1714 lines
39 KiB
Go
1714 lines
39 KiB
Go
package tsdb
|
|
|
|
// All aggregate and query functions are defined in this file along with any intermediate data objects they need to process.
|
|
// Query functions are represented as two discreet functions: Map and Reduce. These roughly follow the MapReduce
|
|
// paradigm popularized by Google and Hadoop.
|
|
//
|
|
// When adding an aggregate function, define a mapper, a reducer, and add them in the switch statement in the MapreduceFuncs function
|
|
|
|
import (
|
|
"container/heap"
|
|
"encoding/json"
|
|
"fmt"
|
|
"math"
|
|
"math/rand"
|
|
"reflect"
|
|
"sort"
|
|
"strings"
|
|
|
|
"github.com/influxdb/influxdb/influxql"
|
|
)
|
|
|
|
type MapInput struct {
|
|
TMin int64
|
|
Items []MapItem
|
|
}
|
|
|
|
type MapItem struct {
|
|
Timestamp int64
|
|
Value interface{}
|
|
|
|
// TODO(benbjohnson):
|
|
// Move fields and tags up to MapInput. Currently the engine combines
|
|
// multiple series together during processing. This needs to be fixed so
|
|
// that each map function only operates on a single series at a time instead.
|
|
Fields map[string]interface{}
|
|
Tags map[string]string
|
|
}
|
|
|
|
// mapFunc represents a function used for mapping over a sequential series of data.
|
|
// The iterator represents a single group by interval
|
|
type mapFunc func(*MapInput) interface{}
|
|
|
|
// reduceFunc represents a function used for reducing mapper output.
|
|
type reduceFunc func([]interface{}) interface{}
|
|
|
|
// UnmarshalFunc represents a function that can take bytes from a mapper from remote
|
|
// server and marshal it into an interface the reducer can use
|
|
type UnmarshalFunc func([]byte) (interface{}, error)
|
|
|
|
// initializemapFunc takes an aggregate call from the query and returns the mapFunc
|
|
func initializeMapFunc(c *influxql.Call) (mapFunc, error) {
|
|
// see if it's a query for raw data
|
|
if c == nil {
|
|
return MapRawQuery, nil
|
|
}
|
|
|
|
// Retrieve map function by name.
|
|
switch c.Name {
|
|
case "count":
|
|
if _, ok := c.Args[0].(*influxql.Distinct); ok {
|
|
return MapCountDistinct, nil
|
|
}
|
|
if c, ok := c.Args[0].(*influxql.Call); ok {
|
|
if c.Name == "distinct" {
|
|
return MapCountDistinct, nil
|
|
}
|
|
}
|
|
return MapCount, nil
|
|
case "distinct":
|
|
return MapDistinct, nil
|
|
case "sum":
|
|
return MapSum, nil
|
|
case "mean":
|
|
return MapMean, nil
|
|
case "median":
|
|
return MapStddev, nil
|
|
case "min":
|
|
return func(input *MapInput) interface{} {
|
|
return MapMin(input, c.Fields()[0])
|
|
}, nil
|
|
case "max":
|
|
return func(input *MapInput) interface{} {
|
|
return MapMax(input, c.Fields()[0])
|
|
}, nil
|
|
case "spread":
|
|
return MapSpread, nil
|
|
case "stddev":
|
|
return MapStddev, nil
|
|
case "first":
|
|
return func(input *MapInput) interface{} {
|
|
return MapFirst(input, c.Fields()[0])
|
|
}, nil
|
|
case "last":
|
|
return func(input *MapInput) interface{} {
|
|
return MapLast(input, c.Fields()[0])
|
|
}, nil
|
|
|
|
case "top", "bottom":
|
|
// Capture information from the call that the Map function will require
|
|
lit, _ := c.Args[len(c.Args)-1].(*influxql.NumberLiteral)
|
|
limit := int(lit.Val)
|
|
fields := topCallArgs(c)
|
|
|
|
return func(input *MapInput) interface{} {
|
|
return MapTopBottom(input, limit, fields, len(c.Args), c.Name)
|
|
}, nil
|
|
case "percentile":
|
|
return MapEcho, nil
|
|
case "derivative", "non_negative_derivative":
|
|
// If the arg is another aggregate e.g. derivative(mean(value)), then
|
|
// use the map func for that nested aggregate
|
|
if fn, ok := c.Args[0].(*influxql.Call); ok {
|
|
return initializeMapFunc(fn)
|
|
}
|
|
return MapRawQuery, nil
|
|
default:
|
|
return nil, fmt.Errorf("function not found: %q", c.Name)
|
|
}
|
|
}
|
|
|
|
// InitializereduceFunc takes an aggregate call from the query and returns the reduceFunc
|
|
func initializeReduceFunc(c *influxql.Call) (reduceFunc, error) {
|
|
// Retrieve reduce function by name.
|
|
switch c.Name {
|
|
case "count":
|
|
if _, ok := c.Args[0].(*influxql.Distinct); ok {
|
|
return ReduceCountDistinct, nil
|
|
}
|
|
if c, ok := c.Args[0].(*influxql.Call); ok {
|
|
if c.Name == "distinct" {
|
|
return ReduceCountDistinct, nil
|
|
}
|
|
}
|
|
return ReduceSum, nil
|
|
case "distinct":
|
|
return ReduceDistinct, nil
|
|
case "sum":
|
|
return ReduceSum, nil
|
|
case "mean":
|
|
return ReduceMean, nil
|
|
case "median":
|
|
return ReduceMedian, nil
|
|
case "min":
|
|
return ReduceMin, nil
|
|
case "max":
|
|
return ReduceMax, nil
|
|
case "spread":
|
|
return ReduceSpread, nil
|
|
case "stddev":
|
|
return ReduceStddev, nil
|
|
case "first":
|
|
return ReduceFirst, nil
|
|
case "last":
|
|
return ReduceLast, nil
|
|
case "top", "bottom":
|
|
return func(values []interface{}) interface{} {
|
|
return ReduceTopBottom(values, c)
|
|
}, nil
|
|
case "percentile":
|
|
return func(values []interface{}) interface{} {
|
|
return ReducePercentile(values, c)
|
|
}, nil
|
|
case "derivative", "non_negative_derivative":
|
|
// If the arg is another aggregate e.g. derivative(mean(value)), then
|
|
// use the map func for that nested aggregate
|
|
if fn, ok := c.Args[0].(*influxql.Call); ok {
|
|
return initializeReduceFunc(fn)
|
|
}
|
|
return nil, fmt.Errorf("expected function argument to %s", c.Name)
|
|
default:
|
|
return nil, fmt.Errorf("function not found: %q", c.Name)
|
|
}
|
|
}
|
|
|
|
func InitializeUnmarshaller(c *influxql.Call) (UnmarshalFunc, error) {
|
|
// if c is nil it's a raw data query
|
|
if c == nil {
|
|
return func(b []byte) (interface{}, error) {
|
|
a := make([]*rawQueryMapOutput, 0)
|
|
err := json.Unmarshal(b, &a)
|
|
return a, err
|
|
}, nil
|
|
}
|
|
|
|
// Retrieve marshal function by name
|
|
switch c.Name {
|
|
case "mean":
|
|
return func(b []byte) (interface{}, error) {
|
|
var o meanMapOutput
|
|
err := json.Unmarshal(b, &o)
|
|
return &o, err
|
|
}, nil
|
|
case "spread":
|
|
return func(b []byte) (interface{}, error) {
|
|
var o spreadMapOutput
|
|
err := json.Unmarshal(b, &o)
|
|
return &o, err
|
|
}, nil
|
|
case "distinct":
|
|
return func(b []byte) (interface{}, error) {
|
|
var val interfaceValues
|
|
err := json.Unmarshal(b, &val)
|
|
return val, err
|
|
}, nil
|
|
case "first":
|
|
return func(b []byte) (interface{}, error) {
|
|
var o firstLastMapOutput
|
|
err := json.Unmarshal(b, &o)
|
|
return &o, err
|
|
}, nil
|
|
case "last":
|
|
return func(b []byte) (interface{}, error) {
|
|
var o firstLastMapOutput
|
|
err := json.Unmarshal(b, &o)
|
|
return &o, err
|
|
}, nil
|
|
case "stddev":
|
|
return func(b []byte) (interface{}, error) {
|
|
val := make([]float64, 0)
|
|
err := json.Unmarshal(b, &val)
|
|
return val, err
|
|
}, nil
|
|
case "median":
|
|
return func(b []byte) (interface{}, error) {
|
|
a := make([]float64, 0)
|
|
err := json.Unmarshal(b, &a)
|
|
return a, err
|
|
}, nil
|
|
default:
|
|
return func(b []byte) (interface{}, error) {
|
|
var val interface{}
|
|
err := json.Unmarshal(b, &val)
|
|
return val, err
|
|
}, nil
|
|
}
|
|
}
|
|
|
|
// MapCount computes the number of values in an iterator.
|
|
func MapCount(input *MapInput) interface{} {
|
|
n := float64(0)
|
|
for range input.Items {
|
|
n++
|
|
}
|
|
if n > 0 {
|
|
return n
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type interfaceValues []interface{}
|
|
|
|
func (d interfaceValues) Len() int { return len(d) }
|
|
func (d interfaceValues) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
|
|
func (d interfaceValues) Less(i, j int) bool {
|
|
cmpt, a, b := typeCompare(d[i], d[j])
|
|
cmpv := valueCompare(a, b)
|
|
if cmpv == 0 {
|
|
return cmpt < 0
|
|
}
|
|
return cmpv < 0
|
|
}
|
|
|
|
// MapDistinct computes the unique values in an iterator.
|
|
func MapDistinct(input *MapInput) interface{} {
|
|
m := make(map[interface{}]struct{})
|
|
for _, item := range input.Items {
|
|
m[item.Value] = struct{}{}
|
|
}
|
|
|
|
if len(m) == 0 {
|
|
return nil
|
|
}
|
|
|
|
results := make(interfaceValues, len(m))
|
|
var i int
|
|
for value, _ := range m {
|
|
results[i] = value
|
|
i++
|
|
}
|
|
return results
|
|
}
|
|
|
|
// ReduceDistinct finds the unique values for each key.
|
|
func ReduceDistinct(values []interface{}) interface{} {
|
|
var index = make(map[interface{}]struct{})
|
|
|
|
// index distinct values from each mapper
|
|
for _, v := range values {
|
|
if v == nil {
|
|
continue
|
|
}
|
|
d, ok := v.(interfaceValues)
|
|
if !ok {
|
|
msg := fmt.Sprintf("expected distinctValues, got: %T", v)
|
|
panic(msg)
|
|
}
|
|
for _, distinctValue := range d {
|
|
index[distinctValue] = struct{}{}
|
|
}
|
|
}
|
|
|
|
// convert map keys to an array
|
|
results := make(interfaceValues, len(index))
|
|
var i int
|
|
for k, _ := range index {
|
|
results[i] = k
|
|
i++
|
|
}
|
|
if len(results) > 0 {
|
|
sort.Sort(results)
|
|
return results
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// MapCountDistinct computes the unique count of values in an iterator.
|
|
func MapCountDistinct(input *MapInput) interface{} {
|
|
var index = make(map[interface{}]struct{})
|
|
|
|
for _, item := range input.Items {
|
|
index[item.Value] = struct{}{}
|
|
}
|
|
|
|
if len(index) == 0 {
|
|
return nil
|
|
}
|
|
|
|
return index
|
|
}
|
|
|
|
// ReduceCountDistinct finds the unique counts of values.
|
|
func ReduceCountDistinct(values []interface{}) interface{} {
|
|
var index = make(map[interface{}]struct{})
|
|
|
|
// index distinct values from each mapper
|
|
for _, v := range values {
|
|
if v == nil {
|
|
continue
|
|
}
|
|
d, ok := v.(map[interface{}]struct{})
|
|
if !ok {
|
|
msg := fmt.Sprintf("expected map[interface{}]struct{}, got: %T", v)
|
|
panic(msg)
|
|
}
|
|
for distinctCountValue, _ := range d {
|
|
index[distinctCountValue] = struct{}{}
|
|
}
|
|
}
|
|
|
|
return len(index)
|
|
}
|
|
|
|
type NumberType int8
|
|
|
|
const (
|
|
Float64Type NumberType = iota
|
|
Int64Type
|
|
)
|
|
|
|
// MapSum computes the summation of values in an iterator.
|
|
func MapSum(input *MapInput) interface{} {
|
|
if len(input.Items) == 0 {
|
|
return nil
|
|
}
|
|
|
|
n := float64(0)
|
|
var resultType NumberType
|
|
for _, item := range input.Items {
|
|
switch v := item.Value.(type) {
|
|
case float64:
|
|
n += v
|
|
case int64:
|
|
n += float64(v)
|
|
resultType = Int64Type
|
|
}
|
|
}
|
|
|
|
switch resultType {
|
|
case Float64Type:
|
|
return n
|
|
case Int64Type:
|
|
return int64(n)
|
|
default:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// ReduceSum computes the sum of values for each key.
|
|
func ReduceSum(values []interface{}) interface{} {
|
|
var n float64
|
|
count := 0
|
|
var resultType NumberType
|
|
for _, v := range values {
|
|
if v == nil {
|
|
continue
|
|
}
|
|
count++
|
|
switch n1 := v.(type) {
|
|
case float64:
|
|
n += n1
|
|
case int64:
|
|
n += float64(n1)
|
|
resultType = Int64Type
|
|
}
|
|
}
|
|
if count > 0 {
|
|
switch resultType {
|
|
case Float64Type:
|
|
return n
|
|
case Int64Type:
|
|
return int64(n)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// MapMean computes the count and sum of values in an iterator to be combined by the reducer.
|
|
func MapMean(input *MapInput) interface{} {
|
|
if len(input.Items) == 0 {
|
|
return nil
|
|
}
|
|
|
|
out := &meanMapOutput{}
|
|
for _, item := range input.Items {
|
|
out.Count++
|
|
switch v := item.Value.(type) {
|
|
case float64:
|
|
out.Mean += (v - out.Mean) / float64(out.Count)
|
|
case int64:
|
|
out.Mean += (float64(v) - out.Mean) / float64(out.Count)
|
|
out.ResultType = Int64Type
|
|
}
|
|
}
|
|
return out
|
|
}
|
|
|
|
type meanMapOutput struct {
|
|
Count int
|
|
Mean float64
|
|
ResultType NumberType
|
|
}
|
|
|
|
// ReduceMean computes the mean of values for each key.
|
|
func ReduceMean(values []interface{}) interface{} {
|
|
out := &meanMapOutput{}
|
|
var countSum int
|
|
for _, v := range values {
|
|
if v == nil {
|
|
continue
|
|
}
|
|
val := v.(*meanMapOutput)
|
|
countSum = out.Count + val.Count
|
|
out.Mean = val.Mean*(float64(val.Count)/float64(countSum)) + out.Mean*(float64(out.Count)/float64(countSum))
|
|
out.Count = countSum
|
|
}
|
|
if out.Count > 0 {
|
|
return out.Mean
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// ReduceMedian computes the median of values
|
|
func ReduceMedian(values []interface{}) interface{} {
|
|
var data []float64
|
|
// Collect all the data points
|
|
for _, value := range values {
|
|
if value == nil {
|
|
continue
|
|
}
|
|
data = append(data, value.([]float64)...)
|
|
}
|
|
|
|
length := len(data)
|
|
if length < 2 {
|
|
if length == 0 {
|
|
return nil
|
|
}
|
|
return data[0]
|
|
}
|
|
middle := length / 2
|
|
var sortedRange []float64
|
|
if length%2 == 0 {
|
|
sortedRange = getSortedRange(data, middle-1, 2)
|
|
var low, high = sortedRange[0], sortedRange[1]
|
|
return low + (high-low)/2
|
|
}
|
|
sortedRange = getSortedRange(data, middle, 1)
|
|
return sortedRange[0]
|
|
}
|
|
|
|
// getSortedRange returns a sorted subset of data. By using discardLowerRange and discardUpperRange to get the target
|
|
// subset (unsorted) and then just sorting that subset, the work can be reduced from O(N lg N), where N is len(data), to
|
|
// O(N + count lg count) for the average case
|
|
// - O(N) to discard the unwanted items
|
|
// - O(count lg count) to sort the count number of extracted items
|
|
// This can be useful for:
|
|
// - finding the median: getSortedRange(data, middle, 1)
|
|
// - finding the top N: getSortedRange(data, len(data) - N, N)
|
|
// - finding the bottom N: getSortedRange(data, 0, N)
|
|
func getSortedRange(data []float64, start int, count int) []float64 {
|
|
out := discardLowerRange(data, start)
|
|
k := len(out) - count
|
|
if k > 0 {
|
|
out = discardUpperRange(out, k)
|
|
}
|
|
sort.Float64s(out)
|
|
|
|
return out
|
|
}
|
|
|
|
// discardLowerRange discards the lower k elements of the sorted data set without sorting all the data. Sorting all of
|
|
// the data would take O(NlgN), where N is len(data), but partitioning to find the kth largest number is O(N) in the
|
|
// average case. The remaining N-k unsorted elements are returned - no kind of ordering is guaranteed on these elements.
|
|
func discardLowerRange(data []float64, k int) []float64 {
|
|
out := make([]float64, len(data)-k)
|
|
i := 0
|
|
|
|
// discard values lower than the desired range
|
|
for k > 0 {
|
|
lows, pivotValue, highs := partition(data)
|
|
|
|
lowLength := len(lows)
|
|
if lowLength > k {
|
|
// keep all the highs and the pivot
|
|
out[i] = pivotValue
|
|
i++
|
|
copy(out[i:], highs)
|
|
i += len(highs)
|
|
// iterate over the lows again
|
|
data = lows
|
|
} else {
|
|
// discard all the lows
|
|
data = highs
|
|
k -= lowLength
|
|
if k == 0 {
|
|
// if discarded enough lows, keep the pivot
|
|
out[i] = pivotValue
|
|
i++
|
|
} else {
|
|
// able to discard the pivot too
|
|
k--
|
|
}
|
|
}
|
|
}
|
|
copy(out[i:], data)
|
|
return out
|
|
}
|
|
|
|
// discardUpperRange discards the upper k elements of the sorted data set without sorting all the data. Sorting all of
|
|
// the data would take O(NlgN), where N is len(data), but partitioning to find the kth largest number is O(N) in the
|
|
// average case. The remaining N-k unsorted elements are returned - no kind of ordering is guaranteed on these elements.
|
|
func discardUpperRange(data []float64, k int) []float64 {
|
|
out := make([]float64, len(data)-k)
|
|
i := 0
|
|
|
|
// discard values higher than the desired range
|
|
for k > 0 {
|
|
lows, pivotValue, highs := partition(data)
|
|
|
|
highLength := len(highs)
|
|
if highLength > k {
|
|
// keep all the lows and the pivot
|
|
out[i] = pivotValue
|
|
i++
|
|
copy(out[i:], lows)
|
|
i += len(lows)
|
|
// iterate over the highs again
|
|
data = highs
|
|
} else {
|
|
// discard all the highs
|
|
data = lows
|
|
k -= highLength
|
|
if k == 0 {
|
|
// if discarded enough highs, keep the pivot
|
|
out[i] = pivotValue
|
|
i++
|
|
} else {
|
|
// able to discard the pivot too
|
|
k--
|
|
}
|
|
}
|
|
}
|
|
copy(out[i:], data)
|
|
return out
|
|
}
|
|
|
|
// partition takes a list of data, chooses a random pivot index and returns a list of elements lower than the
|
|
// pivotValue, the pivotValue, and a list of elements higher than the pivotValue. partition mutates data.
|
|
func partition(data []float64) (lows []float64, pivotValue float64, highs []float64) {
|
|
length := len(data)
|
|
// there are better (more complex) ways to calculate pivotIndex (e.g. median of 3, median of 3 medians) if this
|
|
// proves to be inadequate.
|
|
pivotIndex := rand.Int() % length
|
|
pivotValue = data[pivotIndex]
|
|
low, high := 1, length-1
|
|
|
|
// put the pivot in the first position
|
|
data[pivotIndex], data[0] = data[0], data[pivotIndex]
|
|
|
|
// partition the data around the pivot
|
|
for low <= high {
|
|
for low <= high && data[low] <= pivotValue {
|
|
low++
|
|
}
|
|
for high >= low && data[high] >= pivotValue {
|
|
high--
|
|
}
|
|
if low < high {
|
|
data[low], data[high] = data[high], data[low]
|
|
}
|
|
}
|
|
|
|
return data[1:low], pivotValue, data[high+1:]
|
|
}
|
|
|
|
type minMaxMapOut struct {
|
|
Time int64
|
|
Val float64
|
|
Type NumberType
|
|
Fields map[string]interface{}
|
|
Tags map[string]string
|
|
}
|
|
|
|
// MapMin collects the values to pass to the reducer
|
|
func MapMin(input *MapInput, fieldName string) interface{} {
|
|
min := &minMaxMapOut{}
|
|
|
|
pointsYielded := false
|
|
var val float64
|
|
|
|
for _, item := range input.Items {
|
|
switch v := item.Value.(type) {
|
|
case float64:
|
|
val = v
|
|
case int64:
|
|
val = float64(v)
|
|
min.Type = Int64Type
|
|
case map[string]interface{}:
|
|
if d, t, ok := decodeValueAndNumberType(v[fieldName]); ok {
|
|
val, min.Type = d, t
|
|
} else {
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Initialize min
|
|
if !pointsYielded {
|
|
min.Time = item.Timestamp
|
|
min.Val = val
|
|
min.Fields = item.Fields
|
|
min.Tags = item.Tags
|
|
pointsYielded = true
|
|
}
|
|
current := min.Val
|
|
min.Val = math.Min(min.Val, val)
|
|
|
|
// Check to see if the value changed, if so, update the fields/tags
|
|
if current != min.Val {
|
|
min.Time = item.Timestamp
|
|
min.Fields = item.Fields
|
|
min.Tags = item.Tags
|
|
}
|
|
}
|
|
if pointsYielded {
|
|
return min
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// ReduceMin computes the min of value.
|
|
func ReduceMin(values []interface{}) interface{} {
|
|
min := &minMaxMapOut{}
|
|
pointsYielded := false
|
|
|
|
for _, value := range values {
|
|
if value == nil {
|
|
continue
|
|
}
|
|
|
|
v, ok := value.(*minMaxMapOut)
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
// Initialize min
|
|
if !pointsYielded {
|
|
min.Time = v.Time
|
|
min.Val = v.Val
|
|
min.Type = v.Type
|
|
min.Fields = v.Fields
|
|
min.Tags = v.Tags
|
|
pointsYielded = true
|
|
}
|
|
min.Val = math.Min(min.Val, v.Val)
|
|
current := min.Val
|
|
if current != min.Val {
|
|
min.Time = v.Time
|
|
min.Fields = v.Fields
|
|
min.Tags = v.Tags
|
|
}
|
|
}
|
|
if pointsYielded {
|
|
switch min.Type {
|
|
case Float64Type:
|
|
return PositionPoint{
|
|
Time: min.Time,
|
|
Value: min.Val,
|
|
Fields: min.Fields,
|
|
Tags: min.Tags,
|
|
}
|
|
case Int64Type:
|
|
return PositionPoint{
|
|
Time: min.Time,
|
|
Value: int64(min.Val),
|
|
Fields: min.Fields,
|
|
Tags: min.Tags,
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func decodeValueAndNumberType(v interface{}) (float64, NumberType, bool) {
|
|
switch n := v.(type) {
|
|
case float64:
|
|
return n, Float64Type, true
|
|
case int64:
|
|
return float64(n), Int64Type, true
|
|
default:
|
|
return 0, Float64Type, false
|
|
}
|
|
}
|
|
|
|
// MapMax collects the values to pass to the reducer
|
|
func MapMax(input *MapInput, fieldName string) interface{} {
|
|
max := &minMaxMapOut{}
|
|
|
|
pointsYielded := false
|
|
var val float64
|
|
|
|
for _, item := range input.Items {
|
|
switch v := item.Value.(type) {
|
|
case float64:
|
|
val = v
|
|
case int64:
|
|
val = float64(v)
|
|
max.Type = Int64Type
|
|
case map[string]interface{}:
|
|
if d, t, ok := decodeValueAndNumberType(v[fieldName]); ok {
|
|
val, max.Type = d, t
|
|
} else {
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Initialize max
|
|
if !pointsYielded {
|
|
max.Time = item.Timestamp
|
|
max.Val = val
|
|
max.Fields = item.Fields
|
|
max.Tags = item.Tags
|
|
pointsYielded = true
|
|
}
|
|
current := max.Val
|
|
max.Val = math.Max(max.Val, val)
|
|
|
|
// Check to see if the value changed, if so, update the fields/tags
|
|
if current != max.Val {
|
|
max.Time = item.Timestamp
|
|
max.Fields = item.Fields
|
|
max.Tags = item.Tags
|
|
}
|
|
}
|
|
if pointsYielded {
|
|
return max
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// ReduceMax computes the max of value.
|
|
func ReduceMax(values []interface{}) interface{} {
|
|
max := &minMaxMapOut{}
|
|
pointsYielded := false
|
|
|
|
for _, value := range values {
|
|
if value == nil {
|
|
continue
|
|
}
|
|
|
|
v, ok := value.(*minMaxMapOut)
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
// Initialize max
|
|
if !pointsYielded {
|
|
max.Time = v.Time
|
|
max.Val = v.Val
|
|
max.Type = v.Type
|
|
max.Fields = v.Fields
|
|
max.Tags = v.Tags
|
|
pointsYielded = true
|
|
}
|
|
current := max.Val
|
|
max.Val = math.Max(max.Val, v.Val)
|
|
if current != max.Val {
|
|
max.Time = v.Time
|
|
max.Fields = v.Fields
|
|
max.Tags = v.Tags
|
|
}
|
|
}
|
|
if pointsYielded {
|
|
switch max.Type {
|
|
case Float64Type:
|
|
return PositionPoint{
|
|
Time: max.Time,
|
|
Value: max.Val,
|
|
Fields: max.Fields,
|
|
Tags: max.Tags,
|
|
}
|
|
case Int64Type:
|
|
return PositionPoint{
|
|
Time: max.Time,
|
|
Value: int64(max.Val),
|
|
Fields: max.Fields,
|
|
Tags: max.Tags,
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type spreadMapOutput struct {
|
|
Min, Max float64
|
|
Type NumberType
|
|
}
|
|
|
|
// MapSpread collects the values to pass to the reducer
|
|
func MapSpread(input *MapInput) interface{} {
|
|
out := &spreadMapOutput{}
|
|
pointsYielded := false
|
|
var val float64
|
|
|
|
for _, item := range input.Items {
|
|
switch v := item.Value.(type) {
|
|
case float64:
|
|
val = v
|
|
case int64:
|
|
val = float64(v)
|
|
out.Type = Int64Type
|
|
}
|
|
|
|
// Initialize
|
|
if !pointsYielded {
|
|
out.Max = val
|
|
out.Min = val
|
|
pointsYielded = true
|
|
}
|
|
out.Max = math.Max(out.Max, val)
|
|
out.Min = math.Min(out.Min, val)
|
|
}
|
|
if pointsYielded {
|
|
return out
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// ReduceSpread computes the spread of values.
|
|
func ReduceSpread(values []interface{}) interface{} {
|
|
result := &spreadMapOutput{}
|
|
pointsYielded := false
|
|
|
|
for _, v := range values {
|
|
if v == nil {
|
|
continue
|
|
}
|
|
val := v.(*spreadMapOutput)
|
|
// Initialize
|
|
if !pointsYielded {
|
|
result.Max = val.Max
|
|
result.Min = val.Min
|
|
result.Type = val.Type
|
|
pointsYielded = true
|
|
}
|
|
result.Max = math.Max(result.Max, val.Max)
|
|
result.Min = math.Min(result.Min, val.Min)
|
|
}
|
|
if pointsYielded {
|
|
switch result.Type {
|
|
case Float64Type:
|
|
return result.Max - result.Min
|
|
case Int64Type:
|
|
return int64(result.Max - result.Min)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// MapStddev collects the values to pass to the reducer
|
|
func MapStddev(input *MapInput) interface{} {
|
|
var a []float64
|
|
for _, item := range input.Items {
|
|
switch v := item.Value.(type) {
|
|
case float64:
|
|
a = append(a, v)
|
|
case int64:
|
|
a = append(a, float64(v))
|
|
}
|
|
}
|
|
return a
|
|
}
|
|
|
|
// ReduceStddev computes the stddev of values.
|
|
func ReduceStddev(values []interface{}) interface{} {
|
|
var data []float64
|
|
// Collect all the data points
|
|
for _, value := range values {
|
|
if value == nil {
|
|
continue
|
|
}
|
|
data = append(data, value.([]float64)...)
|
|
}
|
|
|
|
// If no data or we only have one point, it's nil or undefined
|
|
if len(data) < 2 {
|
|
return nil
|
|
}
|
|
|
|
// Get the mean
|
|
var mean float64
|
|
var count int
|
|
for _, v := range data {
|
|
count++
|
|
mean += (v - mean) / float64(count)
|
|
}
|
|
// Get the variance
|
|
var variance float64
|
|
for _, v := range data {
|
|
dif := v - mean
|
|
sq := math.Pow(dif, 2)
|
|
variance += sq
|
|
}
|
|
variance = variance / float64(count-1)
|
|
stddev := math.Sqrt(variance)
|
|
|
|
return stddev
|
|
}
|
|
|
|
type firstLastMapOutput struct {
|
|
Time int64
|
|
Value interface{}
|
|
Fields map[string]interface{}
|
|
Tags map[string]string
|
|
}
|
|
|
|
// MapFirst collects the values to pass to the reducer
|
|
// This function assumes time ordered input
|
|
func MapFirst(input *MapInput, fieldName string) interface{} {
|
|
if len(input.Items) == 0 {
|
|
return nil
|
|
}
|
|
|
|
k, v := input.Items[0].Timestamp, input.Items[0].Value
|
|
tags := input.Items[0].Tags
|
|
fields := input.Items[0].Fields
|
|
if n, ok := v.(map[string]interface{}); ok {
|
|
v = n[fieldName]
|
|
}
|
|
|
|
// Find greatest value at same timestamp.
|
|
for _, item := range input.Items[1:] {
|
|
nextk, nextv := item.Timestamp, item.Value
|
|
if nextk != k {
|
|
break
|
|
}
|
|
if n, ok := nextv.(map[string]interface{}); ok {
|
|
nextv = n[fieldName]
|
|
}
|
|
|
|
if greaterThan(nextv, v) {
|
|
fields = item.Fields
|
|
tags = item.Tags
|
|
v = nextv
|
|
}
|
|
}
|
|
return &firstLastMapOutput{Time: k, Value: v, Fields: fields, Tags: tags}
|
|
}
|
|
|
|
// ReduceFirst computes the first of value.
|
|
func ReduceFirst(values []interface{}) interface{} {
|
|
out := &firstLastMapOutput{}
|
|
pointsYielded := false
|
|
|
|
for _, v := range values {
|
|
if v == nil {
|
|
continue
|
|
}
|
|
val := v.(*firstLastMapOutput)
|
|
// Initialize first
|
|
if !pointsYielded {
|
|
out.Time = val.Time
|
|
out.Value = val.Value
|
|
out.Fields = val.Fields
|
|
out.Tags = val.Tags
|
|
pointsYielded = true
|
|
}
|
|
if val.Time < out.Time {
|
|
out.Time = val.Time
|
|
out.Value = val.Value
|
|
out.Fields = val.Fields
|
|
out.Tags = val.Tags
|
|
} else if val.Time == out.Time && greaterThan(val.Value, out.Value) {
|
|
out.Value = val.Value
|
|
out.Fields = val.Fields
|
|
out.Tags = val.Tags
|
|
}
|
|
}
|
|
if pointsYielded {
|
|
return PositionPoint{
|
|
Time: out.Time,
|
|
Value: out.Value,
|
|
Fields: out.Fields,
|
|
Tags: out.Tags,
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// MapLast collects the values to pass to the reducer
|
|
func MapLast(input *MapInput, fieldName string) interface{} {
|
|
out := &firstLastMapOutput{}
|
|
pointsYielded := false
|
|
|
|
for _, item := range input.Items {
|
|
k, v := item.Timestamp, item.Value
|
|
if m, ok := v.(map[string]interface{}); ok {
|
|
v = m[fieldName]
|
|
}
|
|
|
|
// Initialize last
|
|
if !pointsYielded {
|
|
out.Time = k
|
|
out.Value = v
|
|
out.Fields = item.Fields
|
|
out.Tags = item.Tags
|
|
pointsYielded = true
|
|
}
|
|
if k > out.Time {
|
|
out.Time = k
|
|
out.Value = v
|
|
out.Fields = item.Fields
|
|
out.Tags = item.Tags
|
|
} else if k == out.Time && greaterThan(v, out.Value) {
|
|
out.Value = v
|
|
out.Fields = item.Fields
|
|
out.Tags = item.Tags
|
|
}
|
|
}
|
|
if pointsYielded {
|
|
return out
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// ReduceLast computes the last of value.
|
|
func ReduceLast(values []interface{}) interface{} {
|
|
out := &firstLastMapOutput{}
|
|
pointsYielded := false
|
|
|
|
for _, v := range values {
|
|
if v == nil {
|
|
continue
|
|
}
|
|
|
|
val := v.(*firstLastMapOutput)
|
|
// Initialize last
|
|
if !pointsYielded {
|
|
out.Time = val.Time
|
|
out.Value = val.Value
|
|
out.Fields = val.Fields
|
|
out.Tags = val.Tags
|
|
pointsYielded = true
|
|
}
|
|
if val.Time > out.Time {
|
|
out.Time = val.Time
|
|
out.Value = val.Value
|
|
out.Fields = val.Fields
|
|
out.Tags = val.Tags
|
|
} else if val.Time == out.Time && greaterThan(val.Value, out.Value) {
|
|
out.Value = val.Value
|
|
out.Fields = val.Fields
|
|
out.Tags = val.Tags
|
|
}
|
|
}
|
|
if pointsYielded {
|
|
return PositionPoint{
|
|
Time: out.Time,
|
|
Value: out.Value,
|
|
Fields: out.Fields,
|
|
Tags: out.Tags,
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type positionOut struct {
|
|
points PositionPoints
|
|
callArgs []string // ordered args in the call
|
|
}
|
|
|
|
func (p *positionOut) lessKey(a, b *PositionPoint) bool {
|
|
t1, t2 := a.Tags, b.Tags
|
|
for _, k := range p.callArgs {
|
|
if t1[k] != t2[k] {
|
|
return t1[k] < t2[k]
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// typeCompare compares the types of a and b and returns an arbitrary ordering.
|
|
// It returns -1 if type(a) < type(b) , 0 if type(a) == type(b), or 1 if type(a) > type(b), following the strcmp convention
|
|
// from C.
|
|
//
|
|
// If the types are not equal, then it will attempt to coerce them to floating point and return them in the last 2 arguments.
|
|
// If the type cannot be coerced to floating point, it is returned unaltered.
|
|
func typeCompare(a, b interface{}) (int, interface{}, interface{}) {
|
|
const (
|
|
stringWeight = iota
|
|
boolWeight
|
|
intWeight
|
|
floatWeight
|
|
)
|
|
|
|
va := reflect.ValueOf(a)
|
|
vb := reflect.ValueOf(b)
|
|
|
|
vakind := va.Type().Kind()
|
|
vbkind := vb.Type().Kind()
|
|
|
|
// same kind. Ordering is dependent on value
|
|
if vakind == vbkind {
|
|
return 0, a, b
|
|
}
|
|
wa, a := inferFloat(va)
|
|
wb, b := inferFloat(vb)
|
|
if wa < wb {
|
|
return -1, a, b
|
|
} else if wa == wb {
|
|
return 0, a, b
|
|
}
|
|
return 1, a, b
|
|
}
|
|
|
|
// returns a weighting and if applicable, the value coerced to a float
|
|
func inferFloat(v reflect.Value) (weight int, value interface{}) {
|
|
const (
|
|
stringWeight = iota
|
|
boolWeight
|
|
intWeight
|
|
floatWeight
|
|
)
|
|
kind := v.Kind()
|
|
switch kind {
|
|
case reflect.Uint64, reflect.Uint32, reflect.Uint16, reflect.Uint8:
|
|
return intWeight, float64(v.Uint())
|
|
case reflect.Int64, reflect.Int32, reflect.Int16, reflect.Int8:
|
|
return intWeight, float64(v.Int())
|
|
case reflect.Float64, reflect.Float32:
|
|
return floatWeight, v.Float()
|
|
case reflect.Bool:
|
|
return boolWeight, v.Interface()
|
|
case reflect.String:
|
|
return stringWeight, v.Interface()
|
|
}
|
|
panic(fmt.Sprintf("interfaceValues.Less - unreachable code; type was %T", v.Interface()))
|
|
}
|
|
|
|
func cmpFloat(a, b float64) int {
|
|
if a == b {
|
|
return 0
|
|
} else if a < b {
|
|
return -1
|
|
}
|
|
return 1
|
|
}
|
|
|
|
func cmpInt(a, b int64) int {
|
|
if a == b {
|
|
return 0
|
|
} else if a < b {
|
|
return -1
|
|
}
|
|
return 1
|
|
}
|
|
|
|
func cmpUint(a, b uint64) int {
|
|
if a == b {
|
|
return 0
|
|
} else if a < b {
|
|
return -1
|
|
}
|
|
return 1
|
|
}
|
|
|
|
// valueCompare returns -1 if a < b , 0 if a == b, or 1 if a > b
|
|
// If the interfaces are 2 different types, then 0 is returned
|
|
func valueCompare(a, b interface{}) int {
|
|
if reflect.TypeOf(a).Kind() != reflect.TypeOf(b).Kind() {
|
|
return 0
|
|
}
|
|
// compare by float64/int64 first as that is the most likely match
|
|
{
|
|
d1, ok1 := a.(float64)
|
|
d2, ok2 := b.(float64)
|
|
if ok1 && ok2 {
|
|
return cmpFloat(d1, d2)
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(int64)
|
|
d2, ok2 := b.(int64)
|
|
if ok1 && ok2 {
|
|
return cmpInt(d1, d2)
|
|
}
|
|
}
|
|
|
|
// compare by every numeric type left
|
|
{
|
|
d1, ok1 := a.(float32)
|
|
d2, ok2 := b.(float32)
|
|
if ok1 && ok2 {
|
|
return cmpFloat(float64(d1), float64(d2))
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(uint64)
|
|
d2, ok2 := b.(uint64)
|
|
if ok1 && ok2 {
|
|
return cmpUint(d1, d2)
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(uint32)
|
|
d2, ok2 := b.(uint32)
|
|
if ok1 && ok2 {
|
|
return cmpUint(uint64(d1), uint64(d2))
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(uint16)
|
|
d2, ok2 := b.(uint16)
|
|
if ok1 && ok2 {
|
|
return cmpUint(uint64(d1), uint64(d2))
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(uint8)
|
|
d2, ok2 := b.(uint8)
|
|
if ok1 && ok2 {
|
|
return cmpUint(uint64(d1), uint64(d2))
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(int32)
|
|
d2, ok2 := b.(int32)
|
|
if ok1 && ok2 {
|
|
return cmpInt(int64(d1), int64(d2))
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(int16)
|
|
d2, ok2 := b.(int16)
|
|
if ok1 && ok2 {
|
|
return cmpInt(int64(d1), int64(d2))
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(int8)
|
|
d2, ok2 := b.(int8)
|
|
if ok1 && ok2 {
|
|
return cmpInt(int64(d1), int64(d2))
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(bool)
|
|
d2, ok2 := b.(bool)
|
|
if ok1 && ok2 {
|
|
if d1 == d2 {
|
|
return 0
|
|
} else if d1 == true && d2 == false {
|
|
return 1
|
|
}
|
|
return -1
|
|
}
|
|
}
|
|
|
|
{
|
|
d1, ok1 := a.(string)
|
|
d2, ok2 := b.(string)
|
|
if ok1 && ok2 {
|
|
return strings.Compare(d1, d2)
|
|
}
|
|
}
|
|
panic(fmt.Sprintf("unreachable code; types were %T, %T", a, b))
|
|
}
|
|
|
|
// PositionPoints is a slice of PositionPoints used to return richer data from a reduce func
|
|
type PositionPoints []PositionPoint
|
|
|
|
// PositionPoint will return all data points from a written point that were selected in the query
|
|
// to be used in the post processing phase of the query executor to fill in additional
|
|
// tag and field values
|
|
type PositionPoint struct {
|
|
Time int64
|
|
Value interface{}
|
|
Fields map[string]interface{}
|
|
Tags map[string]string
|
|
}
|
|
|
|
type topBottomMapOut struct {
|
|
*positionOut
|
|
bottom bool
|
|
}
|
|
|
|
func (t *topBottomMapOut) Len() int { return len(t.points) }
|
|
func (t *topBottomMapOut) Swap(i, j int) { t.points[i], t.points[j] = t.points[j], t.points[i] }
|
|
func (t *topBottomMapOut) Less(i, j int) bool {
|
|
return t.positionPointLess(&t.points[i], &t.points[j])
|
|
}
|
|
|
|
func (t *topBottomMapOut) positionPointLess(pa, pb *PositionPoint) bool {
|
|
// old C trick makes this code easier to read. Imagine
|
|
// that the OP in "cmp(i, j) OP 0" is the comparison you want
|
|
// between i and j
|
|
cmpt, a, b := typeCompare(pa.Value, pb.Value)
|
|
cmpv := valueCompare(a, b)
|
|
if cmpv != 0 {
|
|
if t.bottom {
|
|
return cmpv > 0
|
|
}
|
|
return cmpv < 0
|
|
}
|
|
if cmpt != 0 {
|
|
return cmpt < 0
|
|
}
|
|
k1, k2 := pa.Time, pb.Time
|
|
if k1 != k2 {
|
|
return k1 > k2
|
|
}
|
|
return !t.lessKey(pa, pb)
|
|
}
|
|
|
|
// We never use this function, so make it a no-op.
|
|
func (t *topBottomMapOut) Push(i interface{}) {
|
|
panic("someone used the function")
|
|
}
|
|
|
|
// this function doesn't return anything meaningful, since we don't look at the
|
|
// return value and we don't want to allocate for generating an interface.
|
|
func (t *topBottomMapOut) Pop() interface{} {
|
|
t.points = t.points[:len(t.points)-1]
|
|
return nil
|
|
}
|
|
|
|
func (t *topBottomMapOut) insert(p PositionPoint) {
|
|
t.points[0] = p
|
|
heap.Fix(t, 0)
|
|
}
|
|
|
|
type topBottomReduceOut struct {
|
|
positionOut
|
|
bottom bool
|
|
}
|
|
|
|
func (t topBottomReduceOut) Len() int { return len(t.points) }
|
|
func (t topBottomReduceOut) Swap(i, j int) { t.points[i], t.points[j] = t.points[j], t.points[i] }
|
|
func (t topBottomReduceOut) Less(i, j int) bool {
|
|
// Now sort by time first, not value
|
|
|
|
k1, k2 := t.points[i].Time, t.points[j].Time
|
|
if k1 != k2 {
|
|
return k1 < k2
|
|
}
|
|
cmpt, a, b := typeCompare(t.points[i].Value, t.points[j].Value)
|
|
cmpv := valueCompare(a, b)
|
|
if cmpv != 0 {
|
|
if t.bottom {
|
|
return cmpv < 0
|
|
}
|
|
return cmpv > 0
|
|
}
|
|
if cmpt != 0 {
|
|
return cmpt < 0
|
|
}
|
|
return t.lessKey(&t.points[i], &t.points[j])
|
|
}
|
|
|
|
// callArgs will get any additional field/tag names that may be needed to sort with
|
|
// it is important to maintain the order of these that they were asked for in the call
|
|
// for sorting purposes
|
|
func topCallArgs(c *influxql.Call) []string {
|
|
var names []string
|
|
for _, v := range c.Args[1 : len(c.Args)-1] {
|
|
if f, ok := v.(*influxql.VarRef); ok {
|
|
names = append(names, f.Val)
|
|
}
|
|
}
|
|
return names
|
|
}
|
|
|
|
func tagkeytop(args []string, fields map[string]interface{}, keys map[string]string) string {
|
|
key := ""
|
|
for _, a := range args {
|
|
if v, ok := fields[a]; ok {
|
|
key += a + ":" + fmt.Sprintf("%v", v) + ","
|
|
continue
|
|
}
|
|
if v, ok := keys[a]; ok {
|
|
key += a + ":" + v + ","
|
|
continue
|
|
}
|
|
}
|
|
return key
|
|
}
|
|
|
|
// map iterator. We need this for the top
|
|
// query, but luckily that doesn't require ordered
|
|
// iteration, so we can fake it
|
|
type mapIter struct {
|
|
m map[string]PositionPoint
|
|
currTags map[string]string
|
|
currFields map[string]interface{}
|
|
tmin int64
|
|
}
|
|
|
|
func (m *mapIter) TMin() int64 {
|
|
return m.tmin
|
|
}
|
|
|
|
func (m *mapIter) Fields() map[string]interface{} {
|
|
return m.currFields
|
|
}
|
|
|
|
func (m *mapIter) Tags() map[string]string {
|
|
return m.currTags
|
|
}
|
|
|
|
func (m *mapIter) Next() (time int64, value interface{}) {
|
|
// this is a bit ugly, but can't think of any other way that doesn't involve dumping
|
|
// the entire map to an array
|
|
for key, p := range m.m {
|
|
m.currFields = p.Fields
|
|
m.currTags = p.Tags
|
|
time = p.Time
|
|
value = p.Value
|
|
delete(m.m, key)
|
|
return
|
|
}
|
|
return -1, nil
|
|
}
|
|
|
|
// MapTopBottom emits the top/bottom data points for each group by interval
|
|
func MapTopBottom(input *MapInput, limit int, fields []string, argCount int, callName string) interface{} {
|
|
out := positionOut{callArgs: fields}
|
|
out.points = make([]PositionPoint, 0, limit)
|
|
minheap := topBottomMapOut{
|
|
&out,
|
|
callName == "bottom",
|
|
}
|
|
tagmap := make(map[string]PositionPoint)
|
|
|
|
// throughout this function, we refer to max and top. This is by the ordering specified by
|
|
// minheap, not the ordering based on value. Since this function handles both top and bottom
|
|
// max can be the lowest valued entry.
|
|
|
|
// buffer so we don't allocate every time through
|
|
var pp PositionPoint
|
|
if argCount > 2 {
|
|
// this is a tag aggregating query.
|
|
// For each unique permutation of the tags given,
|
|
// select the max and then fall through to select top of those
|
|
// points
|
|
for _, item := range input.Items {
|
|
pp = PositionPoint{
|
|
Time: item.Timestamp,
|
|
Value: item.Value,
|
|
Fields: item.Fields,
|
|
Tags: item.Tags,
|
|
}
|
|
tags := item.Tags
|
|
|
|
// TODO in the future we need to send in fields as well
|
|
// this will allow a user to query on both fields and tags
|
|
// fields will take the priority over tags if there is a name collision
|
|
key := tagkeytop(fields, nil, tags)
|
|
p, ok := tagmap[key]
|
|
if !ok || minheap.positionPointLess(&p, &pp) {
|
|
tagmap[key] = pp
|
|
}
|
|
}
|
|
|
|
items := make([]MapItem, 0, len(tagmap))
|
|
for _, p := range tagmap {
|
|
items = append(items, MapItem{Timestamp: p.Time, Value: p.Value, Fields: p.Fields, Tags: p.Tags})
|
|
}
|
|
input = &MapInput{
|
|
TMin: input.TMin,
|
|
Items: items,
|
|
}
|
|
}
|
|
|
|
for _, item := range input.Items {
|
|
t := item.Timestamp
|
|
if input.TMin > -1 {
|
|
t = input.TMin
|
|
}
|
|
if len(out.points) < limit {
|
|
out.points = append(out.points, PositionPoint{t, item.Value, item.Fields, item.Tags})
|
|
if len(out.points) == limit {
|
|
heap.Init(&minheap)
|
|
}
|
|
} else {
|
|
// we're over the limit, so find out if we're bigger than the
|
|
// smallest point in the set and eject it if we are
|
|
minval := &out.points[0]
|
|
pp = PositionPoint{t, item.Value, item.Fields, item.Tags}
|
|
if minheap.positionPointLess(minval, &pp) {
|
|
minheap.insert(pp)
|
|
}
|
|
}
|
|
}
|
|
|
|
// should only happen on empty iterator.
|
|
if len(out.points) == 0 {
|
|
return nil
|
|
} else if len(out.points) < limit {
|
|
// it would be as fast to just sort regularly here,
|
|
// but falling down to the heapsort will mean we can get
|
|
// rid of another sort order.
|
|
heap.Init(&minheap)
|
|
}
|
|
|
|
// minheap should now contain the largest/smallest values that were encountered
|
|
// during iteration.
|
|
//
|
|
// we want these values in ascending sorted order. We can achieve this by iteratively
|
|
// removing the lowest element and putting it at the end of the array. This is analogous
|
|
// to a heap sort.
|
|
//
|
|
// computer science is fun!
|
|
result := out.points
|
|
for len(out.points) > 0 {
|
|
p := out.points[0]
|
|
heap.Pop(&minheap)
|
|
|
|
// reslice so that we can get to the element just after the heap
|
|
endslice := out.points[:len(out.points)+1]
|
|
endslice[len(endslice)-1] = p
|
|
}
|
|
|
|
// the ascending order is now in the result slice
|
|
return result
|
|
}
|
|
|
|
// ReduceTop computes the top values for each key.
|
|
// This function assumes that its inputs are in sorted ascending order.
|
|
func ReduceTopBottom(values []interface{}, c *influxql.Call) interface{} {
|
|
lit, _ := c.Args[len(c.Args)-1].(*influxql.NumberLiteral)
|
|
limit := int(lit.Val)
|
|
|
|
out := positionOut{callArgs: topCallArgs(c)}
|
|
minheap := topBottomMapOut{&out, c.Name == "bottom"}
|
|
results := make([]PositionPoints, 0, len(values))
|
|
out.points = make([]PositionPoint, 0, limit)
|
|
for _, v := range values {
|
|
if v == nil {
|
|
continue
|
|
}
|
|
o, ok := v.(PositionPoints)
|
|
if ok {
|
|
results = append(results, o)
|
|
}
|
|
}
|
|
// These ranges are all in sorted ascending order
|
|
// so we can grab the top value out of all of them
|
|
// to figure out the top X ones.
|
|
for i := 0; i < limit; i++ {
|
|
var max *PositionPoint
|
|
whichselected := -1
|
|
for iter, v := range results {
|
|
if len(v) > 0 && (max == nil || minheap.positionPointLess(max, &v[0])) {
|
|
max = &v[0]
|
|
whichselected = iter
|
|
}
|
|
}
|
|
if whichselected == -1 {
|
|
// none of the points have any values
|
|
// so we can return what we have now
|
|
sort.Sort(topBottomReduceOut{out, c.Name == "bottom"})
|
|
return out.points
|
|
}
|
|
v := results[whichselected]
|
|
out.points = append(out.points, v[0])
|
|
results[whichselected] = v[1:]
|
|
}
|
|
|
|
// now we need to resort the tops by time
|
|
sort.Sort(topBottomReduceOut{out, c.Name == "bottom"})
|
|
return out.points
|
|
}
|
|
|
|
// MapEcho emits the data points for each group by interval
|
|
func MapEcho(input *MapInput) interface{} {
|
|
var values []interface{}
|
|
for _, item := range input.Items {
|
|
values = append(values, item.Value)
|
|
}
|
|
return values
|
|
}
|
|
|
|
// ReducePercentile computes the percentile of values for each key.
|
|
func ReducePercentile(values []interface{}, c *influxql.Call) interface{} {
|
|
// Checks that this arg exists and is a valid type are done in the parsing validation
|
|
// and have test coverage there
|
|
lit, _ := c.Args[1].(*influxql.NumberLiteral)
|
|
percentile := lit.Val
|
|
|
|
var allValues []float64
|
|
|
|
for _, v := range values {
|
|
if v == nil {
|
|
continue
|
|
}
|
|
|
|
vals := v.([]interface{})
|
|
for _, v := range vals {
|
|
switch v.(type) {
|
|
case int64:
|
|
allValues = append(allValues, float64(v.(int64)))
|
|
case float64:
|
|
allValues = append(allValues, v.(float64))
|
|
}
|
|
}
|
|
}
|
|
|
|
sort.Float64s(allValues)
|
|
length := len(allValues)
|
|
index := int(math.Floor(float64(length)*percentile/100.0+0.5)) - 1
|
|
|
|
if index < 0 || index >= len(allValues) {
|
|
return nil
|
|
}
|
|
|
|
return allValues[index]
|
|
}
|
|
|
|
// IsNumeric returns whether a given aggregate can only be run on numeric fields.
|
|
func IsNumeric(c *influxql.Call) bool {
|
|
switch c.Name {
|
|
case "count", "first", "last", "distinct":
|
|
return false
|
|
default:
|
|
return true
|
|
}
|
|
}
|
|
|
|
// MapRawQuery is for queries without aggregates
|
|
func MapRawQuery(input *MapInput) interface{} {
|
|
var values []*rawQueryMapOutput
|
|
for _, item := range input.Items {
|
|
values = append(values, &rawQueryMapOutput{item.Timestamp, item.Value})
|
|
}
|
|
return values
|
|
}
|
|
|
|
type rawQueryMapOutput struct {
|
|
Time int64
|
|
Values interface{}
|
|
}
|
|
|
|
func (r *rawQueryMapOutput) String() string {
|
|
return fmt.Sprintf("{%#v %#v}", r.Time, r.Values)
|
|
}
|
|
|
|
type rawOutputs []*rawQueryMapOutput
|
|
|
|
func (a rawOutputs) Len() int { return len(a) }
|
|
func (a rawOutputs) Less(i, j int) bool { return a[i].Time < a[j].Time }
|
|
func (a rawOutputs) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
|
|
|
func greaterThan(a, b interface{}) bool {
|
|
switch t := a.(type) {
|
|
case int64:
|
|
return t > b.(int64)
|
|
case float64:
|
|
return t > b.(float64)
|
|
case string:
|
|
return t > b.(string)
|
|
case bool:
|
|
return t == true
|
|
}
|
|
return false
|
|
}
|