCursor) SeekTo(seek int64) (int64, interface{}) {
// Initialize heap.
h := make(cursorHeap, 0, len(mc.cursors))
for i, c := range mc.cursors {
// Move cursor to position. Skip if it's empty.
k, v := c.SeekTo(seek)
if k == EOF {
continue
}
// Append cursor to heap.
h = append(h, &cursorHeapItem{
key: k,
value: v,
cursor: c,
priority: len(mc.cursors) - i,
})
}
heap.Init(&h)
mc.heap = h
mc.prev = EOF
return mc.pop()
}
// Ascending returns the direction of the first cursor.
func (mc *multiCursor) Ascending() bool {
if len(mc.cursors) == 0 {
return true
}
return mc.cursors[0].Ascending()
}
// Next returns the next key/value from the cursor.
func (mc *multiCursor) Next() (int64, interface{}) { return mc.pop() }
// pop returns the next item from the heap.
// Reads the next key/value from item's cursor and puts it back on the heap.
func (mc *multiCursor) pop() (key int64, value interface{}) {
// Read items until we have a key that doesn't match the previously read one.
// This is to perform deduplication when there's multiple items with the same key.
// The highest priority cursor will be read first and then remaining keys will be dropped.
for {
// Return EOF marker if there are no more items left.
if len(mc.heap) == 0 {
return EOF, nil
}
// Read the next item from the heap.
item := heap.Pop(&mc.heap).(*cursorHeapItem)
// Save the key/value for return.
key, value = item.key, item.value
// Read the next item from the cursor. Push back to heap if one exists.
if item.key, item.value = item.cursor.Next(); item.key != EOF {
heap.Push(&mc.heap, item)
}
// Skip if this key matches the previously returned one.
if key == mc.prev {
continue
}
mc.prev = key
return
}
}
// cursorHeap represents a heap of cursorHeapItems.
type cursorHeap []*cursorHeapItem
func (h cursorHeap) Len() int { return len(h) }
func (h cursorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h cursorHeap) Less(i, j int) bool {
// Use priority if the keys are the same.
if h[i].key == h[j].key {
return h[i].priority > h[j].priority
}
// Otherwise compare based on cursor direction.
if h[i].cursor.Ascending() {
return h[i].key < h[j].key
}
return h[i].key > h[j].key
}
func (h *cursorHeap) Push(x interface{}) {
*h = append(*h, x.(*cursorHeapItem))
}
func (h *cursorHeap) Pop() interface{} {
old := *h
n := len(old)
item := old[n-1]
*h = old[0 : n-1]
return item
}
// cursorHeapItem is something we manage in a priority queue.
type cursorHeapItem struct {
key int64
value interface{}
cursor Cursor
priority int
}
// bufCursor represents a buffered cursor that is initialized at a time.
// This cursor does not allow seeking after initial seek.
type bufCursor struct {
cur Cursor
buf *struct {
key int64
value interface{}
}
}
// newBufCursor returns a new instance of bufCursor that wraps cur.
func newBufCursor(cur Cursor, seek int64) *bufCursor {
c := &bufCursor{cur: cur}
// Limit min seek to zero.
if seek < 0 {
seek = 0
}
// Fill buffer, if seekable.
k, v := cur.SeekTo(seek)
if k != EOF {
c.buf = &struct {
key int64
value interface{}
}{k, v}
}
return c
}
// SeekTo panics if called. Cursor can only be seeked on initialization.
func (c *bufCursor) SeekTo(seek int64) (key int64, value interface{}) { panic("unseekable") }
// Next returns the next key & value from the underlying cursor.
func (c *bufCursor) Next() (key int64, value interface{}) {
if c.buf != nil {
key, value = c.buf.key, c.buf.value
c.buf = nil
return
}
return c.cur.Next()
}
// Ascending returns true if the cursor traverses in ascending order.
func (c *bufCursor) Ascending() bool { return c.cur.Ascending() }
// FloatCursorIterator represents a wrapper for Cursor to produce an influxql.FloatIterator.
type FloatCursorIterator struct {
cursor *bufCursor
opt influxql.IteratorOptions
ref *influxql.VarRef
tags influxql.Tags
point influxql.FloatPoint // reuseable point to emit
}
// NewFloatCursorIterator returns a new instance of FloatCursorIterator.
func NewFloatCursorIterator(name string, tagMap map[string]string, cur Cursor, opt influxql.IteratorOptions) *FloatCursorIterator {
// Extract variable reference if available.
var ref *influxql.VarRef
if opt.Expr != nil {
ref = opt.Expr.(*influxql.VarRef)
}
// Only allocate aux values if we have any requested.
var aux []interface{}
if len(opt.Aux) > 0 {
aux = make([]interface{}, len(opt.Aux))
}
// Convert to influxql tags.
tags := influxql.NewTags(tagMap)
// Determine initial seek position based on sort direction.
seek := opt.StartTime
if !opt.Ascending {
seek = opt.EndTime
}
return &FloatCursorIterator{
point: influxql.FloatPoint{
Name: name,
Tags: tags.Subset(opt.Dimensions),
Aux: aux,
},
opt: opt,
ref: ref,
tags: tags,
cursor: newBufCursor(cur, seek),
}
}
// Close closes the iterator.
func (itr *FloatCursorIterator) Close() error { return nil }
// Next returns the next point from the cursor.
func (itr *FloatCursorIterator) Next() *influxql.FloatPoint {
for {
// Read next key/value and emit nil if at the end.
timestamp, value := itr.cursor.Next()
if timestamp == EOF {
return nil
} else if itr.opt.Ascending && timestamp > itr.opt.EndTime {
return nil
} else if !itr.opt.Ascending && timestamp < itr.opt.StartTime {
return nil
}
// Set timestamp on point.
itr.point.Time = timestamp
// Retrieve tags key/value map.
tags := itr.tags.KeyValues()
// If value is a map then extract all the fields.
if m, ok := value.(map[string]interface{}); ok {
// If filter fails then skip to the next value.
if itr.opt.Condition != nil && !influxql.EvalBool(itr.opt.Condition, m) {
continue
}
if itr.ref != nil {
fv, ok := m[itr.ref.Val].(float64)
if !ok {
continue // read next point
}
itr.point.Value = fv
} else {
itr.point.Value = math.NaN()
}
// Read all auxilary fields.
for i, ref := range itr.opt.Aux {
if v, ok := m[ref.Val]; ok {
itr.point.Aux[i] = v
} else if s, ok := tags[ref.Val]; ok {
itr.point.Aux[i] = s
} else {
itr.point.Aux[i] = nil
}
}
return &itr.point
}
// Otherwise expect value to be of an appropriate type.
if itr.ref != nil {
// If filter fails then skip to the next value.
if itr.opt.Condition != nil && !influxql.EvalBool(itr.opt.Condition, map[string]interface{}{itr.ref.Val: value}) {
continue
}
fv, ok := value.(float64)
if !ok {
continue // read next point
}
itr.point.Value = fv
} else {
itr.point.Value = math.NaN()
}
// Read all auxilary fields.
for i, ref := range itr.opt.Aux {
if tagValue, ok := tags[ref.Val]; ok {
itr.point.Aux[i] = tagValue
} else {
itr.point.Aux[i] = value
}
}
return &itr.point
}
}