influxdb/influxql/engine.go

972 lines
27 KiB
Go

package influxql
import (
"bytes"
"errors"
"hash/fnv"
"math"
"sort"
"time"
)
// DB represents an interface for creating transactions.
type DB interface {
Begin() (Tx, error)
}
const (
// Return an error if the user is trying to select more than this number of points in a group by statement.
// Most likely they specified a group by interval without time boundaries.
MaxGroupByPoints = 100000
// Since time is always selected, the column count when selecting only a single other value will be 2
SelectColumnCountWithOneValue = 2
// IgnoredChunkSize is what gets passed into Mapper.Begin for aggregate queries as they don't chunk points out
IgnoredChunkSize = 0
)
// Tx represents a transaction.
// The Tx must be opened before being used.
type Tx interface {
// Create MapReduceJobs for the given select statement. One MRJob will be created per unique tagset that matches the query
CreateMapReduceJobs(stmt *SelectStatement, tagKeys []string) ([]*MapReduceJob, error)
}
type MapReduceJob struct {
MeasurementName string
TagSet *TagSet
Mappers []Mapper // the mappers to hit all shards for this MRJob
TMin int64 // minimum time specified in the query
TMax int64 // maximum time specified in the query
key []byte // a key that identifies the MRJob so it can be sorted
interval int64 // the group by interval of the query
stmt *SelectStatement // the select statement this job was created for
chunkSize int // the number of points to buffer in raw queries before returning a chunked response
}
func (m *MapReduceJob) Open() error {
for _, mm := range m.Mappers {
if err := mm.Open(); err != nil {
m.Close()
return err
}
}
return nil
}
func (m *MapReduceJob) Close() {
for _, mm := range m.Mappers {
mm.Close()
}
}
func (m *MapReduceJob) Key() []byte {
if m.key == nil {
m.key = append([]byte(m.MeasurementName), m.TagSet.Key...)
}
return m.key
}
func (m *MapReduceJob) Execute(out chan *Row, filterEmptyResults bool) {
if err := m.Open(); err != nil {
out <- &Row{Err: err}
m.Close()
return
}
defer m.Close()
// if it's a raw query or a non-nested derivative we handle processing differently
if m.stmt.IsRawQuery || m.stmt.IsSimpleDerivative() {
m.processRawQuery(out, filterEmptyResults)
return
}
// get the aggregates and the associated reduce functions
aggregates := m.stmt.FunctionCalls()
reduceFuncs := make([]ReduceFunc, len(aggregates))
for i, c := range aggregates {
reduceFunc, err := InitializeReduceFunc(c)
if err != nil {
out <- &Row{Err: err}
return
}
reduceFuncs[i] = reduceFunc
}
// we'll have a fixed number of points with times in buckets. Initialize those times and a slice to hold the associated values
var pointCountInResult int
// if the user didn't specify a start time or a group by interval, we're returning a single point that describes the entire range
if m.TMin == 0 || m.interval == 0 {
// they want a single aggregate point for the entire time range
m.interval = m.TMax - m.TMin
pointCountInResult = 1
} else {
intervalTop := m.TMax/m.interval*m.interval + m.interval
intervalBottom := m.TMin / m.interval * m.interval
pointCountInResult = int((intervalTop - intervalBottom) / m.interval)
}
// For group by time queries, limit the number of data points returned by the limit and offset
// raw query limits are handled elsewhere
if m.stmt.Limit > 0 || m.stmt.Offset > 0 {
// ensure that the offset isn't higher than the number of points we'd get
if m.stmt.Offset > pointCountInResult {
return
}
// take the lesser of either the pre computed number of group by buckets that
// will be in the result or the limit passed in by the user
if m.stmt.Limit < pointCountInResult {
pointCountInResult = m.stmt.Limit
}
}
// If we are exceeding our MaxGroupByPoints and we aren't a raw query, error out
if pointCountInResult > MaxGroupByPoints {
out <- &Row{
Err: errors.New("too many points in the group by interval. maybe you forgot to specify a where time clause?"),
}
return
}
// initialize the times of the aggregate points
resultValues := make([][]interface{}, pointCountInResult)
// ensure that the start time for the results is on the start of the window
startTimeBucket := m.TMin
if m.interval > 0 {
startTimeBucket = startTimeBucket / m.interval * m.interval
}
for i, _ := range resultValues {
var t int64
if m.stmt.Offset > 0 {
t = startTimeBucket + (int64(i+1) * m.interval * int64(m.stmt.Offset))
} else {
t = startTimeBucket + (int64(i+1) * m.interval) - m.interval
}
// If we start getting out of our max time range, then truncate values and return
if t > m.TMax {
resultValues = resultValues[:i]
break
}
// we always include time so we need one more column than we have aggregates
vals := make([]interface{}, 0, len(aggregates)+1)
resultValues[i] = append(vals, time.Unix(0, t).UTC())
}
// This just makes sure that if they specify a start time less than what the start time would be with the offset,
// we just reset the start time to the later time to avoid going over data that won't show up in the result.
if m.stmt.Offset > 0 {
m.TMin = resultValues[0][0].(time.Time).UnixNano()
}
// now loop through the aggregate functions and populate everything
for i, c := range aggregates {
if err := m.processAggregate(c, reduceFuncs[i], resultValues); err != nil {
out <- &Row{
Name: m.MeasurementName,
Tags: m.TagSet.Tags,
Err: err,
}
return
}
}
// filter out empty results
if filterEmptyResults && m.resultsEmpty(resultValues) {
return
}
// put together the row to return
columnNames := make([]string, len(m.stmt.Fields)+1)
columnNames[0] = "time"
for i, f := range m.stmt.Fields {
columnNames[i+1] = f.Name()
}
// processes the result values if there's any math in there
resultValues = m.processResults(resultValues)
// handle any fill options
resultValues = m.processFill(resultValues)
// process derivatives
resultValues = m.processDerivative(resultValues)
row := &Row{
Name: m.MeasurementName,
Tags: m.TagSet.Tags,
Columns: columnNames,
Values: resultValues,
}
// and we out
out <- row
}
// processRawQuery will handle running the mappers and then reducing their output
// for queries that pull back raw data values without computing any kind of aggregates.
func (m *MapReduceJob) processRawQuery(out chan *Row, filterEmptyResults bool) {
// initialize the mappers
for _, mm := range m.Mappers {
if err := mm.Begin(nil, m.TMin, m.chunkSize); err != nil {
out <- &Row{Err: err}
return
}
}
mapperOutputs := make([][]*rawQueryMapOutput, len(m.Mappers))
// markers for which mappers have been completely emptied
mapperComplete := make([]bool, len(m.Mappers))
// for limit and offset we need to track how many values we've swalloed for the offset and how many we've already set for the limit.
// we track the number set for the limit because they could be getting chunks. For instance if your limit is 10k, but chunk size is 1k
valuesSent := 0
valuesOffset := 0
valuesToReturn := make([]*rawQueryMapOutput, 0)
var lastValueFromPreviousChunk *rawQueryMapOutput
// loop until we've emptied out all the mappers and sent everything out
for {
// collect up to the limit for each mapper
for j, mm := range m.Mappers {
// only pull from mappers that potentially have more data and whose last output has been completely sent out.
if mapperOutputs[j] != nil || mapperComplete[j] {
continue
}
res, err := mm.NextInterval()
if err != nil {
out <- &Row{Err: err}
return
}
if res != nil {
mapperOutputs[j] = res.([]*rawQueryMapOutput)
} else { // if we got a nil from the mapper it means that we've emptied all data from it
mapperComplete[j] = true
}
}
// process the mapper outputs. we can send out everything up to the min of the last time in the mappers
min := int64(math.MaxInt64)
for _, o := range mapperOutputs {
// some of the mappers could empty out before others so ignore them because they'll be nil
if o == nil {
continue
}
// find the min of the last point in each mapper
t := o[len(o)-1].Time
if t < min {
min = t
}
}
// now empty out all the mapper outputs up to the min time
var values []*rawQueryMapOutput
for j, o := range mapperOutputs {
// find the index of the point up to the min
ind := len(o)
for i, mo := range o {
if mo.Time > min {
ind = i
break
}
}
// add up to the index to the values
values = append(values, o[:ind]...)
// clear out previously sent mapper output data
mapperOutputs[j] = mapperOutputs[j][ind:]
// if we emptied out all the values, set this output to nil so that the mapper will get run again on the next loop
if len(mapperOutputs[j]) == 0 {
mapperOutputs[j] = nil
}
}
// if we didn't pull out any values, we're done here
if values == nil {
break
}
// sort the values by time first so we can then handle offset and limit
sort.Sort(rawOutputs(values))
// get rid of any points that need to be offset
if valuesOffset < m.stmt.Offset {
offset := m.stmt.Offset - valuesOffset
// if offset is bigger than the number of values we have, move to the next batch from the mappers
if offset > len(values) {
valuesOffset += len(values)
continue
}
values = values[offset:]
valuesOffset += offset
}
// ensure we don't send more than the limit
if valuesSent < m.stmt.Limit {
limit := m.stmt.Limit - valuesSent
if len(values) > limit {
values = values[:limit]
}
valuesSent += len(values)
}
valuesToReturn = append(valuesToReturn, values...)
// hit the chunk size? Send out what has been accumulated, but keep
// processing.
if len(valuesToReturn) >= m.chunkSize {
lastValueFromPreviousChunk = valuesToReturn[len(valuesToReturn)-1]
valuesToReturn = m.processRawQueryDerivative(lastValueFromPreviousChunk, valuesToReturn)
row := m.processRawResults(valuesToReturn)
// perform post-processing, such as math.
row.Values = m.processResults(row.Values)
out <- row
valuesToReturn = make([]*rawQueryMapOutput, 0)
}
// stop processing if we've hit the limit
if m.stmt.Limit != 0 && valuesSent >= m.stmt.Limit {
break
}
}
if len(valuesToReturn) == 0 {
if !filterEmptyResults {
out <- m.processRawResults(nil)
}
} else {
valuesToReturn = m.processRawQueryDerivative(lastValueFromPreviousChunk, valuesToReturn)
row := m.processRawResults(valuesToReturn)
// perform post-processing, such as math.
row.Values = m.processResults(row.Values)
out <- row
}
}
// derivativeInterval returns the time interval for the one (and only) derivative func
func (m *MapReduceJob) derivativeInterval() time.Duration {
if len(m.stmt.FunctionCalls()[0].Args) == 2 {
return m.stmt.FunctionCalls()[0].Args[1].(*DurationLiteral).Val
}
if m.stmt.groupByInterval > 0 {
return m.stmt.groupByInterval
}
return time.Second
}
func (m *MapReduceJob) isNonNegativeDerivative() bool {
return m.stmt.FunctionCalls()[0].Name == "non_negative_derivative"
}
func (m *MapReduceJob) processRawQueryDerivative(lastValueFromPreviousChunk *rawQueryMapOutput, valuesToReturn []*rawQueryMapOutput) []*rawQueryMapOutput {
// If we're called and do not have a derivative aggregate function, then return what was passed in
if !m.stmt.HasDerivative() {
return valuesToReturn
}
if len(valuesToReturn) == 0 {
return valuesToReturn
}
// If we only have 1 value, then the value did not change, so return
// a single row with 0.0
if len(valuesToReturn) == 1 {
return []*rawQueryMapOutput{
&rawQueryMapOutput{
Time: valuesToReturn[0].Time,
Values: 0.0,
},
}
}
if lastValueFromPreviousChunk == nil {
lastValueFromPreviousChunk = valuesToReturn[0]
}
// Determines whether to drop negative differences
isNonNegative := m.isNonNegativeDerivative()
derivativeValues := []*rawQueryMapOutput{}
for i := 1; i < len(valuesToReturn); i++ {
v := valuesToReturn[i]
// Calculate the derivative of successive points by dividing the difference
// of each value by the elapsed time normalized to the interval
diff := v.Values.(float64) - lastValueFromPreviousChunk.Values.(float64)
elapsed := v.Time - lastValueFromPreviousChunk.Time
value := 0.0
if elapsed > 0 {
value = diff / (float64(elapsed) / float64(m.derivativeInterval()))
}
lastValueFromPreviousChunk = v
// Drop negative values for non-negative derivatives
if isNonNegative && diff < 0 {
continue
}
derivativeValues = append(derivativeValues, &rawQueryMapOutput{
Time: v.Time,
Values: value,
})
}
return derivativeValues
}
// processDerivative returns the derivatives of the results
func (m *MapReduceJob) processDerivative(results [][]interface{}) [][]interface{} {
// Return early if we're not supposed to process the derivatives
if !m.stmt.HasDerivative() {
return results
}
// Return early if we can't calculate derivatives
if len(results) == 0 {
return results
}
// If we only have 1 value, then the value did not change, so return
// a single row w/ 0.0
if len(results) == 1 {
return [][]interface{}{
[]interface{}{results[0][0], 0.0},
}
}
// Determines whether to drop negative differences
isNonNegative := m.isNonNegativeDerivative()
// Otherwise calculate the derivatives as the difference between consecutive
// points divided by the elapsed time. Then normalize to the requested
// interval.
derivatives := [][]interface{}{}
for i := 1; i < len(results); i++ {
prev := results[i-1]
cur := results[i]
if cur[1] == nil || prev[1] == nil {
continue
}
elapsed := cur[0].(time.Time).Sub(prev[0].(time.Time))
diff := cur[1].(float64) - prev[1].(float64)
value := 0.0
if elapsed > 0 {
value = float64(diff) / (float64(elapsed) / float64(m.derivativeInterval()))
}
// Drop negative values for non-negative derivatives
if isNonNegative && diff < 0 {
continue
}
val := []interface{}{
cur[0],
value,
}
derivatives = append(derivatives, val)
}
return derivatives
}
// processsResults will apply any math that was specified in the select statement against the passed in results
func (m *MapReduceJob) processResults(results [][]interface{}) [][]interface{} {
hasMath := false
for _, f := range m.stmt.Fields {
if _, ok := f.Expr.(*BinaryExpr); ok {
hasMath = true
} else if _, ok := f.Expr.(*ParenExpr); ok {
hasMath = true
}
}
if !hasMath {
return results
}
processors := make([]processor, len(m.stmt.Fields))
startIndex := 1
for i, f := range m.stmt.Fields {
processors[i], startIndex = getProcessor(f.Expr, startIndex)
}
mathResults := make([][]interface{}, len(results))
for i, _ := range mathResults {
mathResults[i] = make([]interface{}, len(m.stmt.Fields)+1)
// put the time in
mathResults[i][0] = results[i][0]
for j, p := range processors {
mathResults[i][j+1] = p(results[i])
}
}
return mathResults
}
// processFill will take the results and return new reaults (or the same if no fill modifications are needed) with whatever fill options the query has.
func (m *MapReduceJob) processFill(results [][]interface{}) [][]interface{} {
// don't do anything if we're supposed to leave the nulls
if m.stmt.Fill == NullFill {
return results
}
if m.stmt.Fill == NoFill {
// remove any rows that have even one nil value. This one is tricky because they could have multiple
// aggregates, but this option means that any row that has even one nil gets purged.
newResults := make([][]interface{}, 0, len(results))
for _, vals := range results {
hasNil := false
// start at 1 because the first value is always time
for j := 1; j < len(vals); j++ {
if vals[j] == nil {
hasNil = true
break
}
}
if !hasNil {
newResults = append(newResults, vals)
}
}
return newResults
}
// they're either filling with previous values or a specific number
for i, vals := range results {
// start at 1 because the first value is always time
for j := 1; j < len(vals); j++ {
if vals[j] == nil {
switch m.stmt.Fill {
case PreviousFill:
if i != 0 {
vals[j] = results[i-1][j]
}
case NumberFill:
vals[j] = m.stmt.FillValue
}
}
}
}
return results
}
func getProcessor(expr Expr, startIndex int) (processor, int) {
switch expr := expr.(type) {
case *VarRef:
return newEchoProcessor(startIndex), startIndex + 1
case *Call:
return newEchoProcessor(startIndex), startIndex + 1
case *BinaryExpr:
return getBinaryProcessor(expr, startIndex)
case *ParenExpr:
return getProcessor(expr.Expr, startIndex)
case *NumberLiteral:
return newLiteralProcessor(expr.Val), startIndex
case *StringLiteral:
return newLiteralProcessor(expr.Val), startIndex
case *BooleanLiteral:
return newLiteralProcessor(expr.Val), startIndex
case *TimeLiteral:
return newLiteralProcessor(expr.Val), startIndex
case *DurationLiteral:
return newLiteralProcessor(expr.Val), startIndex
}
panic("unreachable")
}
type processor func(values []interface{}) interface{}
func newEchoProcessor(index int) processor {
return func(values []interface{}) interface{} {
return values[index]
}
}
func newLiteralProcessor(val interface{}) processor {
return func(values []interface{}) interface{} {
return val
}
}
func getBinaryProcessor(expr *BinaryExpr, startIndex int) (processor, int) {
lhs, index := getProcessor(expr.LHS, startIndex)
rhs, index := getProcessor(expr.RHS, index)
return newBinaryExprEvaluator(expr.Op, lhs, rhs), index
}
func newBinaryExprEvaluator(op Token, lhs, rhs processor) processor {
switch op {
case ADD:
return func(values []interface{}) interface{} {
l := lhs(values)
r := rhs(values)
if lv, ok := l.(float64); ok {
if rv, ok := r.(float64); ok {
if rv != 0 {
return lv + rv
}
}
}
return nil
}
case SUB:
return func(values []interface{}) interface{} {
l := lhs(values)
r := rhs(values)
if lv, ok := l.(float64); ok {
if rv, ok := r.(float64); ok {
if rv != 0 {
return lv - rv
}
}
}
return nil
}
case MUL:
return func(values []interface{}) interface{} {
l := lhs(values)
r := rhs(values)
if lv, ok := l.(float64); ok {
if rv, ok := r.(float64); ok {
if rv != 0 {
return lv * rv
}
}
}
return nil
}
case DIV:
return func(values []interface{}) interface{} {
l := lhs(values)
r := rhs(values)
if lv, ok := l.(float64); ok {
if rv, ok := r.(float64); ok {
if rv != 0 {
return lv / rv
}
}
}
return nil
}
default:
// we shouldn't get here, but give them back nils if it goes this way
return func(values []interface{}) interface{} {
return nil
}
}
}
// resultsEmpty will return true if the all the result values are empty or contain only nulls
func (m *MapReduceJob) resultsEmpty(resultValues [][]interface{}) bool {
for _, vals := range resultValues {
// start the loop at 1 because we want to skip over the time value
for i := 1; i < len(vals); i++ {
if vals[i] != nil {
return false
}
}
}
return true
}
// processRawResults will handle converting the reduce results from a raw query into a Row
func (m *MapReduceJob) processRawResults(values []*rawQueryMapOutput) *Row {
selectNames := m.stmt.NamesInSelect()
// ensure that time is in the select names and in the first position
hasTime := false
for i, n := range selectNames {
if n == "time" {
if i != 0 {
tmp := selectNames[0]
selectNames[0] = "time"
selectNames[i] = tmp
}
hasTime = true
}
}
// time should always be in the list of names they get back
if !hasTime {
selectNames = append([]string{"time"}, selectNames...)
}
// if they've selected only a single value we have to handle things a little differently
singleValue := len(selectNames) == SelectColumnCountWithOneValue
row := &Row{
Name: m.MeasurementName,
Tags: m.TagSet.Tags,
Columns: selectNames,
}
// return an empty row if there are no results
if len(values) == 0 {
return row
}
// the results will have all of the raw mapper results, convert into the row
for _, v := range values {
vals := make([]interface{}, len(selectNames))
if singleValue {
vals[0] = time.Unix(0, v.Time).UTC()
vals[1] = v.Values.(interface{})
} else {
fields := v.Values.(map[string]interface{})
// time is always the first value
vals[0] = time.Unix(0, v.Time).UTC()
// populate the other values
for i := 1; i < len(selectNames); i++ {
vals[i] = fields[selectNames[i]]
}
}
row.Values = append(row.Values, vals)
}
return row
}
func (m *MapReduceJob) processAggregate(c *Call, reduceFunc ReduceFunc, resultValues [][]interface{}) error {
mapperOutputs := make([]interface{}, len(m.Mappers))
// intialize the mappers
for _, mm := range m.Mappers {
// for aggregate queries, we use the chunk size to determine how many times NextInterval should be called.
// This is the number of buckets that we need to fill.
if err := mm.Begin(c, m.TMin, len(resultValues)); err != nil {
return err
}
}
// populate the result values for each interval of time
for i, _ := range resultValues {
// collect the results from each mapper
for j, mm := range m.Mappers {
res, err := mm.NextInterval()
if err != nil {
return err
}
mapperOutputs[j] = res
}
resultValues[i] = append(resultValues[i], reduceFunc(mapperOutputs))
}
return nil
}
type MapReduceJobs []*MapReduceJob
func (a MapReduceJobs) Len() int { return len(a) }
func (a MapReduceJobs) Less(i, j int) bool { return bytes.Compare(a[i].Key(), a[j].Key()) == -1 }
func (a MapReduceJobs) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// Mapper will run through a map function. A single mapper will be created
// for each shard for each tagset that must be hit to satisfy a query.
// Mappers can either point to a local shard or could point to a remote server.
type Mapper interface {
// Open will open the necessary resources to being the map job. Could be connections to remote servers or
// hitting the local bolt store
Open() error
// Close will close the mapper (either the bolt transaction or the request)
Close()
// Begin will set up the mapper to run the map function for a given aggregate call starting at the passed in time.
// For raw data queries it will yield to the mapper no more than limit number of points.
Begin(aggregate *Call, startingTime int64, limit int) error
// NextInterval will get the time ordered next interval of the given interval size from the mapper. This is a
// forward only operation from the start time passed into Begin. Will return nil when there is no more data to be read.
// Interval periods can be different based on time boundaries (months, daylight savings, etc) of the query.
NextInterval() (interface{}, error)
}
type TagSet struct {
Tags map[string]string
Filters []Expr
SeriesIDs []uint64
Key []byte
}
func (t *TagSet) AddFilter(id uint64, filter Expr) {
t.SeriesIDs = append(t.SeriesIDs, id)
t.Filters = append(t.Filters, filter)
}
// Planner represents an object for creating execution plans.
type Planner struct {
DB DB
// Returns the current time. Defaults to time.Now().
Now func() time.Time
}
// NewPlanner returns a new instance of Planner.
func NewPlanner(db DB) *Planner {
return &Planner{
DB: db,
Now: time.Now,
}
}
// Plan creates an execution plan for the given SelectStatement and returns an Executor.
func (p *Planner) Plan(stmt *SelectStatement, chunkSize int) (*Executor, error) {
now := p.Now().UTC()
// Replace instances of "now()" with the current time.
stmt.Condition = Reduce(stmt.Condition, &NowValuer{Now: now})
// Begin an unopened transaction.
tx, err := p.DB.Begin()
if err != nil {
return nil, err
}
// Determine group by tag keys.
interval, tags, err := stmt.Dimensions.Normalize()
if err != nil {
return nil, err
}
// TODO: hanldle queries that select from multiple measurements. This assumes that we're only selecting from a single one
jobs, err := tx.CreateMapReduceJobs(stmt, tags)
if err != nil {
return nil, err
}
// LIMIT and OFFSET the unique series
if stmt.SLimit > 0 || stmt.SOffset > 0 {
if stmt.SOffset > len(jobs) {
jobs = nil
} else {
if stmt.SOffset+stmt.SLimit > len(jobs) {
stmt.SLimit = len(jobs) - stmt.SOffset
}
jobs = jobs[stmt.SOffset : stmt.SOffset+stmt.SLimit]
}
}
for _, j := range jobs {
j.interval = interval.Nanoseconds()
j.stmt = stmt
j.chunkSize = chunkSize
}
return &Executor{tx: tx, stmt: stmt, jobs: jobs, interval: interval.Nanoseconds()}, nil
}
// Executor represents the implementation of Executor.
// It executes all reducers and combines their result into a row.
type Executor struct {
tx Tx // transaction
stmt *SelectStatement // original statement
jobs []*MapReduceJob // one job per unique tag set that will return in the query
interval int64 // the group by interval of the query in nanoseconds
}
// Execute begins execution of the query and returns a channel to receive rows.
func (e *Executor) Execute() <-chan *Row {
// Create output channel and stream data in a separate goroutine.
out := make(chan *Row, 0)
go e.execute(out)
return out
}
func (e *Executor) close() {
for _, j := range e.jobs {
j.Close()
}
}
// execute runs in a separate separate goroutine and streams data from processors.
func (e *Executor) execute(out chan *Row) {
// Ensure the the MRJobs close after execution.
defer e.close()
// If we have multiple tag sets we'll want to filter out the empty ones
filterEmptyResults := len(e.jobs) > 1
// Execute each MRJob serially
for _, j := range e.jobs {
j.Execute(out, filterEmptyResults)
}
// Mark the end of the output channel.
close(out)
}
// Row represents a single row returned from the execution of a statement.
type Row struct {
Name string `json:"name,omitempty"`
Tags map[string]string `json:"tags,omitempty"`
Columns []string `json:"columns"`
Values [][]interface{} `json:"values,omitempty"`
Err error `json:"err,omitempty"`
}
// tagsHash returns a hash of tag key/value pairs.
func (r *Row) tagsHash() uint64 {
h := fnv.New64a()
keys := r.tagsKeys()
for _, k := range keys {
h.Write([]byte(k))
h.Write([]byte(r.Tags[k]))
}
return h.Sum64()
}
// tagKeys returns a sorted list of tag keys.
func (r *Row) tagsKeys() []string {
a := make([]string, len(r.Tags))
for k := range r.Tags {
a = append(a, k)
}
sort.Strings(a)
return a
}
// Rows represents a list of rows that can be sorted consistently by name/tag.
type Rows []*Row
func (p Rows) Len() int { return len(p) }
func (p Rows) Less(i, j int) bool {
// Sort by name first.
if p[i].Name != p[j].Name {
return p[i].Name < p[j].Name
}
// Sort by tag set hash. Tags don't have a meaningful sort order so we
// just compute a hash and sort by that instead. This allows the tests
// to receive rows in a predictable order every time.
return p[i].tagsHash() < p[j].tagsHash()
}
func (p Rows) Swap(i, j int) { p[i], p[j] = p[j], p[i] }