influxdb/influxql/ast_test.go

1365 lines
40 KiB
Go

package influxql_test
import (
"fmt"
"reflect"
"strings"
"testing"
"time"
"github.com/influxdata/influxdb/influxql"
)
func BenchmarkQuery_String(b *testing.B) {
p := influxql.NewParser(strings.NewReader(`SELECT foo AS zoo, a AS b FROM bar WHERE value > 10 AND q = 'hello'`))
q, _ := p.ParseStatement()
for i := 0; i < b.N; i++ {
_ = q.String()
}
}
// Ensure a value's data type can be retrieved.
func TestInspectDataType(t *testing.T) {
for i, tt := range []struct {
v interface{}
typ influxql.DataType
}{
{float64(100), influxql.Float},
{int64(100), influxql.Integer},
{int32(100), influxql.Integer},
{100, influxql.Integer},
{true, influxql.Boolean},
{"string", influxql.String},
{time.Now(), influxql.Time},
{time.Second, influxql.Duration},
{nil, influxql.Unknown},
} {
if typ := influxql.InspectDataType(tt.v); tt.typ != typ {
t.Errorf("%d. %v (%s): unexpected type: %s", i, tt.v, tt.typ, typ)
continue
}
}
}
func TestDataType_String(t *testing.T) {
for i, tt := range []struct {
typ influxql.DataType
v string
}{
{influxql.Float, "float"},
{influxql.Integer, "integer"},
{influxql.Boolean, "boolean"},
{influxql.String, "string"},
{influxql.Time, "time"},
{influxql.Duration, "duration"},
{influxql.Tag, "tag"},
{influxql.Unknown, "unknown"},
} {
if v := tt.typ.String(); tt.v != v {
t.Errorf("%d. %v (%s): unexpected string: %s", i, tt.typ, tt.v, v)
}
}
}
// Ensure the SELECT statement can extract GROUP BY interval.
func TestSelectStatement_GroupByInterval(t *testing.T) {
q := "SELECT sum(value) from foo where time < now() GROUP BY time(10m)"
stmt, err := influxql.NewParser(strings.NewReader(q)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", stmt, err)
}
s := stmt.(*influxql.SelectStatement)
d, err := s.GroupByInterval()
if d != 10*time.Minute {
t.Fatalf("group by interval not equal:\nexp=%s\ngot=%s", 10*time.Minute, d)
}
if err != nil {
t.Fatalf("error parsing group by interval: %s", err.Error())
}
}
// Ensure the SELECT statement can have its start and end time set
func TestSelectStatement_SetTimeRange(t *testing.T) {
q := "SELECT sum(value) from foo where time < now() GROUP BY time(10m)"
stmt, err := influxql.NewParser(strings.NewReader(q)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", stmt, err)
}
s := stmt.(*influxql.SelectStatement)
start := time.Now().Add(-20 * time.Hour).Round(time.Second).UTC()
end := time.Now().Add(10 * time.Hour).Round(time.Second).UTC()
s.SetTimeRange(start, end)
min, max := MustTimeRange(s.Condition)
if min != start {
t.Fatalf("start time wasn't set properly.\n exp: %s\n got: %s", start, min)
}
// the end range is actually one nanosecond before the given one since end is exclusive
end = end.Add(-time.Nanosecond)
if max != end {
t.Fatalf("end time wasn't set properly.\n exp: %s\n got: %s", end, max)
}
// ensure we can set a time on a select that already has one set
start = time.Now().Add(-20 * time.Hour).Round(time.Second).UTC()
end = time.Now().Add(10 * time.Hour).Round(time.Second).UTC()
q = fmt.Sprintf("SELECT sum(value) from foo WHERE time >= %ds and time <= %ds GROUP BY time(10m)", start.Unix(), end.Unix())
stmt, err = influxql.NewParser(strings.NewReader(q)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", stmt, err)
}
s = stmt.(*influxql.SelectStatement)
min, max = MustTimeRange(s.Condition)
if start != min || end != max {
t.Fatalf("start and end times weren't equal:\n exp: %s\n got: %s\n exp: %s\n got:%s\n", start, min, end, max)
}
// update and ensure it saves it
start = time.Now().Add(-40 * time.Hour).Round(time.Second).UTC()
end = time.Now().Add(20 * time.Hour).Round(time.Second).UTC()
s.SetTimeRange(start, end)
min, max = MustTimeRange(s.Condition)
// TODO: right now the SetTimeRange can't override the start time if it's more recent than what they're trying to set it to.
// shouldn't matter for our purposes with continuous queries, but fix this later
if min != start {
t.Fatalf("start time wasn't set properly.\n exp: %s\n got: %s", start, min)
}
// the end range is actually one nanosecond before the given one since end is exclusive
end = end.Add(-time.Nanosecond)
if max != end {
t.Fatalf("end time wasn't set properly.\n exp: %s\n got: %s", end, max)
}
// ensure that when we set a time range other where clause conditions are still there
q = "SELECT sum(value) from foo WHERE foo = 'bar' and time < now() GROUP BY time(10m)"
stmt, err = influxql.NewParser(strings.NewReader(q)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", stmt, err)
}
s = stmt.(*influxql.SelectStatement)
// update and ensure it saves it
start = time.Now().Add(-40 * time.Hour).Round(time.Second).UTC()
end = time.Now().Add(20 * time.Hour).Round(time.Second).UTC()
s.SetTimeRange(start, end)
min, max = MustTimeRange(s.Condition)
if min != start {
t.Fatalf("start time wasn't set properly.\n exp: %s\n got: %s", start, min)
}
// the end range is actually one nanosecond before the given one since end is exclusive
end = end.Add(-time.Nanosecond)
if max != end {
t.Fatalf("end time wasn't set properly.\n exp: %s\n got: %s", end, max)
}
// ensure the where clause is there
hasWhere := false
influxql.WalkFunc(s.Condition, func(n influxql.Node) {
if ex, ok := n.(*influxql.BinaryExpr); ok {
if lhs, ok := ex.LHS.(*influxql.VarRef); ok {
if lhs.Val == "foo" {
if rhs, ok := ex.RHS.(*influxql.StringLiteral); ok {
if rhs.Val == "bar" {
hasWhere = true
}
}
}
}
}
})
if !hasWhere {
t.Fatal("set time range cleared out the where clause")
}
}
// Ensure the idents from the select clause can come out
func TestSelect_NamesInSelect(t *testing.T) {
s := MustParseSelectStatement("select count(asdf), count(bar) from cpu")
a := s.NamesInSelect()
if !reflect.DeepEqual(a, []string{"asdf", "bar"}) {
t.Fatal("expected names asdf and bar")
}
}
// Ensure the idents from the where clause can come out
func TestSelect_NamesInWhere(t *testing.T) {
s := MustParseSelectStatement("select * from cpu where time > 23s AND (asdf = 'jkl' OR (foo = 'bar' AND baz = 'bar'))")
a := s.NamesInWhere()
if !reflect.DeepEqual(a, []string{"time", "asdf", "foo", "baz"}) {
t.Fatalf("exp: time,asdf,foo,baz\ngot: %s\n", strings.Join(a, ","))
}
}
func TestSelectStatement_HasWildcard(t *testing.T) {
var tests = []struct {
stmt string
wildcard bool
}{
// No wildcards
{
stmt: `SELECT value FROM cpu`,
wildcard: false,
},
// Query wildcard
{
stmt: `SELECT * FROM cpu`,
wildcard: true,
},
// No GROUP BY wildcards
{
stmt: `SELECT value FROM cpu GROUP BY host`,
wildcard: false,
},
// No GROUP BY wildcards, time only
{
stmt: `SELECT mean(value) FROM cpu where time < now() GROUP BY time(5ms)`,
wildcard: false,
},
// GROUP BY wildcard
{
stmt: `SELECT value FROM cpu GROUP BY *`,
wildcard: true,
},
// GROUP BY wildcard with time
{
stmt: `SELECT mean(value) FROM cpu where time < now() GROUP BY *,time(1m)`,
wildcard: true,
},
// GROUP BY wildcard with explicit
{
stmt: `SELECT value FROM cpu GROUP BY *,host`,
wildcard: true,
},
// GROUP BY multiple wildcards
{
stmt: `SELECT value FROM cpu GROUP BY *,*`,
wildcard: true,
},
// Combo
{
stmt: `SELECT * FROM cpu GROUP BY *`,
wildcard: true,
},
}
for i, tt := range tests {
// Parse statement.
stmt, err := influxql.NewParser(strings.NewReader(tt.stmt)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", tt.stmt, err)
}
// Test wildcard detection.
if w := stmt.(*influxql.SelectStatement).HasWildcard(); tt.wildcard != w {
t.Errorf("%d. %q: unexpected wildcard detection:\n\nexp=%v\n\ngot=%v\n\n", i, tt.stmt, tt.wildcard, w)
continue
}
}
}
// Test SELECT statement field rewrite.
func TestSelectStatement_RewriteFields(t *testing.T) {
var tests = []struct {
stmt string
rewrite string
}{
// No wildcards
{
stmt: `SELECT value FROM cpu`,
rewrite: `SELECT value FROM cpu`,
},
// Query wildcard
{
stmt: `SELECT * FROM cpu`,
rewrite: `SELECT host::tag, region::tag, value1::float, value2::integer FROM cpu`,
},
// Parser fundamentally prohibits multiple query sources
// Query wildcard with explicit
{
stmt: `SELECT *,value1 FROM cpu`,
rewrite: `SELECT host::tag, region::tag, value1::float, value2::integer, value1::float FROM cpu`,
},
// Query multiple wildcards
{
stmt: `SELECT *,* FROM cpu`,
rewrite: `SELECT host::tag, region::tag, value1::float, value2::integer, host::tag, region::tag, value1::float, value2::integer FROM cpu`,
},
// Query wildcards with group by
{
stmt: `SELECT * FROM cpu GROUP BY host`,
rewrite: `SELECT region::tag, value1::float, value2::integer FROM cpu GROUP BY host`,
},
// No GROUP BY wildcards
{
stmt: `SELECT value FROM cpu GROUP BY host`,
rewrite: `SELECT value FROM cpu GROUP BY host`,
},
// No GROUP BY wildcards, time only
{
stmt: `SELECT mean(value) FROM cpu where time < now() GROUP BY time(5ms)`,
rewrite: `SELECT mean(value) FROM cpu WHERE time < now() GROUP BY time(5ms)`,
},
// GROUP BY wildcard
{
stmt: `SELECT value FROM cpu GROUP BY *`,
rewrite: `SELECT value FROM cpu GROUP BY host, region`,
},
// GROUP BY wildcard with time
{
stmt: `SELECT mean(value) FROM cpu where time < now() GROUP BY *,time(1m)`,
rewrite: `SELECT mean(value) FROM cpu WHERE time < now() GROUP BY host, region, time(1m)`,
},
// GROUP BY wildcard with fill
{
stmt: `SELECT mean(value) FROM cpu where time < now() GROUP BY *,time(1m) fill(0)`,
rewrite: `SELECT mean(value) FROM cpu WHERE time < now() GROUP BY host, region, time(1m) fill(0)`,
},
// GROUP BY wildcard with explicit
{
stmt: `SELECT value FROM cpu GROUP BY *,host`,
rewrite: `SELECT value FROM cpu GROUP BY host, region, host`,
},
// GROUP BY multiple wildcards
{
stmt: `SELECT value FROM cpu GROUP BY *,*`,
rewrite: `SELECT value FROM cpu GROUP BY host, region, host, region`,
},
// Combo
{
stmt: `SELECT * FROM cpu GROUP BY *`,
rewrite: `SELECT value1::float, value2::integer FROM cpu GROUP BY host, region`,
},
// Wildcard function with all fields.
{
stmt: `SELECT mean(*) FROM cpu`,
rewrite: `SELECT mean(value1::float) AS mean_value1, mean(value2::integer) AS mean_value2 FROM cpu`,
},
{
stmt: `SELECT distinct(*) FROM strings`,
rewrite: `SELECT distinct(string::string) AS distinct_string, distinct(value::float) AS distinct_value FROM strings`,
},
{
stmt: `SELECT distinct(*) FROM bools`,
rewrite: `SELECT distinct(bool::boolean) AS distinct_bool, distinct(value::float) AS distinct_value FROM bools`,
},
// Wildcard function with some fields excluded.
{
stmt: `SELECT mean(*) FROM strings`,
rewrite: `SELECT mean(value::float) AS mean_value FROM strings`,
},
{
stmt: `SELECT mean(*) FROM bools`,
rewrite: `SELECT mean(value::float) AS mean_value FROM bools`,
},
// Wildcard function with an alias.
{
stmt: `SELECT mean(*) AS alias FROM cpu`,
rewrite: `SELECT mean(value1::float) AS alias_value1, mean(value2::integer) AS alias_value2 FROM cpu`,
},
// Query regex
{
stmt: `SELECT /1/ FROM cpu`,
rewrite: `SELECT value1::float FROM cpu`,
},
{
stmt: `SELECT value1 FROM cpu GROUP BY /h/`,
rewrite: `SELECT value1::float FROM cpu GROUP BY host`,
},
// Query regex
{
stmt: `SELECT mean(/1/) FROM cpu`,
rewrite: `SELECT mean(value1::float) AS mean_value1 FROM cpu`,
},
}
for i, tt := range tests {
// Parse statement.
stmt, err := influxql.NewParser(strings.NewReader(tt.stmt)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", tt.stmt, err)
}
var ic IteratorCreator
ic.FieldDimensionsFn = func(sources influxql.Sources) (fields map[string]influxql.DataType, dimensions map[string]struct{}, err error) {
source := sources[0].(*influxql.Measurement)
switch source.Name {
case "cpu":
fields = map[string]influxql.DataType{
"value1": influxql.Float,
"value2": influxql.Integer,
}
case "strings":
fields = map[string]influxql.DataType{
"value": influxql.Float,
"string": influxql.String,
}
case "bools":
fields = map[string]influxql.DataType{
"value": influxql.Float,
"bool": influxql.Boolean,
}
}
dimensions = map[string]struct{}{"host": struct{}{}, "region": struct{}{}}
return
}
// Rewrite statement.
rw, err := stmt.(*influxql.SelectStatement).RewriteFields(&ic)
if err != nil {
t.Errorf("%d. %q: error: %s", i, tt.stmt, err)
} else if rw == nil {
t.Errorf("%d. %q: unexpected nil statement", i, tt.stmt)
} else if rw := rw.String(); tt.rewrite != rw {
t.Errorf("%d. %q: unexpected rewrite:\n\nexp=%s\n\ngot=%s\n\n", i, tt.stmt, tt.rewrite, rw)
}
}
}
// Test SELECT statement time field rewrite.
func TestSelectStatement_RewriteTimeFields(t *testing.T) {
var tests = []struct {
s string
stmt influxql.Statement
}{
{
s: `SELECT time, field1 FROM cpu`,
stmt: &influxql.SelectStatement{
IsRawQuery: true,
Fields: []*influxql.Field{
{Expr: &influxql.VarRef{Val: "field1"}},
},
Sources: []influxql.Source{
&influxql.Measurement{Name: "cpu"},
},
},
},
{
s: `SELECT time AS timestamp, field1 FROM cpu`,
stmt: &influxql.SelectStatement{
IsRawQuery: true,
Fields: []*influxql.Field{
{Expr: &influxql.VarRef{Val: "field1"}},
},
Sources: []influxql.Source{
&influxql.Measurement{Name: "cpu"},
},
TimeAlias: "timestamp",
},
},
}
for i, tt := range tests {
// Parse statement.
stmt, err := influxql.NewParser(strings.NewReader(tt.s)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", tt.s, err)
}
// Rewrite statement.
stmt.(*influxql.SelectStatement).RewriteTimeFields()
if !reflect.DeepEqual(tt.stmt, stmt) {
t.Logf("\n# %s\nexp=%s\ngot=%s\n", tt.s, mustMarshalJSON(tt.stmt), mustMarshalJSON(stmt))
t.Logf("\nSQL exp=%s\nSQL got=%s\n", tt.stmt.String(), stmt.String())
t.Errorf("%d. %q\n\nstmt mismatch:\n\nexp=%#v\n\ngot=%#v\n\n", i, tt.s, tt.stmt, stmt)
}
}
}
// Ensure that the IsRawQuery flag gets set properly
func TestSelectStatement_IsRawQuerySet(t *testing.T) {
var tests = []struct {
stmt string
isRaw bool
}{
{
stmt: "select * from foo",
isRaw: true,
},
{
stmt: "select value1,value2 from foo",
isRaw: true,
},
{
stmt: "select value1,value2 from foo, time(10m)",
isRaw: true,
},
{
stmt: "select mean(value) from foo where time < now() group by time(5m)",
isRaw: false,
},
{
stmt: "select mean(value) from foo group by bar",
isRaw: false,
},
{
stmt: "select mean(value) from foo group by *",
isRaw: false,
},
{
stmt: "select mean(value) from foo group by *",
isRaw: false,
},
}
for _, tt := range tests {
s := MustParseSelectStatement(tt.stmt)
if s.IsRawQuery != tt.isRaw {
t.Errorf("'%s', IsRawQuery should be %v", tt.stmt, tt.isRaw)
}
}
}
func TestSelectStatement_HasDerivative(t *testing.T) {
var tests = []struct {
stmt string
derivative bool
}{
// No derivatives
{
stmt: `SELECT value FROM cpu`,
derivative: false,
},
// Query derivative
{
stmt: `SELECT derivative(value) FROM cpu`,
derivative: true,
},
// No GROUP BY time only
{
stmt: `SELECT mean(value) FROM cpu where time < now() GROUP BY time(5ms)`,
derivative: false,
},
// No GROUP BY derivatives, time only
{
stmt: `SELECT derivative(mean(value)) FROM cpu where time < now() GROUP BY time(5ms)`,
derivative: true,
},
{
stmt: `SELECT value FROM cpu`,
derivative: false,
},
// Query derivative
{
stmt: `SELECT non_negative_derivative(value) FROM cpu`,
derivative: true,
},
// No GROUP BY derivatives, time only
{
stmt: `SELECT non_negative_derivative(mean(value)) FROM cpu where time < now() GROUP BY time(5ms)`,
derivative: true,
},
// Invalid derivative function name
{
stmt: `SELECT typoDerivative(value) FROM cpu where time < now()`,
derivative: false,
},
}
for i, tt := range tests {
// Parse statement.
t.Logf("index: %d, statement: %s", i, tt.stmt)
stmt, err := influxql.NewParser(strings.NewReader(tt.stmt)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", tt.stmt, err)
}
// Test derivative detection.
if d := stmt.(*influxql.SelectStatement).HasDerivative(); tt.derivative != d {
t.Errorf("%d. %q: unexpected derivative detection:\n\nexp=%v\n\ngot=%v\n\n", i, tt.stmt, tt.derivative, d)
continue
}
}
}
func TestSelectStatement_IsSimpleDerivative(t *testing.T) {
var tests = []struct {
stmt string
derivative bool
}{
// No derivatives
{
stmt: `SELECT value FROM cpu`,
derivative: false,
},
// Query derivative
{
stmt: `SELECT derivative(value) FROM cpu`,
derivative: true,
},
// Query derivative
{
stmt: `SELECT non_negative_derivative(value) FROM cpu`,
derivative: true,
},
// No GROUP BY time only
{
stmt: `SELECT mean(value) FROM cpu where time < now() GROUP BY time(5ms)`,
derivative: false,
},
// No GROUP BY derivatives, time only
{
stmt: `SELECT non_negative_derivative(mean(value)) FROM cpu where time < now() GROUP BY time(5ms)`,
derivative: false,
},
// Invalid derivative function name
{
stmt: `SELECT typoDerivative(value) FROM cpu where time < now()`,
derivative: false,
},
}
for i, tt := range tests {
// Parse statement.
t.Logf("index: %d, statement: %s", i, tt.stmt)
stmt, err := influxql.NewParser(strings.NewReader(tt.stmt)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", tt.stmt, err)
}
// Test derivative detection.
if d := stmt.(*influxql.SelectStatement).IsSimpleDerivative(); tt.derivative != d {
t.Errorf("%d. %q: unexpected derivative detection:\n\nexp=%v\n\ngot=%v\n\n", i, tt.stmt, tt.derivative, d)
continue
}
}
}
// Ensure binary expression names can be evaluated.
func TestBinaryExprName(t *testing.T) {
for i, tt := range []struct {
expr string
name string
}{
{expr: `value + 1`, name: `value`},
{expr: `"user" / total`, name: `user_total`},
{expr: `("user" + total) / total`, name: `user_total_total`},
} {
expr := influxql.MustParseExpr(tt.expr)
switch expr := expr.(type) {
case *influxql.BinaryExpr:
name := influxql.BinaryExprName(expr)
if name != tt.name {
t.Errorf("%d. unexpected name %s, got %s", i, name, tt.name)
}
default:
t.Errorf("%d. unexpected expr type: %T", i, expr)
}
}
}
// Ensure the time range of an expression can be extracted.
func TestTimeRange(t *testing.T) {
for i, tt := range []struct {
expr string
min, max, err string
}{
// LHS VarRef
{expr: `time > '2000-01-01 00:00:00'`, min: `2000-01-01T00:00:00.000000001Z`, max: `0001-01-01T00:00:00Z`},
{expr: `time >= '2000-01-01 00:00:00'`, min: `2000-01-01T00:00:00Z`, max: `0001-01-01T00:00:00Z`},
{expr: `time < '2000-01-01 00:00:00'`, min: `0001-01-01T00:00:00Z`, max: `1999-12-31T23:59:59.999999999Z`},
{expr: `time <= '2000-01-01 00:00:00'`, min: `0001-01-01T00:00:00Z`, max: `2000-01-01T00:00:00Z`},
// RHS VarRef
{expr: `'2000-01-01 00:00:00' > time`, min: `0001-01-01T00:00:00Z`, max: `1999-12-31T23:59:59.999999999Z`},
{expr: `'2000-01-01 00:00:00' >= time`, min: `0001-01-01T00:00:00Z`, max: `2000-01-01T00:00:00Z`},
{expr: `'2000-01-01 00:00:00' < time`, min: `2000-01-01T00:00:00.000000001Z`, max: `0001-01-01T00:00:00Z`},
{expr: `'2000-01-01 00:00:00' <= time`, min: `2000-01-01T00:00:00Z`, max: `0001-01-01T00:00:00Z`},
// number literal
{expr: `time < 10`, min: `0001-01-01T00:00:00Z`, max: `1970-01-01T00:00:00.000000009Z`},
// Equality
{expr: `time = '2000-01-01 00:00:00'`, min: `2000-01-01T00:00:00Z`, max: `2000-01-01T00:00:00.000000001Z`},
// Multiple time expressions.
{expr: `time >= '2000-01-01 00:00:00' AND time < '2000-01-02 00:00:00'`, min: `2000-01-01T00:00:00Z`, max: `2000-01-01T23:59:59.999999999Z`},
// Min/max crossover
{expr: `time >= '2000-01-01 00:00:00' AND time <= '1999-01-01 00:00:00'`, min: `2000-01-01T00:00:00Z`, max: `1999-01-01T00:00:00Z`},
// Absolute time
{expr: `time = 1388534400s`, min: `2014-01-01T00:00:00Z`, max: `2014-01-01T00:00:00.000000001Z`},
// Non-comparative expressions.
{expr: `time`, min: `0001-01-01T00:00:00Z`, max: `0001-01-01T00:00:00Z`},
{expr: `time + 2`, min: `0001-01-01T00:00:00Z`, max: `0001-01-01T00:00:00Z`},
{expr: `time - '2000-01-01 00:00:00'`, min: `0001-01-01T00:00:00Z`, max: `0001-01-01T00:00:00Z`},
{expr: `time AND '2000-01-01 00:00:00'`, min: `0001-01-01T00:00:00Z`, max: `0001-01-01T00:00:00Z`},
// Invalid time expressions.
{expr: `time > "2000-01-01 00:00:00"`, min: `0001-01-01T00:00:00Z`, max: `0001-01-01T00:00:00Z`, err: `invalid operation: time and *influxql.VarRef are not compatible`},
{expr: `time > '2262-04-11 23:47:17'`, min: `0001-01-01T00:00:00Z`, max: `0001-01-01T00:00:00Z`, err: `time 2262-04-11T23:47:17Z overflows time literal`},
{expr: `time > '1677-09-20 19:12:43'`, min: `0001-01-01T00:00:00Z`, max: `0001-01-01T00:00:00Z`, err: `time 1677-09-20T19:12:43Z underflows time literal`},
} {
// Extract time range.
expr := MustParseExpr(tt.expr)
min, max, err := influxql.TimeRange(expr)
// Compare with expected min/max.
if min := min.Format(time.RFC3339Nano); tt.min != min {
t.Errorf("%d. %s: unexpected min:\n\nexp=%s\n\ngot=%s\n\n", i, tt.expr, tt.min, min)
continue
}
if max := max.Format(time.RFC3339Nano); tt.max != max {
t.Errorf("%d. %s: unexpected max:\n\nexp=%s\n\ngot=%s\n\n", i, tt.expr, tt.max, max)
continue
}
if (err != nil && err.Error() != tt.err) || (err == nil && tt.err != "") {
t.Errorf("%d. %s: unexpected error:\n\nexp=%s\n\ngot=%s\n\n", i, tt.expr, tt.err, err)
}
}
}
// Ensure that we see if a where clause has only time limitations
func TestOnlyTimeExpr(t *testing.T) {
var tests = []struct {
stmt string
exp bool
}{
{
stmt: `SELECT value FROM myseries WHERE value > 1`,
exp: false,
},
{
stmt: `SELECT value FROM foo WHERE time >= '2000-01-01T00:00:05Z'`,
exp: true,
},
{
stmt: `SELECT value FROM foo WHERE time >= '2000-01-01T00:00:05Z' AND time < '2000-01-01T00:00:05Z'`,
exp: true,
},
{
stmt: `SELECT value FROM foo WHERE time >= '2000-01-01T00:00:05Z' AND asdf = 'bar'`,
exp: false,
},
{
stmt: `SELECT value FROM foo WHERE asdf = 'jkl' AND (time >= '2000-01-01T00:00:05Z' AND time < '2000-01-01T00:00:05Z')`,
exp: false,
},
}
for i, tt := range tests {
// Parse statement.
stmt, err := influxql.NewParser(strings.NewReader(tt.stmt)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", tt.stmt, err)
}
if influxql.OnlyTimeExpr(stmt.(*influxql.SelectStatement).Condition) != tt.exp {
t.Fatalf("%d. expected statement to return only time dimension to be %t: %s", i, tt.exp, tt.stmt)
}
}
}
// Ensure an AST node can be rewritten.
func TestRewrite(t *testing.T) {
expr := MustParseExpr(`time > 1 OR foo = 2`)
// Flip LHS & RHS in all binary expressions.
act := influxql.RewriteFunc(expr, func(n influxql.Node) influxql.Node {
switch n := n.(type) {
case *influxql.BinaryExpr:
return &influxql.BinaryExpr{Op: n.Op, LHS: n.RHS, RHS: n.LHS}
default:
return n
}
})
// Verify that everything is flipped.
if act := act.String(); act != `2 = foo OR 1 > time` {
t.Fatalf("unexpected result: %s", act)
}
}
// Ensure an Expr can be rewritten handling nils.
func TestRewriteExpr(t *testing.T) {
expr := MustParseExpr(`(time > 1 AND time < 10) OR foo = 2`)
// Remove all time expressions.
act := influxql.RewriteExpr(expr, func(e influxql.Expr) influxql.Expr {
switch e := e.(type) {
case *influxql.BinaryExpr:
if lhs, ok := e.LHS.(*influxql.VarRef); ok && lhs.Val == "time" {
return nil
}
}
return e
})
// Verify that everything is flipped.
if act := act.String(); act != `foo = 2` {
t.Fatalf("unexpected result: %s", act)
}
}
// Ensure that the String() value of a statement is parseable
func TestParseString(t *testing.T) {
var tests = []struct {
stmt string
}{
{
stmt: `SELECT "cpu load" FROM myseries`,
},
{
stmt: `SELECT "cpu load" FROM "my series"`,
},
{
stmt: `SELECT "cpu\"load" FROM myseries`,
},
{
stmt: `SELECT "cpu'load" FROM myseries`,
},
{
stmt: `SELECT "cpu load" FROM "my\"series"`,
},
{
stmt: `SELECT "field with spaces" FROM "\"ugly\" db"."\"ugly\" rp"."\"ugly\" measurement"`,
},
{
stmt: `SELECT * FROM myseries`,
},
{
stmt: `DROP DATABASE "!"`,
},
{
stmt: `DROP RETENTION POLICY "my rp" ON "a database"`,
},
{
stmt: `CREATE RETENTION POLICY "my rp" ON "a database" DURATION 1d REPLICATION 1`,
},
{
stmt: `ALTER RETENTION POLICY "my rp" ON "a database" DEFAULT`,
},
{
stmt: `SHOW RETENTION POLICIES ON "a database"`,
},
{
stmt: `SHOW TAG VALUES WITH KEY IN ("a long name", short)`,
},
{
stmt: `DROP CONTINUOUS QUERY "my query" ON "my database"`,
},
// See issues https://github.com/influxdata/influxdb/issues/1647
// and https://github.com/influxdata/influxdb/issues/4404
//{
// stmt: `DELETE FROM "my db"."my rp"."my measurement"`,
//},
{
stmt: `DROP SUBSCRIPTION "ugly \"subscription\" name" ON "\"my\" db"."\"my\" rp"`,
},
{
stmt: `CREATE SUBSCRIPTION "ugly \"subscription\" name" ON "\"my\" db"."\"my\" rp" DESTINATIONS ALL 'my host', 'my other host'`,
},
{
stmt: `SHOW MEASUREMENTS WITH MEASUREMENT =~ /foo/`,
},
{
stmt: `SHOW MEASUREMENTS WITH MEASUREMENT = "and/or"`,
},
{
stmt: `DROP USER "user with spaces"`,
},
{
stmt: `GRANT ALL PRIVILEGES ON "db with spaces" TO "user with spaces"`,
},
{
stmt: `GRANT ALL PRIVILEGES TO "user with spaces"`,
},
{
stmt: `SHOW GRANTS FOR "user with spaces"`,
},
{
stmt: `REVOKE ALL PRIVILEGES ON "db with spaces" FROM "user with spaces"`,
},
{
stmt: `REVOKE ALL PRIVILEGES FROM "user with spaces"`,
},
{
stmt: `CREATE DATABASE "db with spaces"`,
},
}
for _, tt := range tests {
// Parse statement.
stmt, err := influxql.NewParser(strings.NewReader(tt.stmt)).ParseStatement()
if err != nil {
t.Fatalf("invalid statement: %q: %s", tt.stmt, err)
}
stmtCopy, err := influxql.NewParser(strings.NewReader(stmt.String())).ParseStatement()
if err != nil {
t.Fatalf("failed to parse string: %v\norig: %v\ngot: %v", err, tt.stmt, stmt.String())
}
if !reflect.DeepEqual(stmt, stmtCopy) {
t.Fatalf("statement changed after stringifying and re-parsing:\noriginal : %v\nre-parsed: %v\n", tt.stmt, stmtCopy.String())
}
}
}
// Ensure an expression can be reduced.
func TestEval(t *testing.T) {
for i, tt := range []struct {
in string
out interface{}
data map[string]interface{}
}{
// Number literals.
{in: `1 + 2`, out: int64(3)},
{in: `(foo*2) + ( (4/2) + (3 * 5) - 0.5 )`, out: float64(26.5), data: map[string]interface{}{"foo": float64(5)}},
{in: `foo / 2`, out: float64(2), data: map[string]interface{}{"foo": float64(4)}},
{in: `4 = 4`, out: true},
{in: `4 <> 4`, out: false},
{in: `6 > 4`, out: true},
{in: `4 >= 4`, out: true},
{in: `4 < 6`, out: true},
{in: `4 <= 4`, out: true},
{in: `4 AND 5`, out: nil},
{in: `0 = 'test'`, out: false},
{in: `1.0 = 1`, out: true},
{in: `1.2 = 1`, out: false},
// Boolean literals.
{in: `true AND false`, out: false},
{in: `true OR false`, out: true},
{in: `false = 4`, out: false},
// String literals.
{in: `'foo' = 'bar'`, out: false},
{in: `'foo' = 'foo'`, out: true},
{in: `'' = 4`, out: false},
// Regex literals.
{in: `'foo' =~ /f.*/`, out: true},
{in: `'foo' =~ /b.*/`, out: false},
{in: `'foo' !~ /f.*/`, out: false},
{in: `'foo' !~ /b.*/`, out: true},
// Variable references.
{in: `foo`, out: "bar", data: map[string]interface{}{"foo": "bar"}},
{in: `foo = 'bar'`, out: true, data: map[string]interface{}{"foo": "bar"}},
{in: `foo = 'bar'`, out: nil, data: map[string]interface{}{"foo": nil}},
{in: `foo <> 'bar'`, out: true, data: map[string]interface{}{"foo": "xxx"}},
{in: `foo =~ /b.*/`, out: true, data: map[string]interface{}{"foo": "bar"}},
{in: `foo !~ /b.*/`, out: false, data: map[string]interface{}{"foo": "bar"}},
} {
// Evaluate expression.
out := influxql.Eval(MustParseExpr(tt.in), tt.data)
// Compare with expected output.
if !reflect.DeepEqual(tt.out, out) {
t.Errorf("%d. %s: unexpected output:\n\nexp=%#v\n\ngot=%#v\n\n", i, tt.in, tt.out, out)
continue
}
}
}
// Ensure an expression can be reduced.
func TestReduce(t *testing.T) {
now := mustParseTime("2000-01-01T00:00:00Z")
for i, tt := range []struct {
in string
out string
data Valuer
}{
// Number literals.
{in: `1 + 2`, out: `3`},
{in: `(foo*2) + ( (4/2) + (3 * 5) - 0.5 )`, out: `(foo * 2) + 16.500`},
{in: `foo(bar(2 + 3), 4)`, out: `foo(bar(5), 4)`},
{in: `4 / 0`, out: `0.000`},
{in: `1 / 2`, out: `0.500`},
{in: `4 = 4`, out: `true`},
{in: `4 <> 4`, out: `false`},
{in: `6 > 4`, out: `true`},
{in: `4 >= 4`, out: `true`},
{in: `4 < 6`, out: `true`},
{in: `4 <= 4`, out: `true`},
{in: `4 AND 5`, out: `4 AND 5`},
// Boolean literals.
{in: `true AND false`, out: `false`},
{in: `true OR false`, out: `true`},
{in: `true OR (foo = bar AND 1 > 2)`, out: `true`},
{in: `(foo = bar AND 1 > 2) OR true`, out: `true`},
{in: `false OR (foo = bar AND 1 > 2)`, out: `false`},
{in: `(foo = bar AND 1 > 2) OR false`, out: `false`},
{in: `true = false`, out: `false`},
{in: `true <> false`, out: `true`},
{in: `true + false`, out: `true + false`},
// Time literals with now().
{in: `now() + 2h`, out: `'2000-01-01T02:00:00Z'`, data: map[string]interface{}{"now()": now}},
{in: `now() / 2h`, out: `'2000-01-01T00:00:00Z' / 2h`, data: map[string]interface{}{"now()": now}},
{in: `4µ + now()`, out: `'2000-01-01T00:00:00.000004Z'`, data: map[string]interface{}{"now()": now}},
{in: `now() + 2000000000`, out: `'2000-01-01T00:00:02Z'`, data: map[string]interface{}{"now()": now}},
{in: `2000000000 + now()`, out: `'2000-01-01T00:00:02Z'`, data: map[string]interface{}{"now()": now}},
{in: `now() - 2000000000`, out: `'1999-12-31T23:59:58Z'`, data: map[string]interface{}{"now()": now}},
{in: `now() = now()`, out: `true`, data: map[string]interface{}{"now()": now}},
{in: `now() <> now()`, out: `false`, data: map[string]interface{}{"now()": now}},
{in: `now() < now() + 1h`, out: `true`, data: map[string]interface{}{"now()": now}},
{in: `now() <= now() + 1h`, out: `true`, data: map[string]interface{}{"now()": now}},
{in: `now() >= now() - 1h`, out: `true`, data: map[string]interface{}{"now()": now}},
{in: `now() > now() - 1h`, out: `true`, data: map[string]interface{}{"now()": now}},
{in: `now() - (now() - 60s)`, out: `1m`, data: map[string]interface{}{"now()": now}},
{in: `now() AND now()`, out: `'2000-01-01T00:00:00Z' AND '2000-01-01T00:00:00Z'`, data: map[string]interface{}{"now()": now}},
{in: `now()`, out: `now()`},
{in: `946684800000000000 + 2h`, out: `'2000-01-01T02:00:00Z'`},
// Time literals.
{in: `'2000-01-01T00:00:00Z' + 2h`, out: `'2000-01-01T02:00:00Z'`},
{in: `'2000-01-01T00:00:00Z' / 2h`, out: `'2000-01-01T00:00:00Z' / 2h`},
{in: `4µ + '2000-01-01T00:00:00Z'`, out: `'2000-01-01T00:00:00.000004Z'`},
{in: `'2000-01-01T00:00:00Z' + 2000000000`, out: `'2000-01-01T00:00:02Z'`},
{in: `2000000000 + '2000-01-01T00:00:00Z'`, out: `'2000-01-01T00:00:02Z'`},
{in: `'2000-01-01T00:00:00Z' - 2000000000`, out: `'1999-12-31T23:59:58Z'`},
{in: `'2000-01-01T00:00:00Z' = '2000-01-01T00:00:00Z'`, out: `true`},
{in: `'2000-01-01T00:00:00.000000000Z' = '2000-01-01T00:00:00Z'`, out: `true`},
{in: `'2000-01-01T00:00:00Z' <> '2000-01-01T00:00:00Z'`, out: `false`},
{in: `'2000-01-01T00:00:00.000000000Z' <> '2000-01-01T00:00:00Z'`, out: `false`},
{in: `'2000-01-01T00:00:00Z' < '2000-01-01T00:00:00Z' + 1h`, out: `true`},
{in: `'2000-01-01T00:00:00.000000000Z' < '2000-01-01T00:00:00Z' + 1h`, out: `true`},
{in: `'2000-01-01T00:00:00Z' <= '2000-01-01T00:00:00Z' + 1h`, out: `true`},
{in: `'2000-01-01T00:00:00.000000000Z' <= '2000-01-01T00:00:00Z' + 1h`, out: `true`},
{in: `'2000-01-01T00:00:00Z' > '2000-01-01T00:00:00Z' - 1h`, out: `true`},
{in: `'2000-01-01T00:00:00.000000000Z' > '2000-01-01T00:00:00Z' - 1h`, out: `true`},
{in: `'2000-01-01T00:00:00Z' >= '2000-01-01T00:00:00Z' - 1h`, out: `true`},
{in: `'2000-01-01T00:00:00.000000000Z' >= '2000-01-01T00:00:00Z' - 1h`, out: `true`},
{in: `'2000-01-01T00:00:00Z' - ('2000-01-01T00:00:00Z' - 60s)`, out: `1m`},
{in: `'2000-01-01T00:00:00Z' AND '2000-01-01T00:00:00Z'`, out: `'2000-01-01T00:00:00Z' AND '2000-01-01T00:00:00Z'`},
// Duration literals.
{in: `10m + 1h - 60s`, out: `69m`},
{in: `(10m / 2) * 5`, out: `25m`},
{in: `60s = 1m`, out: `true`},
{in: `60s <> 1m`, out: `false`},
{in: `60s < 1h`, out: `true`},
{in: `60s <= 1h`, out: `true`},
{in: `60s > 12s`, out: `true`},
{in: `60s >= 1m`, out: `true`},
{in: `60s AND 1m`, out: `1m AND 1m`},
{in: `60m / 0`, out: `0s`},
{in: `60m + 50`, out: `1h + 50`},
// String literals.
{in: `'foo' + 'bar'`, out: `'foobar'`},
// Variable references.
{in: `foo`, out: `'bar'`, data: map[string]interface{}{"foo": "bar"}},
{in: `foo = 'bar'`, out: `true`, data: map[string]interface{}{"foo": "bar"}},
{in: `foo = 'bar'`, out: `false`, data: map[string]interface{}{"foo": nil}},
{in: `foo <> 'bar'`, out: `false`, data: map[string]interface{}{"foo": nil}},
} {
// Fold expression.
expr := influxql.Reduce(MustParseExpr(tt.in), tt.data)
// Compare with expected output.
if out := expr.String(); tt.out != out {
t.Errorf("%d. %s: unexpected expr:\n\nexp=%s\n\ngot=%s\n\n", i, tt.in, tt.out, out)
continue
}
}
}
func Test_fieldsNames(t *testing.T) {
for _, test := range []struct {
in []string
out []string
alias []string
}{
{ //case: binary expr(valRef)
in: []string{"value+value"},
out: []string{"value", "value"},
alias: []string{"value_value"},
},
{ //case: binary expr + valRef
in: []string{"value+value", "temperature"},
out: []string{"value", "value", "temperature"},
alias: []string{"value_value", "temperature"},
},
{ //case: aggregate expr
in: []string{"mean(value)"},
out: []string{"mean"},
alias: []string{"mean"},
},
{ //case: binary expr(aggregate expr)
in: []string{"mean(value) + max(value)"},
out: []string{"value", "value"},
alias: []string{"mean_max"},
},
{ //case: binary expr(aggregate expr) + valRef
in: []string{"mean(value) + max(value)", "temperature"},
out: []string{"value", "value", "temperature"},
alias: []string{"mean_max", "temperature"},
},
{ //case: mixed aggregate and varRef
in: []string{"mean(value) + temperature"},
out: []string{"value", "temperature"},
alias: []string{"mean_temperature"},
},
{ //case: ParenExpr(varRef)
in: []string{"(value)"},
out: []string{"value"},
alias: []string{"value"},
},
{ //case: ParenExpr(varRef + varRef)
in: []string{"(value + value)"},
out: []string{"value", "value"},
alias: []string{"value_value"},
},
{ //case: ParenExpr(aggregate)
in: []string{"(mean(value))"},
out: []string{"value"},
alias: []string{"mean"},
},
{ //case: ParenExpr(aggregate + aggregate)
in: []string{"(mean(value) + max(value))"},
out: []string{"value", "value"},
alias: []string{"mean_max"},
},
} {
fields := influxql.Fields{}
for _, s := range test.in {
expr := MustParseExpr(s)
fields = append(fields, &influxql.Field{Expr: expr})
}
got := fields.Names()
if !reflect.DeepEqual(got, test.out) {
t.Errorf("get fields name:\nexp=%v\ngot=%v\n", test.out, got)
}
alias := fields.AliasNames()
if !reflect.DeepEqual(alias, test.alias) {
t.Errorf("get fields alias name:\nexp=%v\ngot=%v\n", test.alias, alias)
}
}
}
func TestSelect_ColumnNames(t *testing.T) {
for i, tt := range []struct {
stmt *influxql.SelectStatement
columns []string
}{
{
stmt: &influxql.SelectStatement{
Fields: influxql.Fields([]*influxql.Field{
{Expr: &influxql.VarRef{Val: "value"}},
}),
},
columns: []string{"time", "value"},
},
{
stmt: &influxql.SelectStatement{
Fields: influxql.Fields([]*influxql.Field{
{Expr: &influxql.VarRef{Val: "value"}},
{Expr: &influxql.VarRef{Val: "value"}},
{Expr: &influxql.VarRef{Val: "value_1"}},
}),
},
columns: []string{"time", "value", "value_1", "value_1_1"},
},
{
stmt: &influxql.SelectStatement{
Fields: influxql.Fields([]*influxql.Field{
{Expr: &influxql.VarRef{Val: "value"}},
{Expr: &influxql.VarRef{Val: "value_1"}},
{Expr: &influxql.VarRef{Val: "value"}},
}),
},
columns: []string{"time", "value", "value_1", "value_2"},
},
{
stmt: &influxql.SelectStatement{
Fields: influxql.Fields([]*influxql.Field{
{Expr: &influxql.VarRef{Val: "value"}},
{Expr: &influxql.VarRef{Val: "total"}, Alias: "value"},
{Expr: &influxql.VarRef{Val: "value"}},
}),
},
columns: []string{"time", "value_1", "value", "value_2"},
},
{
stmt: &influxql.SelectStatement{
Fields: influxql.Fields([]*influxql.Field{
{Expr: &influxql.VarRef{Val: "value"}},
}),
TimeAlias: "timestamp",
},
columns: []string{"timestamp", "value"},
},
} {
columns := tt.stmt.ColumnNames()
if !reflect.DeepEqual(columns, tt.columns) {
t.Errorf("%d. expected %s, got %s", i, tt.columns, columns)
}
}
}
func TestSelect_Privileges(t *testing.T) {
stmt := &influxql.SelectStatement{
Target: &influxql.Target{
Measurement: &influxql.Measurement{Database: "db2"},
},
Sources: []influxql.Source{
&influxql.Measurement{Database: "db0"},
&influxql.Measurement{Database: "db1"},
},
}
exp := influxql.ExecutionPrivileges{
influxql.ExecutionPrivilege{Name: "db0", Privilege: influxql.ReadPrivilege},
influxql.ExecutionPrivilege{Name: "db1", Privilege: influxql.ReadPrivilege},
influxql.ExecutionPrivilege{Name: "db2", Privilege: influxql.WritePrivilege},
}
got, err := stmt.RequiredPrivileges()
if err != nil {
t.Fatal(err)
}
if !reflect.DeepEqual(exp, got) {
t.Errorf("exp: %v, got: %v", exp, got)
}
}
func TestSources_Names(t *testing.T) {
sources := influxql.Sources([]influxql.Source{
&influxql.Measurement{
Name: "cpu",
},
&influxql.Measurement{
Name: "mem",
},
})
names := sources.Names()
if names[0] != "cpu" {
t.Errorf("expected cpu, got %s", names[0])
}
if names[1] != "mem" {
t.Errorf("expected mem, got %s", names[1])
}
}
func TestSources_HasSystemSource(t *testing.T) {
sources := influxql.Sources([]influxql.Source{
&influxql.Measurement{
Name: "_measurements",
},
})
ok := sources.HasSystemSource()
if !ok {
t.Errorf("expected to find a system source, found none")
}
sources = influxql.Sources([]influxql.Source{
&influxql.Measurement{
Name: "cpu",
},
})
ok = sources.HasSystemSource()
if ok {
t.Errorf("expected to find no system source, found one")
}
}
// Parse statements that might appear valid but should return an error.
// If allowed to execute, at least some of these statements would result in a panic.
func TestParse_Errors(t *testing.T) {
for _, tt := range []struct {
tmpl string
good string
bad string
}{
// Second argument to derivative must be duration
{tmpl: `SELECT derivative(f, %s) FROM m`, good: "1h", bad: "true"},
} {
good := fmt.Sprintf(tt.tmpl, tt.good)
if _, err := influxql.ParseStatement(good); err != nil {
t.Fatalf("statement %q should have parsed correctly but returned error: %s", good, err)
}
bad := fmt.Sprintf(tt.tmpl, tt.bad)
if _, err := influxql.ParseStatement(bad); err == nil {
t.Fatalf("statement %q should have resulted in a parse error but did not", bad)
}
}
}
// Valuer represents a simple wrapper around a map to implement the influxql.Valuer interface.
type Valuer map[string]interface{}
// Value returns the value and existence of a key.
func (o Valuer) Value(key string) (v interface{}, ok bool) {
v, ok = o[key]
return
}
// MustTimeRange will parse a time range. Panic on error.
func MustTimeRange(expr influxql.Expr) (min, max time.Time) {
min, max, err := influxql.TimeRange(expr)
if err != nil {
panic(err)
}
return min, max
}
// mustParseTime parses an IS0-8601 string. Panic on error.
func mustParseTime(s string) time.Time {
t, err := time.Parse(time.RFC3339, s)
if err != nil {
panic(err.Error())
}
return t
}