influxdb/influxql/ast.go

5115 lines
139 KiB
Go

package influxql
import (
"bytes"
"errors"
"fmt"
"math"
"regexp"
"regexp/syntax"
"sort"
"strconv"
"strings"
"time"
"github.com/gogo/protobuf/proto"
internal "github.com/influxdata/influxdb/influxql/internal"
)
// DataType represents the primitive data types available in InfluxQL.
type DataType int
const (
// Unknown primitive data type.
Unknown DataType = 0
// Float means the data type is a float.
Float = 1
// Integer means the data type is an integer.
Integer = 2
// String means the data type is a string of text.
String = 3
// Boolean means the data type is a boolean.
Boolean = 4
// Time means the data type is a time.
Time = 5
// Duration means the data type is a duration of time.
Duration = 6
// Tag means the data type is a tag.
Tag = 7
// AnyField means the data type is any field.
AnyField = 8
)
var (
// ErrInvalidTime is returned when the timestamp string used to
// compare against time field is invalid.
ErrInvalidTime = errors.New("invalid timestamp string")
)
// InspectDataType returns the data type of a given value.
func InspectDataType(v interface{}) DataType {
switch v.(type) {
case float64:
return Float
case int64, int32, int:
return Integer
case string:
return String
case bool:
return Boolean
case time.Time:
return Time
case time.Duration:
return Duration
default:
return Unknown
}
}
// InspectDataTypes returns all of the data types for an interface slice.
func InspectDataTypes(a []interface{}) []DataType {
dta := make([]DataType, len(a))
for i, v := range a {
dta[i] = InspectDataType(v)
}
return dta
}
// String returns the human-readable string representation of the DataType.
func (d DataType) String() string {
switch d {
case Float:
return "float"
case Integer:
return "integer"
case String:
return "string"
case Boolean:
return "boolean"
case Time:
return "time"
case Duration:
return "duration"
case Tag:
return "tag"
case AnyField:
return "field"
}
return "unknown"
}
// Node represents a node in the InfluxDB abstract syntax tree.
type Node interface {
// node is unexported to ensure implementations of Node
// can only originate in this package.
node()
String() string
}
func (*Query) node() {}
func (Statements) node() {}
func (*AlterRetentionPolicyStatement) node() {}
func (*CreateContinuousQueryStatement) node() {}
func (*CreateDatabaseStatement) node() {}
func (*CreateRetentionPolicyStatement) node() {}
func (*CreateSubscriptionStatement) node() {}
func (*CreateUserStatement) node() {}
func (*Distinct) node() {}
func (*DeleteSeriesStatement) node() {}
func (*DeleteStatement) node() {}
func (*DropContinuousQueryStatement) node() {}
func (*DropDatabaseStatement) node() {}
func (*DropMeasurementStatement) node() {}
func (*DropRetentionPolicyStatement) node() {}
func (*DropSeriesStatement) node() {}
func (*DropShardStatement) node() {}
func (*DropSubscriptionStatement) node() {}
func (*DropUserStatement) node() {}
func (*GrantStatement) node() {}
func (*GrantAdminStatement) node() {}
func (*KillQueryStatement) node() {}
func (*RevokeStatement) node() {}
func (*RevokeAdminStatement) node() {}
func (*SelectStatement) node() {}
func (*SetPasswordUserStatement) node() {}
func (*ShowContinuousQueriesStatement) node() {}
func (*ShowGrantsForUserStatement) node() {}
func (*ShowDatabasesStatement) node() {}
func (*ShowFieldKeysStatement) node() {}
func (*ShowRetentionPoliciesStatement) node() {}
func (*ShowMeasurementsStatement) node() {}
func (*ShowQueriesStatement) node() {}
func (*ShowSeriesStatement) node() {}
func (*ShowShardGroupsStatement) node() {}
func (*ShowShardsStatement) node() {}
func (*ShowStatsStatement) node() {}
func (*ShowSubscriptionsStatement) node() {}
func (*ShowDiagnosticsStatement) node() {}
func (*ShowTagKeysStatement) node() {}
func (*ShowTagValuesStatement) node() {}
func (*ShowUsersStatement) node() {}
func (*BinaryExpr) node() {}
func (*BooleanLiteral) node() {}
func (*Call) node() {}
func (*Dimension) node() {}
func (Dimensions) node() {}
func (*DurationLiteral) node() {}
func (*IntegerLiteral) node() {}
func (*Field) node() {}
func (Fields) node() {}
func (*Measurement) node() {}
func (Measurements) node() {}
func (*nilLiteral) node() {}
func (*NumberLiteral) node() {}
func (*ParenExpr) node() {}
func (*RegexLiteral) node() {}
func (*ListLiteral) node() {}
func (*SortField) node() {}
func (SortFields) node() {}
func (Sources) node() {}
func (*StringLiteral) node() {}
func (*SubQuery) node() {}
func (*Target) node() {}
func (*TimeLiteral) node() {}
func (*VarRef) node() {}
func (*Wildcard) node() {}
// Query represents a collection of ordered statements.
type Query struct {
Statements Statements
}
// String returns a string representation of the query.
func (q *Query) String() string { return q.Statements.String() }
// Statements represents a list of statements.
type Statements []Statement
// String returns a string representation of the statements.
func (a Statements) String() string {
var str []string
for _, stmt := range a {
str = append(str, stmt.String())
}
return strings.Join(str, ";\n")
}
// Statement represents a single command in InfluxQL.
type Statement interface {
Node
// stmt is unexported to ensure implementations of Statement
// can only originate in this package.
stmt()
RequiredPrivileges() (ExecutionPrivileges, error)
}
// HasDefaultDatabase provides an interface to get the default database from a Statement.
type HasDefaultDatabase interface {
Node
// stmt is unexported to ensure implementations of HasDefaultDatabase
// can only originate in this package.
stmt()
DefaultDatabase() string
}
// ExecutionPrivilege is a privilege required for a user to execute
// a statement on a database or resource.
type ExecutionPrivilege struct {
// Admin privilege required.
Admin bool
// Name of the database.
Name string
// Database privilege required.
Privilege Privilege
}
// ExecutionPrivileges is a list of privileges required to execute a statement.
type ExecutionPrivileges []ExecutionPrivilege
func (*AlterRetentionPolicyStatement) stmt() {}
func (*CreateContinuousQueryStatement) stmt() {}
func (*CreateDatabaseStatement) stmt() {}
func (*CreateRetentionPolicyStatement) stmt() {}
func (*CreateSubscriptionStatement) stmt() {}
func (*CreateUserStatement) stmt() {}
func (*DeleteSeriesStatement) stmt() {}
func (*DeleteStatement) stmt() {}
func (*DropContinuousQueryStatement) stmt() {}
func (*DropDatabaseStatement) stmt() {}
func (*DropMeasurementStatement) stmt() {}
func (*DropRetentionPolicyStatement) stmt() {}
func (*DropSeriesStatement) stmt() {}
func (*DropSubscriptionStatement) stmt() {}
func (*DropUserStatement) stmt() {}
func (*GrantStatement) stmt() {}
func (*GrantAdminStatement) stmt() {}
func (*KillQueryStatement) stmt() {}
func (*ShowContinuousQueriesStatement) stmt() {}
func (*ShowGrantsForUserStatement) stmt() {}
func (*ShowDatabasesStatement) stmt() {}
func (*ShowFieldKeysStatement) stmt() {}
func (*ShowMeasurementsStatement) stmt() {}
func (*ShowQueriesStatement) stmt() {}
func (*ShowRetentionPoliciesStatement) stmt() {}
func (*ShowSeriesStatement) stmt() {}
func (*ShowShardGroupsStatement) stmt() {}
func (*ShowShardsStatement) stmt() {}
func (*ShowStatsStatement) stmt() {}
func (*DropShardStatement) stmt() {}
func (*ShowSubscriptionsStatement) stmt() {}
func (*ShowDiagnosticsStatement) stmt() {}
func (*ShowTagKeysStatement) stmt() {}
func (*ShowTagValuesStatement) stmt() {}
func (*ShowUsersStatement) stmt() {}
func (*RevokeStatement) stmt() {}
func (*RevokeAdminStatement) stmt() {}
func (*SelectStatement) stmt() {}
func (*SetPasswordUserStatement) stmt() {}
// Expr represents an expression that can be evaluated to a value.
type Expr interface {
Node
// expr is unexported to ensure implementations of Expr
// can only originate in this package.
expr()
}
func (*BinaryExpr) expr() {}
func (*BooleanLiteral) expr() {}
func (*Call) expr() {}
func (*Distinct) expr() {}
func (*DurationLiteral) expr() {}
func (*IntegerLiteral) expr() {}
func (*nilLiteral) expr() {}
func (*NumberLiteral) expr() {}
func (*ParenExpr) expr() {}
func (*RegexLiteral) expr() {}
func (*ListLiteral) expr() {}
func (*StringLiteral) expr() {}
func (*TimeLiteral) expr() {}
func (*VarRef) expr() {}
func (*Wildcard) expr() {}
// Literal represents a static literal.
type Literal interface {
Expr
// literal is unexported to ensure implementations of Literal
// can only originate in this package.
literal()
}
func (*BooleanLiteral) literal() {}
func (*DurationLiteral) literal() {}
func (*IntegerLiteral) literal() {}
func (*nilLiteral) literal() {}
func (*NumberLiteral) literal() {}
func (*RegexLiteral) literal() {}
func (*ListLiteral) literal() {}
func (*StringLiteral) literal() {}
func (*TimeLiteral) literal() {}
// Source represents a source of data for a statement.
type Source interface {
Node
// source is unexported to ensure implementations of Source
// can only originate in this package.
source()
}
func (*Measurement) source() {}
func (*SubQuery) source() {}
// Sources represents a list of sources.
type Sources []Source
// Names returns a list of source names.
func (a Sources) Names() []string {
names := make([]string, 0, len(a))
for _, s := range a {
switch s := s.(type) {
case *Measurement:
names = append(names, s.Name)
}
}
return names
}
// Filter returns a list of source names filtered by the database/retention policy.
func (a Sources) Filter(database, retentionPolicy string) []Source {
sources := make([]Source, 0, len(a))
for _, s := range a {
switch s := s.(type) {
case *Measurement:
if s.Database == database && s.RetentionPolicy == retentionPolicy {
sources = append(sources, s)
}
case *SubQuery:
filteredSources := s.Statement.Sources.Filter(database, retentionPolicy)
sources = append(sources, filteredSources...)
}
}
return sources
}
// HasSystemSource returns true if any of the sources are internal, system sources.
func (a Sources) HasSystemSource() bool {
for _, s := range a {
switch s := s.(type) {
case *Measurement:
if IsSystemName(s.Name) {
return true
}
}
}
return false
}
// HasRegex returns true if any of the sources are regex measurements.
func (a Sources) HasRegex() bool {
for _, s := range a {
switch s := s.(type) {
case *Measurement:
if s.Regex != nil {
return true
}
}
}
return false
}
// String returns a string representation of a Sources array.
func (a Sources) String() string {
var buf bytes.Buffer
ubound := len(a) - 1
for i, src := range a {
_, _ = buf.WriteString(src.String())
if i < ubound {
_, _ = buf.WriteString(", ")
}
}
return buf.String()
}
// Measurements returns all measurements including ones embedded in subqueries.
func (a Sources) Measurements() []*Measurement {
mms := make([]*Measurement, 0, len(a))
for _, src := range a {
switch src := src.(type) {
case *Measurement:
mms = append(mms, src)
case *SubQuery:
mms = append(mms, src.Statement.Sources.Measurements()...)
}
}
return mms
}
// MarshalBinary encodes a list of sources to a binary format.
func (a Sources) MarshalBinary() ([]byte, error) {
var pb internal.Measurements
pb.Items = make([]*internal.Measurement, len(a))
for i, source := range a {
pb.Items[i] = encodeMeasurement(source.(*Measurement))
}
return proto.Marshal(&pb)
}
// UnmarshalBinary decodes binary data into a list of sources.
func (a *Sources) UnmarshalBinary(buf []byte) error {
var pb internal.Measurements
if err := proto.Unmarshal(buf, &pb); err != nil {
return err
}
*a = make(Sources, len(pb.GetItems()))
for i := range pb.GetItems() {
mm, err := decodeMeasurement(pb.GetItems()[i])
if err != nil {
return err
}
(*a)[i] = mm
}
return nil
}
// IsSystemName returns true if name is an internal system name.
func IsSystemName(name string) bool {
switch name {
case "_fieldKeys",
"_measurements",
"_series",
"_tagKeys",
"_tags":
return true
default:
return false
}
}
// SortField represents a field to sort results by.
type SortField struct {
// Name of the field.
Name string
// Sort order.
Ascending bool
}
// String returns a string representation of a sort field.
func (field *SortField) String() string {
var buf bytes.Buffer
if field.Name != "" {
_, _ = buf.WriteString(field.Name)
_, _ = buf.WriteString(" ")
}
if field.Ascending {
_, _ = buf.WriteString("ASC")
} else {
_, _ = buf.WriteString("DESC")
}
return buf.String()
}
// SortFields represents an ordered list of ORDER BY fields.
type SortFields []*SortField
// String returns a string representation of sort fields.
func (a SortFields) String() string {
fields := make([]string, 0, len(a))
for _, field := range a {
fields = append(fields, field.String())
}
return strings.Join(fields, ", ")
}
// CreateDatabaseStatement represents a command for creating a new database.
type CreateDatabaseStatement struct {
// Name of the database to be created.
Name string
// RetentionPolicyCreate indicates whether the user explicitly wants to create a retention policy.
RetentionPolicyCreate bool
// RetentionPolicyDuration indicates retention duration for the new database.
RetentionPolicyDuration *time.Duration
// RetentionPolicyReplication indicates retention replication for the new database.
RetentionPolicyReplication *int
// RetentionPolicyName indicates retention name for the new database.
RetentionPolicyName string
// RetentionPolicyShardGroupDuration indicates shard group duration for the new database.
RetentionPolicyShardGroupDuration time.Duration
}
// String returns a string representation of the create database statement.
func (s *CreateDatabaseStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE DATABASE ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
if s.RetentionPolicyCreate {
_, _ = buf.WriteString(" WITH")
if s.RetentionPolicyDuration != nil {
_, _ = buf.WriteString(" DURATION ")
_, _ = buf.WriteString(s.RetentionPolicyDuration.String())
}
if s.RetentionPolicyReplication != nil {
_, _ = buf.WriteString(" REPLICATION ")
_, _ = buf.WriteString(strconv.Itoa(*s.RetentionPolicyReplication))
}
if s.RetentionPolicyShardGroupDuration > 0 {
_, _ = buf.WriteString(" SHARD DURATION ")
_, _ = buf.WriteString(s.RetentionPolicyShardGroupDuration.String())
}
if s.RetentionPolicyName != "" {
_, _ = buf.WriteString(" NAME ")
_, _ = buf.WriteString(QuoteIdent(s.RetentionPolicyName))
}
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a CreateDatabaseStatement.
func (s *CreateDatabaseStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// DropDatabaseStatement represents a command to drop a database.
type DropDatabaseStatement struct {
// Name of the database to be dropped.
Name string
}
// String returns a string representation of the drop database statement.
func (s *DropDatabaseStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP DATABASE ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DropDatabaseStatement.
func (s *DropDatabaseStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// DropRetentionPolicyStatement represents a command to drop a retention policy from a database.
type DropRetentionPolicyStatement struct {
// Name of the policy to drop.
Name string
// Name of the database to drop the policy from.
Database string
}
// String returns a string representation of the drop retention policy statement.
func (s *DropRetentionPolicyStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP RETENTION POLICY ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DropRetentionPolicyStatement.
func (s *DropRetentionPolicyStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: s.Database, Privilege: WritePrivilege}}, nil
}
// CreateUserStatement represents a command for creating a new user.
type CreateUserStatement struct {
// Name of the user to be created.
Name string
// User's password.
Password string
// User's admin privilege.
Admin bool
}
// String returns a string representation of the create user statement.
func (s *CreateUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE USER ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" WITH PASSWORD ")
_, _ = buf.WriteString("[REDACTED]")
if s.Admin {
_, _ = buf.WriteString(" WITH ALL PRIVILEGES")
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a CreateUserStatement.
func (s *CreateUserStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// DropUserStatement represents a command for dropping a user.
type DropUserStatement struct {
// Name of the user to drop.
Name string
}
// String returns a string representation of the drop user statement.
func (s *DropUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP USER ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a DropUserStatement.
func (s *DropUserStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// Privilege is a type of action a user can be granted the right to use.
type Privilege int
const (
// NoPrivileges means no privileges required / granted / revoked.
NoPrivileges Privilege = iota
// ReadPrivilege means read privilege required / granted / revoked.
ReadPrivilege
// WritePrivilege means write privilege required / granted / revoked.
WritePrivilege
// AllPrivileges means all privileges required / granted / revoked.
AllPrivileges
)
// NewPrivilege returns an initialized *Privilege.
func NewPrivilege(p Privilege) *Privilege { return &p }
// String returns a string representation of a Privilege.
func (p Privilege) String() string {
switch p {
case NoPrivileges:
return "NO PRIVILEGES"
case ReadPrivilege:
return "READ"
case WritePrivilege:
return "WRITE"
case AllPrivileges:
return "ALL PRIVILEGES"
}
return ""
}
// GrantStatement represents a command for granting a privilege.
type GrantStatement struct {
// The privilege to be granted.
Privilege Privilege
// Database to grant the privilege to.
On string
// Who to grant the privilege to.
User string
}
// String returns a string representation of the grant statement.
func (s *GrantStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("GRANT ")
_, _ = buf.WriteString(s.Privilege.String())
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.On))
_, _ = buf.WriteString(" TO ")
_, _ = buf.WriteString(QuoteIdent(s.User))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a GrantStatement.
func (s *GrantStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// GrantAdminStatement represents a command for granting admin privilege.
type GrantAdminStatement struct {
// Who to grant the privilege to.
User string
}
// String returns a string representation of the grant admin statement.
func (s *GrantAdminStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("GRANT ALL PRIVILEGES TO ")
_, _ = buf.WriteString(QuoteIdent(s.User))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a GrantAdminStatement.
func (s *GrantAdminStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// KillQueryStatement represents a command for killing a query.
type KillQueryStatement struct {
// The query to kill.
QueryID uint64
// The host to delegate the kill to.
Host string
}
// String returns a string representation of the kill query statement.
func (s *KillQueryStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("KILL QUERY ")
_, _ = buf.WriteString(strconv.FormatUint(s.QueryID, 10))
if s.Host != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Host))
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a KillQueryStatement.
func (s *KillQueryStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// SetPasswordUserStatement represents a command for changing user password.
type SetPasswordUserStatement struct {
// Plain-text password.
Password string
// Who to grant the privilege to.
Name string
}
// String returns a string representation of the set password statement.
func (s *SetPasswordUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SET PASSWORD FOR ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" = ")
_, _ = buf.WriteString("[REDACTED]")
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a SetPasswordUserStatement.
func (s *SetPasswordUserStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// RevokeStatement represents a command to revoke a privilege from a user.
type RevokeStatement struct {
// The privilege to be revoked.
Privilege Privilege
// Database to revoke the privilege from.
On string
// Who to revoke privilege from.
User string
}
// String returns a string representation of the revoke statement.
func (s *RevokeStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("REVOKE ")
_, _ = buf.WriteString(s.Privilege.String())
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.On))
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(QuoteIdent(s.User))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a RevokeStatement.
func (s *RevokeStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// RevokeAdminStatement represents a command to revoke admin privilege from a user.
type RevokeAdminStatement struct {
// Who to revoke admin privilege from.
User string
}
// String returns a string representation of the revoke admin statement.
func (s *RevokeAdminStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("REVOKE ALL PRIVILEGES FROM ")
_, _ = buf.WriteString(QuoteIdent(s.User))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a RevokeAdminStatement.
func (s *RevokeAdminStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// CreateRetentionPolicyStatement represents a command to create a retention policy.
type CreateRetentionPolicyStatement struct {
// Name of policy to create.
Name string
// Name of database this policy belongs to.
Database string
// Duration data written to this policy will be retained.
Duration time.Duration
// Replication factor for data written to this policy.
Replication int
// Should this policy be set as default for the database?
Default bool
// Shard Duration.
ShardGroupDuration time.Duration
}
// String returns a string representation of the create retention policy.
func (s *CreateRetentionPolicyStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE RETENTION POLICY ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
_, _ = buf.WriteString(" DURATION ")
_, _ = buf.WriteString(FormatDuration(s.Duration))
_, _ = buf.WriteString(" REPLICATION ")
_, _ = buf.WriteString(strconv.Itoa(s.Replication))
if s.ShardGroupDuration > 0 {
_, _ = buf.WriteString(" SHARD DURATION ")
_, _ = buf.WriteString(FormatDuration(s.ShardGroupDuration))
}
if s.Default {
_, _ = buf.WriteString(" DEFAULT")
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a CreateRetentionPolicyStatement.
func (s *CreateRetentionPolicyStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// AlterRetentionPolicyStatement represents a command to alter an existing retention policy.
type AlterRetentionPolicyStatement struct {
// Name of policy to alter.
Name string
// Name of the database this policy belongs to.
Database string
// Duration data written to this policy will be retained.
Duration *time.Duration
// Replication factor for data written to this policy.
Replication *int
// Should this policy be set as defalut for the database?
Default bool
// Duration of the Shard.
ShardGroupDuration *time.Duration
}
// String returns a string representation of the alter retention policy statement.
func (s *AlterRetentionPolicyStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("ALTER RETENTION POLICY ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
if s.Duration != nil {
_, _ = buf.WriteString(" DURATION ")
_, _ = buf.WriteString(FormatDuration(*s.Duration))
}
if s.Replication != nil {
_, _ = buf.WriteString(" REPLICATION ")
_, _ = buf.WriteString(strconv.Itoa(*s.Replication))
}
if s.ShardGroupDuration != nil {
_, _ = buf.WriteString(" SHARD DURATION ")
_, _ = buf.WriteString(FormatDuration(*s.ShardGroupDuration))
}
if s.Default {
_, _ = buf.WriteString(" DEFAULT")
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute an AlterRetentionPolicyStatement.
func (s *AlterRetentionPolicyStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// FillOption represents different options for filling aggregate windows.
type FillOption int
const (
// NullFill means that empty aggregate windows will just have null values.
NullFill FillOption = iota
// NoFill means that empty aggregate windows will be purged from the result.
NoFill
// NumberFill means that empty aggregate windows will be filled with a provided number.
NumberFill
// PreviousFill means that empty aggregate windows will be filled with whatever the previous aggregate window had.
PreviousFill
// LinearFill means that empty aggregate windows will be filled with whatever a linear value between non null windows.
LinearFill
)
// SelectStatement represents a command for extracting data from the database.
type SelectStatement struct {
// Expressions returned from the selection.
Fields Fields
// Target (destination) for the result of a SELECT INTO query.
Target *Target
// Expressions used for grouping the selection.
Dimensions Dimensions
// Data sources (measurements) that fields are extracted from.
Sources Sources
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by.
SortFields SortFields
// Maximum number of rows to be returned. Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
// Maxiumum number of series to be returned. Unlimited if zero.
SLimit int
// Returns series starting at an offset from the first one.
SOffset int
// Memoized group by interval from GroupBy().
groupByInterval time.Duration
// Whether it's a query for raw data values (i.e. not an aggregate).
IsRawQuery bool
// What fill option the select statement uses, if any.
Fill FillOption
// The value to fill empty aggregate buckets with, if any.
FillValue interface{}
// Renames the implicit time field name.
TimeAlias string
// Removes the "time" column from the output.
OmitTime bool
// Removes duplicate rows from raw queries.
Dedupe bool
}
// HasDerivative returns true if any function call in the statement is a
// derivative aggregate.
func (s *SelectStatement) HasDerivative() bool {
for _, f := range s.FunctionCalls() {
if f.Name == "derivative" || f.Name == "non_negative_derivative" {
return true
}
}
return false
}
// IsSimpleDerivative return true if any function call is a derivative function with a
// variable ref as the first arg.
func (s *SelectStatement) IsSimpleDerivative() bool {
for _, f := range s.FunctionCalls() {
if f.Name == "derivative" || f.Name == "non_negative_derivative" {
// it's nested if the first argument is an aggregate function
if _, ok := f.Args[0].(*VarRef); ok {
return true
}
}
}
return false
}
// HasSelector returns true if there is exactly one selector.
func (s *SelectStatement) HasSelector() bool {
var selector *Call
for _, f := range s.Fields {
if call, ok := f.Expr.(*Call); ok {
if selector != nil || !IsSelector(call) {
// This is an aggregate call or there is already a selector.
return false
}
selector = call
}
}
return selector != nil
}
// TimeAscending returns true if the time field is sorted in chronological order.
func (s *SelectStatement) TimeAscending() bool {
return len(s.SortFields) == 0 || s.SortFields[0].Ascending
}
// TimeFieldName returns the name of the time field.
func (s *SelectStatement) TimeFieldName() string {
if s.TimeAlias != "" {
return s.TimeAlias
}
return "time"
}
// Clone returns a deep copy of the statement.
func (s *SelectStatement) Clone() *SelectStatement {
clone := *s
clone.Fields = make(Fields, 0, len(s.Fields))
clone.Dimensions = make(Dimensions, 0, len(s.Dimensions))
clone.Sources = cloneSources(s.Sources)
clone.SortFields = make(SortFields, 0, len(s.SortFields))
clone.Condition = CloneExpr(s.Condition)
if s.Target != nil {
clone.Target = &Target{
Measurement: &Measurement{
Database: s.Target.Measurement.Database,
RetentionPolicy: s.Target.Measurement.RetentionPolicy,
Name: s.Target.Measurement.Name,
Regex: CloneRegexLiteral(s.Target.Measurement.Regex),
},
}
}
for _, f := range s.Fields {
clone.Fields = append(clone.Fields, &Field{Expr: CloneExpr(f.Expr), Alias: f.Alias})
}
for _, d := range s.Dimensions {
clone.Dimensions = append(clone.Dimensions, &Dimension{Expr: CloneExpr(d.Expr)})
}
for _, f := range s.SortFields {
clone.SortFields = append(clone.SortFields, &SortField{Name: f.Name, Ascending: f.Ascending})
}
return &clone
}
func cloneSources(sources Sources) Sources {
clone := make(Sources, 0, len(sources))
for _, s := range sources {
clone = append(clone, cloneSource(s))
}
return clone
}
func cloneSource(s Source) Source {
if s == nil {
return nil
}
switch s := s.(type) {
case *Measurement:
m := &Measurement{Database: s.Database, RetentionPolicy: s.RetentionPolicy, Name: s.Name}
if s.Regex != nil {
m.Regex = &RegexLiteral{Val: regexp.MustCompile(s.Regex.Val.String())}
}
return m
case *SubQuery:
return &SubQuery{Statement: s.Statement.Clone()}
default:
panic("unreachable")
}
}
// RewriteFields returns the re-written form of the select statement. Any wildcard query
// fields are replaced with the supplied fields, and any wildcard GROUP BY fields are replaced
// with the supplied dimensions. Any fields with no type specifier are rewritten with the
// appropriate type.
func (s *SelectStatement) RewriteFields(m FieldMapper) (*SelectStatement, error) {
// Clone the statement so we aren't rewriting the original.
other := s.Clone()
// Iterate through the sources and rewrite any subqueries first.
for _, src := range other.Sources {
switch src := src.(type) {
case *SubQuery:
stmt, err := src.Statement.RewriteFields(m)
if err != nil {
return nil, err
}
src.Statement = stmt
}
}
// Rewrite all variable references in the fields with their types if one
// hasn't been specified.
rewrite := func(n Node) {
ref, ok := n.(*VarRef)
if !ok || (ref.Type != Unknown && ref.Type != AnyField) {
return
}
typ := EvalType(ref, other.Sources, m)
if typ == Tag && ref.Type == AnyField {
return
}
ref.Type = typ
}
WalkFunc(other.Fields, rewrite)
WalkFunc(other.Condition, rewrite)
// Ignore if there are no wildcards.
hasFieldWildcard := other.HasFieldWildcard()
hasDimensionWildcard := other.HasDimensionWildcard()
if !hasFieldWildcard && !hasDimensionWildcard {
return other, nil
}
fieldSet, dimensionSet, err := FieldDimensions(other.Sources, m)
if err != nil {
return nil, err
}
// If there are no dimension wildcards then merge dimensions to fields.
if !hasDimensionWildcard {
// Remove the dimensions present in the group by so they don't get added as fields.
for _, d := range other.Dimensions {
switch expr := d.Expr.(type) {
case *VarRef:
if _, ok := dimensionSet[expr.Val]; ok {
delete(dimensionSet, expr.Val)
}
}
}
}
// Sort the field and dimension names for wildcard expansion.
var fields []VarRef
if len(fieldSet) > 0 {
fields = make([]VarRef, 0, len(fieldSet))
for name, typ := range fieldSet {
fields = append(fields, VarRef{Val: name, Type: typ})
}
if !hasDimensionWildcard {
for name := range dimensionSet {
fields = append(fields, VarRef{Val: name, Type: Tag})
}
dimensionSet = nil
}
sort.Sort(VarRefs(fields))
}
dimensions := stringSetSlice(dimensionSet)
// Rewrite all wildcard query fields
if hasFieldWildcard {
// Allocate a slice assuming there is exactly one wildcard for efficiency.
rwFields := make(Fields, 0, len(other.Fields)+len(fields)-1)
for _, f := range other.Fields {
switch expr := f.Expr.(type) {
case *Wildcard:
for _, ref := range fields {
if expr.Type == FIELD && ref.Type == Tag {
continue
} else if expr.Type == TAG && ref.Type != Tag {
continue
}
rwFields = append(rwFields, &Field{Expr: &VarRef{Val: ref.Val, Type: ref.Type}})
}
case *RegexLiteral:
for _, ref := range fields {
if expr.Val.MatchString(ref.Val) {
rwFields = append(rwFields, &Field{Expr: &VarRef{Val: ref.Val, Type: ref.Type}})
}
}
case *Call:
// Clone a template that we can modify and use for new fields.
template := CloneExpr(expr).(*Call)
// Search for the call with a wildcard by continuously descending until
// we no longer have a call.
call := template
for len(call.Args) > 0 {
arg, ok := call.Args[0].(*Call)
if !ok {
break
}
call = arg
}
// Check if this field value is a wildcard.
if len(call.Args) == 0 {
rwFields = append(rwFields, f)
continue
}
// Retrieve if this is a wildcard or a regular expression.
var re *regexp.Regexp
switch expr := call.Args[0].(type) {
case *Wildcard:
if expr.Type == TAG {
return nil, fmt.Errorf("unable to use tag wildcard in %s()", call.Name)
}
case *RegexLiteral:
re = expr.Val
default:
rwFields = append(rwFields, f)
continue
}
// All types that can expand wildcards support float and integer.
supportedTypes := map[DataType]struct{}{
Float: struct{}{},
Integer: struct{}{},
}
// Add additional types for certain functions.
switch call.Name {
case "count", "first", "last", "distinct", "elapsed", "mode", "sample":
supportedTypes[String] = struct{}{}
fallthrough
case "min", "max":
supportedTypes[Boolean] = struct{}{}
}
for _, ref := range fields {
// Do not expand tags within a function call. It likely won't do anything
// anyway and will be the wrong thing in 99% of cases.
if ref.Type == Tag {
continue
} else if _, ok := supportedTypes[ref.Type]; !ok {
continue
} else if re != nil && !re.MatchString(ref.Val) {
continue
}
// Make a new expression and replace the wildcard within this cloned expression.
call.Args[0] = &VarRef{Val: ref.Val, Type: ref.Type}
rwFields = append(rwFields, &Field{
Expr: CloneExpr(template),
Alias: fmt.Sprintf("%s_%s", f.Name(), ref.Val),
})
}
default:
rwFields = append(rwFields, f)
}
}
other.Fields = rwFields
}
// Rewrite all wildcard GROUP BY fields
if hasDimensionWildcard {
// Allocate a slice assuming there is exactly one wildcard for efficiency.
rwDimensions := make(Dimensions, 0, len(other.Dimensions)+len(dimensions)-1)
for _, d := range other.Dimensions {
switch expr := d.Expr.(type) {
case *Wildcard:
for _, name := range dimensions {
rwDimensions = append(rwDimensions, &Dimension{Expr: &VarRef{Val: name}})
}
case *RegexLiteral:
for _, name := range dimensions {
if expr.Val.MatchString(name) {
rwDimensions = append(rwDimensions, &Dimension{Expr: &VarRef{Val: name}})
}
}
default:
rwDimensions = append(rwDimensions, d)
}
}
other.Dimensions = rwDimensions
}
return other, nil
}
// RewriteRegexConditions rewrites regex conditions to make better use of the
// database index.
//
// Conditions that can currently be simplified are:
//
// - host =~ /^foo$/ becomes host = 'foo'
// - host !~ /^foo$/ becomes host != 'foo'
//
// Note: if the regex contains groups, character classes, repetition or
// similar, it's likely it won't be rewritten. In order to support rewriting
// regexes with these characters would be a lot more work.
func (s *SelectStatement) RewriteRegexConditions() {
s.Condition = RewriteExpr(s.Condition, func(e Expr) Expr {
be, ok := e.(*BinaryExpr)
if !ok || (be.Op != EQREGEX && be.Op != NEQREGEX) {
// This expression is not a binary condition or doesn't have a
// regex based operator.
return e
}
// Handle regex-based condition.
rhs := be.RHS.(*RegexLiteral) // This must be a regex.
val, ok := matchExactRegex(rhs.Val.String())
if !ok {
// Regex didn't match.
return e
}
// Remove leading and trailing ^ and $.
be.RHS = &StringLiteral{Val: val}
// Update the condition operator.
if be.Op == EQREGEX {
be.Op = EQ
} else {
be.Op = NEQ
}
return be
})
}
// matchExactRegex matches regexes that have the following form: /^foo$/. It
// considers /^$/ to be a matching regex.
func matchExactRegex(v string) (string, bool) {
re, err := syntax.Parse(v, syntax.Perl)
if err != nil {
// Nothing we can do or log.
return "", false
}
if re.Op != syntax.OpConcat {
return "", false
}
if len(re.Sub) < 2 || len(re.Sub) > 3 {
// Regex has too few or too many subexpressions.
return "", false
}
start := re.Sub[0]
if !(start.Op == syntax.OpBeginLine || start.Op == syntax.OpBeginText) {
// Regex does not begin with ^
return "", false
}
end := re.Sub[len(re.Sub)-1]
if !(end.Op == syntax.OpEndLine || end.Op == syntax.OpEndText) {
// Regex does not end with $
return "", false
}
if len(re.Sub) == 3 {
middle := re.Sub[1]
if middle.Op != syntax.OpLiteral || middle.Flags^syntax.Perl != 0 {
// Regex does not contain a literal op.
return "", false
}
// We can rewrite this regex.
return string(middle.Rune), true
}
// The regex /^$/
return "", true
}
// RewriteDistinct rewrites the expression to be a call for map/reduce to work correctly.
// This method assumes all validation has passed.
func (s *SelectStatement) RewriteDistinct() {
WalkFunc(s.Fields, func(n Node) {
switch n := n.(type) {
case *Field:
if expr, ok := n.Expr.(*Distinct); ok {
n.Expr = expr.NewCall()
s.IsRawQuery = false
}
case *Call:
for i, arg := range n.Args {
if arg, ok := arg.(*Distinct); ok {
n.Args[i] = arg.NewCall()
}
}
}
})
}
// RewriteTimeFields removes any "time" field references.
func (s *SelectStatement) RewriteTimeFields() {
for i := 0; i < len(s.Fields); i++ {
switch expr := s.Fields[i].Expr.(type) {
case *VarRef:
if expr.Val == "time" {
s.TimeAlias = s.Fields[i].Alias
s.Fields = append(s.Fields[:i], s.Fields[i+1:]...)
}
}
}
}
// RewriteTimeCondition adds time constraints to aggregate queries.
func (s *SelectStatement) RewriteTimeCondition(now time.Time) error {
interval, err := s.GroupByInterval()
if err != nil {
return err
} else if interval > 0 && s.Condition != nil {
_, tmax, err := TimeRange(s.Condition)
if err != nil {
return err
}
if tmax.IsZero() {
s.Condition = &BinaryExpr{
Op: AND,
LHS: s.Condition,
RHS: &BinaryExpr{
Op: LTE,
LHS: &VarRef{Val: "time"},
RHS: &TimeLiteral{Val: now},
},
}
}
}
for _, source := range s.Sources {
switch source := source.(type) {
case *SubQuery:
if err := source.Statement.RewriteTimeCondition(now); err != nil {
return err
}
}
}
return nil
}
// ColumnNames will walk all fields and functions and return the appropriate field names for the select statement
// while maintaining order of the field names.
func (s *SelectStatement) ColumnNames() []string {
// First walk each field to determine the number of columns.
columnFields := Fields{}
for _, field := range s.Fields {
columnFields = append(columnFields, field)
switch f := field.Expr.(type) {
case *Call:
if f.Name == "top" || f.Name == "bottom" {
for _, arg := range f.Args[1:] {
ref, ok := arg.(*VarRef)
if ok {
columnFields = append(columnFields, &Field{Expr: ref})
}
}
}
}
}
// Determine if we should add an extra column for an implicit time.
offset := 0
if !s.OmitTime {
offset++
}
columnNames := make([]string, len(columnFields)+offset)
if !s.OmitTime {
// Add the implicit time if requested.
columnNames[0] = s.TimeFieldName()
}
// Keep track of the encountered column names.
names := make(map[string]int)
// Resolve aliases first.
for i, col := range columnFields {
if col.Alias != "" {
columnNames[i+offset] = col.Alias
names[col.Alias] = 1
}
}
// Resolve any generated names and resolve conflicts.
for i, col := range columnFields {
if columnNames[i+offset] != "" {
continue
}
name := col.Name()
count, conflict := names[name]
if conflict {
for {
resolvedName := fmt.Sprintf("%s_%d", name, count)
_, conflict = names[resolvedName]
if !conflict {
names[name] = count + 1
name = resolvedName
break
}
count++
}
}
names[name]++
columnNames[i+offset] = name
}
return columnNames
}
// FieldExprByName returns the expression that matches the field name and the
// index where this was found. If the name matches one of the arguments to
// "top" or "bottom", the variable reference inside of the function is returned
// and the index is of the function call rather than the variable reference.
// If no expression is found, -1 is returned for the index and the expression
// will be nil.
func (s *SelectStatement) FieldExprByName(name string) (int, Expr) {
for i, f := range s.Fields {
if f.Name() == name {
return i, f.Expr
} else if call, ok := f.Expr.(*Call); ok && (call.Name == "top" || call.Name == "bottom") && len(call.Args) > 2 {
for _, arg := range call.Args[1 : len(call.Args)-1] {
if arg, ok := arg.(*VarRef); ok && arg.Val == name {
return i, arg
}
}
}
}
return -1, nil
}
// Reduce calls the Reduce function on the different components of the
// SelectStatement to reduce the statement.
func (s *SelectStatement) Reduce(valuer Valuer) *SelectStatement {
stmt := s.Clone()
stmt.Condition = Reduce(stmt.Condition, valuer)
for _, d := range stmt.Dimensions {
d.Expr = Reduce(d.Expr, valuer)
}
for _, source := range stmt.Sources {
switch source := source.(type) {
case *SubQuery:
source.Statement = source.Statement.Reduce(valuer)
}
}
return stmt
}
// HasTimeFieldSpecified will walk all fields and determine if the user explicitly asked for time.
// This is needed to determine re-write behaviors for functions like TOP and BOTTOM.
func (s *SelectStatement) HasTimeFieldSpecified() bool {
for _, f := range s.Fields {
if f.Name() == "time" {
return true
}
}
return false
}
// String returns a string representation of the select statement.
func (s *SelectStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SELECT ")
_, _ = buf.WriteString(s.Fields.String())
if s.Target != nil {
_, _ = buf.WriteString(" ")
_, _ = buf.WriteString(s.Target.String())
}
if len(s.Sources) > 0 {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.Dimensions) > 0 {
_, _ = buf.WriteString(" GROUP BY ")
_, _ = buf.WriteString(s.Dimensions.String())
}
switch s.Fill {
case NoFill:
_, _ = buf.WriteString(" fill(none)")
case NumberFill:
_, _ = buf.WriteString(fmt.Sprintf(" fill(%v)", s.FillValue))
case LinearFill:
_, _ = buf.WriteString(" fill(linear)")
case PreviousFill:
_, _ = buf.WriteString(" fill(previous)")
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = fmt.Fprintf(&buf, " LIMIT %d", s.Limit)
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
if s.SLimit > 0 {
_, _ = fmt.Fprintf(&buf, " SLIMIT %d", s.SLimit)
}
if s.SOffset > 0 {
_, _ = fmt.Fprintf(&buf, " SOFFSET %d", s.SOffset)
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute the SelectStatement.
// NOTE: Statement should be normalized first (database name(s) in Sources and
// Target should be populated). If the statement has not been normalized, an
// empty string will be returned for the database name and it is up to the caller
// to interpret that as the default database.
func (s *SelectStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
ep := ExecutionPrivileges{}
for _, source := range s.Sources {
switch source := source.(type) {
case *Measurement:
ep = append(ep, ExecutionPrivilege{
Name: source.Database,
Privilege: ReadPrivilege,
})
case *SubQuery:
privs, err := source.Statement.RequiredPrivileges()
if err != nil {
return nil, err
}
ep = append(ep, privs...)
default:
return nil, fmt.Errorf("invalid source: %s", source)
}
}
if s.Target != nil {
p := ExecutionPrivilege{Admin: false, Name: s.Target.Measurement.Database, Privilege: WritePrivilege}
ep = append(ep, p)
}
return ep, nil
}
// HasWildcard returns whether or not the select statement has at least 1 wildcard.
func (s *SelectStatement) HasWildcard() bool {
return s.HasFieldWildcard() || s.HasDimensionWildcard()
}
// HasFieldWildcard returns whether or not the select statement has at least 1 wildcard in the fields.
func (s *SelectStatement) HasFieldWildcard() (hasWildcard bool) {
WalkFunc(s.Fields, func(n Node) {
if hasWildcard {
return
}
switch n.(type) {
case *Wildcard, *RegexLiteral:
hasWildcard = true
}
})
return hasWildcard
}
// HasDimensionWildcard returns whether or not the select statement has
// at least 1 wildcard in the dimensions aka `GROUP BY`.
func (s *SelectStatement) HasDimensionWildcard() bool {
for _, d := range s.Dimensions {
switch d.Expr.(type) {
case *Wildcard, *RegexLiteral:
return true
}
}
return false
}
func (s *SelectStatement) validate(tr targetRequirement) error {
if err := s.validateFields(); err != nil {
return err
}
if err := s.validateDimensions(); err != nil {
return err
}
if err := s.validateDistinct(); err != nil {
return err
}
if err := s.validateAggregates(tr); err != nil {
return err
}
return nil
}
func (s *SelectStatement) validateFields() error {
ns := s.NamesInSelect()
if len(ns) == 1 && ns[0] == "time" {
return fmt.Errorf("at least 1 non-time field must be queried")
}
for _, f := range s.Fields {
switch expr := f.Expr.(type) {
case *BinaryExpr:
if err := expr.validate(); err != nil {
return err
}
}
}
return nil
}
func (s *SelectStatement) validateDimensions() error {
var dur time.Duration
for _, dim := range s.Dimensions {
switch expr := dim.Expr.(type) {
case *Call:
// Ensure the call is time() and it has one or two duration arguments.
// If we already have a duration
if expr.Name != "time" {
return errors.New("only time() calls allowed in dimensions")
} else if got := len(expr.Args); got < 1 || got > 2 {
return errors.New("time dimension expected 1 or 2 arguments")
} else if lit, ok := expr.Args[0].(*DurationLiteral); !ok {
return errors.New("time dimension must have duration argument")
} else if dur != 0 {
return errors.New("multiple time dimensions not allowed")
} else {
dur = lit.Val
if len(expr.Args) == 2 {
switch lit := expr.Args[1].(type) {
case *DurationLiteral:
// noop
case *Call:
if lit.Name != "now" {
return errors.New("time dimension offset function must be now()")
} else if len(lit.Args) != 0 {
return errors.New("time dimension offset now() function requires no arguments")
}
default:
return errors.New("time dimension offset must be duration or now()")
}
}
}
case *VarRef:
if strings.ToLower(expr.Val) == "time" {
return errors.New("time() is a function and expects at least one argument")
}
case *Wildcard:
case *RegexLiteral:
default:
return errors.New("only time and tag dimensions allowed")
}
}
return nil
}
// validSelectWithAggregate determines if a SELECT statement has the correct
// combination of aggregate functions combined with selected fields and tags
// Currently we don't have support for all aggregates, but aggregates that
// can be combined with fields/tags are:
// TOP, BOTTOM, MAX, MIN, FIRST, LAST
func (s *SelectStatement) validSelectWithAggregate() error {
calls := map[string]struct{}{}
numAggregates := 0
for _, f := range s.Fields {
fieldCalls := walkFunctionCalls(f.Expr)
for _, c := range fieldCalls {
calls[c.Name] = struct{}{}
}
if len(fieldCalls) != 0 {
numAggregates++
}
}
// For TOP, BOTTOM, MAX, MIN, FIRST, LAST, PERCENTILE (selector functions) it is ok to ask for fields and tags
// but only if one function is specified. Combining multiple functions and fields and tags is not currently supported
onlySelectors := true
for k := range calls {
switch k {
case "top", "bottom", "max", "min", "first", "last", "percentile", "sample":
default:
onlySelectors = false
break
}
}
if onlySelectors {
// If they only have one selector, they can have as many fields or tags as they want
if numAggregates == 1 {
return nil
}
// If they have multiple selectors, they are not allowed to have any other fields or tags specified
if numAggregates > 1 && len(s.Fields) != numAggregates {
return fmt.Errorf("mixing multiple selector functions with tags or fields is not supported")
}
}
if numAggregates != 0 && numAggregates != len(s.Fields) {
return fmt.Errorf("mixing aggregate and non-aggregate queries is not supported")
}
return nil
}
// validTopBottomAggr determines if TOP or BOTTOM aggregates have valid arguments.
func (s *SelectStatement) validTopBottomAggr(expr *Call) error {
if exp, got := 2, len(expr.Args); got < exp {
return fmt.Errorf("invalid number of arguments for %s, expected at least %d, got %d", expr.Name, exp, got)
}
if len(expr.Args) > 1 {
callLimit, ok := expr.Args[len(expr.Args)-1].(*IntegerLiteral)
if !ok {
return fmt.Errorf("expected integer as last argument in %s(), found %s", expr.Name, expr.Args[len(expr.Args)-1])
}
// Check if they asked for a limit smaller than what they passed into the call
if int64(callLimit.Val) > int64(s.Limit) && s.Limit != 0 {
return fmt.Errorf("limit (%d) in %s function can not be larger than the LIMIT (%d) in the select statement", int64(callLimit.Val), expr.Name, int64(s.Limit))
}
for _, v := range expr.Args[:len(expr.Args)-1] {
if _, ok := v.(*VarRef); !ok {
return fmt.Errorf("only fields or tags are allowed in %s(), found %s", expr.Name, v)
}
}
}
return nil
}
// validPercentileAggr determines if the call to PERCENTILE has valid arguments.
func (s *SelectStatement) validPercentileAggr(expr *Call) error {
if err := s.validSelectWithAggregate(); err != nil {
return err
}
if exp, got := 2, len(expr.Args); got != exp {
return fmt.Errorf("invalid number of arguments for %s, expected %d, got %d", expr.Name, exp, got)
}
switch expr.Args[0].(type) {
case *VarRef, *RegexLiteral, *Wildcard:
// do nothing
default:
return fmt.Errorf("expected field argument in percentile()")
}
switch expr.Args[1].(type) {
case *IntegerLiteral, *NumberLiteral:
return nil
default:
return fmt.Errorf("expected float argument in percentile()")
}
}
// validPercentileAggr determines if the call to SAMPLE has valid arguments.
func (s *SelectStatement) validSampleAggr(expr *Call) error {
if err := s.validSelectWithAggregate(); err != nil {
return err
}
if exp, got := 2, len(expr.Args); got != exp {
return fmt.Errorf("invalid number of arguments for %s, expected %d, got %d", expr.Name, exp, got)
}
switch expr.Args[0].(type) {
case *VarRef, *RegexLiteral, *Wildcard:
// do nothing
default:
return fmt.Errorf("expected field argument in sample()")
}
switch expr.Args[1].(type) {
case *IntegerLiteral:
return nil
default:
return fmt.Errorf("expected integer argument in sample()")
}
}
func (s *SelectStatement) validateAggregates(tr targetRequirement) error {
for _, f := range s.Fields {
for _, expr := range walkFunctionCalls(f.Expr) {
switch expr.Name {
case "derivative", "non_negative_derivative", "difference", "moving_average", "cumulative_sum", "elapsed":
if err := s.validSelectWithAggregate(); err != nil {
return err
}
switch expr.Name {
case "derivative", "non_negative_derivative", "elapsed":
if min, max, got := 1, 2, len(expr.Args); got > max || got < min {
return fmt.Errorf("invalid number of arguments for %s, expected at least %d but no more than %d, got %d", expr.Name, min, max, got)
}
// If a duration arg is passed, make sure it's a duration
if len(expr.Args) == 2 {
// Second must be a duration .e.g (1h)
if _, ok := expr.Args[1].(*DurationLiteral); !ok {
return fmt.Errorf("second argument to %s must be a duration, got %T", expr.Name, expr.Args[1])
}
}
case "difference", "cumulative_sum":
if got := len(expr.Args); got != 1 {
return fmt.Errorf("invalid number of arguments for %s, expected 1, got %d", expr.Name, got)
}
case "moving_average":
if got := len(expr.Args); got != 2 {
return fmt.Errorf("invalid number of arguments for moving_average, expected 2, got %d", got)
}
if lit, ok := expr.Args[1].(*IntegerLiteral); !ok {
return fmt.Errorf("second argument for moving_average must be an integer, got %T", expr.Args[1])
} else if lit.Val <= 1 {
return fmt.Errorf("moving_average window must be greater than 1, got %d", lit.Val)
} else if int64(int(lit.Val)) != lit.Val {
return fmt.Errorf("moving_average window too large, got %d", lit.Val)
}
}
// Validate that if they have grouping by time, they need a sub-call like min/max, etc.
groupByInterval, err := s.GroupByInterval()
if err != nil {
return fmt.Errorf("invalid group interval: %v", err)
}
if c, ok := expr.Args[0].(*Call); ok && groupByInterval == 0 && tr != targetSubquery {
return fmt.Errorf("%s aggregate requires a GROUP BY interval", expr.Name)
} else if !ok && groupByInterval > 0 {
return fmt.Errorf("aggregate function required inside the call to %s", expr.Name)
} else if ok {
switch c.Name {
case "top", "bottom":
if err := s.validTopBottomAggr(c); err != nil {
return err
}
case "percentile":
if err := s.validPercentileAggr(c); err != nil {
return err
}
default:
if exp, got := 1, len(c.Args); got != exp {
return fmt.Errorf("invalid number of arguments for %s, expected %d, got %d", c.Name, exp, got)
}
switch fc := c.Args[0].(type) {
case *VarRef, *Wildcard, *RegexLiteral:
// do nothing
case *Call:
if fc.Name != "distinct" || expr.Name != "count" {
return fmt.Errorf("expected field argument in %s()", c.Name)
} else if exp, got := 1, len(fc.Args); got != exp {
return fmt.Errorf("count(distinct %s) can only have %d argument(s), got %d", fc.Name, exp, got)
} else if _, ok := fc.Args[0].(*VarRef); !ok {
return fmt.Errorf("expected field argument in distinct()")
}
case *Distinct:
if expr.Name != "count" {
return fmt.Errorf("expected field argument in %s()", c.Name)
}
default:
return fmt.Errorf("expected field argument in %s()", c.Name)
}
}
}
case "top", "bottom":
if err := s.validTopBottomAggr(expr); err != nil {
return err
}
case "percentile":
if err := s.validPercentileAggr(expr); err != nil {
return err
}
case "sample":
if err := s.validSampleAggr(expr); err != nil {
return err
}
case "holt_winters", "holt_winters_with_fit":
if exp, got := 3, len(expr.Args); got != exp {
return fmt.Errorf("invalid number of arguments for %s, expected %d, got %d", expr.Name, exp, got)
}
// Validate that if they have grouping by time, they need a sub-call like min/max, etc.
groupByInterval, err := s.GroupByInterval()
if err != nil {
return fmt.Errorf("invalid group interval: %v", err)
}
if _, ok := expr.Args[0].(*Call); ok && groupByInterval == 0 && tr != targetSubquery {
return fmt.Errorf("%s aggregate requires a GROUP BY interval", expr.Name)
} else if !ok {
return fmt.Errorf("must use aggregate function with %s", expr.Name)
}
if arg, ok := expr.Args[1].(*IntegerLiteral); !ok {
return fmt.Errorf("expected integer argument as second arg in %s", expr.Name)
} else if arg.Val <= 0 {
return fmt.Errorf("second arg to %s must be greater than 0, got %d", expr.Name, arg.Val)
}
if _, ok := expr.Args[2].(*IntegerLiteral); !ok {
return fmt.Errorf("expected integer argument as third arg in %s", expr.Name)
}
default:
if err := s.validSelectWithAggregate(); err != nil {
return err
}
if exp, got := 1, len(expr.Args); got != exp {
// Special error message if distinct was used as the argument.
if expr.Name == "count" && got >= 1 {
if _, ok := expr.Args[0].(*Distinct); ok {
return fmt.Errorf("count(distinct <field>) can only have one argument")
}
}
return fmt.Errorf("invalid number of arguments for %s, expected %d, got %d", expr.Name, exp, got)
}
switch fc := expr.Args[0].(type) {
case *VarRef, *Wildcard, *RegexLiteral:
// do nothing
case *Call:
if fc.Name != "distinct" || expr.Name != "count" {
return fmt.Errorf("expected field argument in %s()", expr.Name)
} else if exp, got := 1, len(fc.Args); got != exp {
return fmt.Errorf("count(distinct <field>) can only have one argument")
} else if _, ok := fc.Args[0].(*VarRef); !ok {
return fmt.Errorf("expected field argument in distinct()")
}
case *Distinct:
if expr.Name != "count" {
return fmt.Errorf("expected field argument in %s()", expr.Name)
}
default:
return fmt.Errorf("expected field argument in %s()", expr.Name)
}
}
}
}
// Check that we have valid duration and where clauses for aggregates
// fetch the group by duration
groupByDuration, _ := s.GroupByInterval()
// If we have a group by interval, but no aggregate function, it's an invalid statement
if s.IsRawQuery && groupByDuration > 0 {
return fmt.Errorf("GROUP BY requires at least one aggregate function")
}
// If we have an aggregate function with a group by time without a where clause, it's an invalid statement
if tr == targetNotRequired { // ignore create continuous query statements
if err := s.validateTimeExpression(); err != nil {
return err
}
}
if tr != targetSubquery {
if err := s.validateGroupByInterval(); err != nil {
return err
}
}
return nil
}
// validateTimeExpression ensures that any select statements that have a group
// by interval either have a time expression limiting the time range or have a
// parent query that does that.
func (s *SelectStatement) validateTimeExpression() error {
// If we have a time expression, we and all subqueries are fine.
if HasTimeExpr(s.Condition) {
return nil
}
// Check if this is not a raw query and if the group by duration exists.
// If these are true, then we have an error.
interval, err := s.GroupByInterval()
if err != nil {
return err
} else if !s.IsRawQuery && interval > 0 {
return fmt.Errorf("aggregate functions with GROUP BY time require a WHERE time clause")
}
// Validate the subqueries. If we have a time expression in this select
// statement, we don't need to do this because parent time ranges propagate
// to children. So we only execute this when there is no time condition in
// the parent.
for _, source := range s.Sources {
switch source := source.(type) {
case *SubQuery:
if err := source.Statement.validateTimeExpression(); err != nil {
return err
}
}
}
return nil
}
// validateGroupByInterval ensures that a select statement is grouped by an
// interval if it contains certain functions.
func (s *SelectStatement) validateGroupByInterval() error {
interval, err := s.GroupByInterval()
if err != nil {
return err
} else if interval > 0 {
// If we have an interval here, that means the interval will propagate
// into any subqueries and we can just stop looking.
return nil
}
// Check inside of the fields for any of the specific functions that ned a group by interval.
for _, f := range s.Fields {
switch expr := f.Expr.(type) {
case *Call:
switch expr.Name {
case "derivative", "non_negative_derivative", "difference", "moving_average", "cumulative_sum", "elapsed", "holt_winters", "holt_winters_with_fit":
// If the first argument is a call, we needed a group by interval and we don't have one.
if _, ok := expr.Args[0].(*Call); ok {
return fmt.Errorf("%s aggregate requires a GROUP BY interval", expr.Name)
}
}
}
}
// Validate the subqueries.
for _, source := range s.Sources {
switch source := source.(type) {
case *SubQuery:
if err := source.Statement.validateGroupByInterval(); err != nil {
return err
}
}
}
return nil
}
// HasDistinct checks if a select statement contains a call to DISTINCT.
func (s *SelectStatement) HasDistinct() bool {
for _, f := range s.Fields {
switch c := f.Expr.(type) {
case *Call:
if c.Name == "distinct" {
return true
}
case *Distinct:
return true
}
}
return false
}
func (s *SelectStatement) validateDistinct() error {
if !s.HasDistinct() {
return nil
}
if len(s.Fields) > 1 {
return fmt.Errorf("aggregate function distinct() can not be combined with other functions or fields")
}
switch c := s.Fields[0].Expr.(type) {
case *Call:
if len(c.Args) == 0 {
return fmt.Errorf("distinct function requires at least one argument")
}
if len(c.Args) != 1 {
return fmt.Errorf("distinct function can only have one argument")
}
}
return nil
}
// GroupByInterval extracts the time interval, if specified.
func (s *SelectStatement) GroupByInterval() (time.Duration, error) {
// return if we've already pulled it out
if s.groupByInterval != 0 {
return s.groupByInterval, nil
}
// Ignore if there are no dimensions.
if len(s.Dimensions) == 0 {
return 0, nil
}
for _, d := range s.Dimensions {
if call, ok := d.Expr.(*Call); ok && call.Name == "time" {
// Make sure there is exactly one argument.
if got := len(call.Args); got < 1 || got > 2 {
return 0, errors.New("time dimension expected 1 or 2 arguments")
}
// Ensure the argument is a duration.
lit, ok := call.Args[0].(*DurationLiteral)
if !ok {
return 0, errors.New("time dimension must have duration argument")
}
s.groupByInterval = lit.Val
return lit.Val, nil
}
}
return 0, nil
}
// GroupByOffset extracts the time interval offset, if specified.
func (s *SelectStatement) GroupByOffset() (time.Duration, error) {
interval, err := s.GroupByInterval()
if err != nil {
return 0, err
}
// Ignore if there are no dimensions.
if len(s.Dimensions) == 0 {
return 0, nil
}
for _, d := range s.Dimensions {
if call, ok := d.Expr.(*Call); ok && call.Name == "time" {
if len(call.Args) == 2 {
switch expr := call.Args[1].(type) {
case *DurationLiteral:
return expr.Val % interval, nil
case *TimeLiteral:
return expr.Val.Sub(expr.Val.Truncate(interval)), nil
default:
return 0, fmt.Errorf("invalid time dimension offset: %s", expr)
}
}
return 0, nil
}
}
return 0, nil
}
// SetTimeRange sets the start and end time of the select statement to [start, end). i.e. start inclusive, end exclusive.
// This is used commonly for continuous queries so the start and end are in buckets.
func (s *SelectStatement) SetTimeRange(start, end time.Time) error {
cond := fmt.Sprintf("time >= '%s' AND time < '%s'", start.UTC().Format(time.RFC3339Nano), end.UTC().Format(time.RFC3339Nano))
if s.Condition != nil {
cond = fmt.Sprintf("%s AND %s", s.rewriteWithoutTimeDimensions(), cond)
}
expr, err := NewParser(strings.NewReader(cond)).ParseExpr()
if err != nil {
return err
}
// Fold out any previously replaced time dimensions and set the condition.
s.Condition = Reduce(expr, nil)
return nil
}
// rewriteWithoutTimeDimensions will remove any WHERE time... clauses from the select statement.
// This is necessary when setting an explicit time range to override any that previously existed.
func (s *SelectStatement) rewriteWithoutTimeDimensions() string {
n := RewriteFunc(s.Condition, func(n Node) Node {
switch n := n.(type) {
case *BinaryExpr:
if n.LHS.String() == "time" {
return &BooleanLiteral{Val: true}
}
return n
case *Call:
return &BooleanLiteral{Val: true}
default:
return n
}
})
return n.String()
}
// NamesInWhere returns the field and tag names (idents) referenced in the where clause.
func (s *SelectStatement) NamesInWhere() []string {
var a []string
if s.Condition != nil {
a = walkNames(s.Condition)
}
return a
}
// NamesInSelect returns the field and tag names (idents) in the select clause.
func (s *SelectStatement) NamesInSelect() []string {
var a []string
for _, f := range s.Fields {
a = append(a, walkNames(f.Expr)...)
}
return a
}
// NamesInDimension returns the field and tag names (idents) in the group by clause.
func (s *SelectStatement) NamesInDimension() []string {
var a []string
for _, d := range s.Dimensions {
a = append(a, walkNames(d.Expr)...)
}
return a
}
// LimitTagSets returns a tag set list with SLIMIT and SOFFSET applied.
func LimitTagSets(a []*TagSet, slimit, soffset int) []*TagSet {
// Ignore if no limit or offset is specified.
if slimit == 0 && soffset == 0 {
return a
}
// If offset is beyond the number of tag sets then return nil.
if soffset > len(a) {
return nil
}
// Clamp limit to the max number of tag sets.
if soffset+slimit > len(a) {
slimit = len(a) - soffset
}
return a[soffset : soffset+slimit]
}
// walkNames will walk the Expr and return the identifier names used.
func walkNames(exp Expr) []string {
switch expr := exp.(type) {
case *VarRef:
return []string{expr.Val}
case *Call:
var a []string
for _, expr := range expr.Args {
if ref, ok := expr.(*VarRef); ok {
a = append(a, ref.Val)
}
}
return a
case *BinaryExpr:
var ret []string
ret = append(ret, walkNames(expr.LHS)...)
ret = append(ret, walkNames(expr.RHS)...)
return ret
case *ParenExpr:
return walkNames(expr.Expr)
}
return nil
}
// walkRefs will walk the Expr and return the var refs used.
func walkRefs(exp Expr) []VarRef {
switch expr := exp.(type) {
case *VarRef:
return []VarRef{*expr}
case *Call:
a := make([]VarRef, 0, len(expr.Args))
for _, expr := range expr.Args {
if ref, ok := expr.(*VarRef); ok {
a = append(a, *ref)
}
}
return a
case *BinaryExpr:
lhs := walkRefs(expr.LHS)
rhs := walkRefs(expr.RHS)
ret := make([]VarRef, 0, len(lhs)+len(rhs))
ret = append(ret, lhs...)
ret = append(ret, rhs...)
return ret
case *ParenExpr:
return walkRefs(expr.Expr)
}
return nil
}
// ExprNames returns a list of non-"time" field names from an expression.
func ExprNames(expr Expr) []VarRef {
m := make(map[VarRef]struct{})
for _, ref := range walkRefs(expr) {
if ref.Val == "time" {
continue
}
m[ref] = struct{}{}
}
a := make([]VarRef, 0, len(m))
for k := range m {
a = append(a, k)
}
sort.Sort(VarRefs(a))
return a
}
// FunctionCalls returns the Call objects from the query.
func (s *SelectStatement) FunctionCalls() []*Call {
var a []*Call
for _, f := range s.Fields {
a = append(a, walkFunctionCalls(f.Expr)...)
}
return a
}
// FunctionCallsByPosition returns the Call objects from the query in the order they appear in the select statement.
func (s *SelectStatement) FunctionCallsByPosition() [][]*Call {
var a [][]*Call
for _, f := range s.Fields {
a = append(a, walkFunctionCalls(f.Expr))
}
return a
}
// walkFunctionCalls walks the Expr and returns any function calls made.
func walkFunctionCalls(exp Expr) []*Call {
switch expr := exp.(type) {
case *VarRef:
return nil
case *Call:
return []*Call{expr}
case *BinaryExpr:
var ret []*Call
ret = append(ret, walkFunctionCalls(expr.LHS)...)
ret = append(ret, walkFunctionCalls(expr.RHS)...)
return ret
case *ParenExpr:
return walkFunctionCalls(expr.Expr)
}
return nil
}
// MatchSource returns the source name that matches a field name.
// It returns a blank string if no sources match.
func MatchSource(sources Sources, name string) string {
for _, src := range sources {
switch src := src.(type) {
case *Measurement:
if strings.HasPrefix(name, src.Name) {
return src.Name
}
}
}
return ""
}
// Target represents a target (destination) policy, measurement, and DB.
type Target struct {
// Measurement to write into.
Measurement *Measurement
}
// String returns a string representation of the Target.
func (t *Target) String() string {
if t == nil {
return ""
}
var buf bytes.Buffer
_, _ = buf.WriteString("INTO ")
_, _ = buf.WriteString(t.Measurement.String())
if t.Measurement.Name == "" {
_, _ = buf.WriteString(":MEASUREMENT")
}
return buf.String()
}
// DeleteStatement represents a command for deleting data from the database.
type DeleteStatement struct {
// Data source that values are removed from.
Source Source
// An expression evaluated on data point.
Condition Expr
}
// String returns a string representation of the delete statement.
func (s *DeleteStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DELETE FROM ")
_, _ = buf.WriteString(s.Source.String())
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DeleteStatement.
func (s *DeleteStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: WritePrivilege}}, nil
}
// ShowSeriesStatement represents a command for listing series in the database.
type ShowSeriesStatement struct {
// Database to query. If blank, use the default database.
// The database can also be specified per source in the Sources.
Database string
// Measurement(s) the series are listed for.
Sources Sources
// An expression evaluated on a series name or tag.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the list series statement.
func (s *ShowSeriesStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW SERIES")
if s.Database != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
}
if s.Sources != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a ShowSeriesStatement.
func (s *ShowSeriesStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}, nil
}
// DropSeriesStatement represents a command for removing a series from the database.
type DropSeriesStatement struct {
// Data source that fields are extracted from (optional)
Sources Sources
// An expression evaluated on data point (optional)
Condition Expr
}
// String returns a string representation of the drop series statement.
func (s *DropSeriesStatement) String() string {
var buf bytes.Buffer
buf.WriteString("DROP SERIES")
if s.Sources != nil {
buf.WriteString(" FROM ")
buf.WriteString(s.Sources.String())
}
if s.Condition != nil {
buf.WriteString(" WHERE ")
buf.WriteString(s.Condition.String())
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DropSeriesStatement.
func (s DropSeriesStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: WritePrivilege}}, nil
}
// DeleteSeriesStatement represents a command for deleting all or part of a series from a database.
type DeleteSeriesStatement struct {
// Data source that fields are extracted from (optional)
Sources Sources
// An expression evaluated on data point (optional)
Condition Expr
}
// String returns a string representation of the delete series statement.
func (s *DeleteSeriesStatement) String() string {
var buf bytes.Buffer
buf.WriteString("DELETE")
if s.Sources != nil {
buf.WriteString(" FROM ")
buf.WriteString(s.Sources.String())
}
if s.Condition != nil {
buf.WriteString(" WHERE ")
buf.WriteString(s.Condition.String())
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a DeleteSeriesStatement.
func (s DeleteSeriesStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: WritePrivilege}}, nil
}
// DropShardStatement represents a command for removing a shard from
// the node.
type DropShardStatement struct {
// ID of the shard to be dropped.
ID uint64
}
// String returns a string representation of the drop series statement.
func (s *DropShardStatement) String() string {
var buf bytes.Buffer
buf.WriteString("DROP SHARD ")
buf.WriteString(strconv.FormatUint(s.ID, 10))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a
// DropShardStatement.
func (s *DropShardStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// ShowContinuousQueriesStatement represents a command for listing continuous queries.
type ShowContinuousQueriesStatement struct{}
// String returns a string representation of the show continuous queries statement.
func (s *ShowContinuousQueriesStatement) String() string { return "SHOW CONTINUOUS QUERIES" }
// RequiredPrivileges returns the privilege required to execute a ShowContinuousQueriesStatement.
func (s *ShowContinuousQueriesStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}, nil
}
// ShowGrantsForUserStatement represents a command for listing user privileges.
type ShowGrantsForUserStatement struct {
// Name of the user to display privileges.
Name string
}
// String returns a string representation of the show grants for user.
func (s *ShowGrantsForUserStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW GRANTS FOR ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a ShowGrantsForUserStatement
func (s *ShowGrantsForUserStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// ShowDatabasesStatement represents a command for listing all databases in the cluster.
type ShowDatabasesStatement struct{}
// String returns a string representation of the show databases command.
func (s *ShowDatabasesStatement) String() string { return "SHOW DATABASES" }
// RequiredPrivileges returns the privilege required to execute a ShowDatabasesStatement.
func (s *ShowDatabasesStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// CreateContinuousQueryStatement represents a command for creating a continuous query.
type CreateContinuousQueryStatement struct {
// Name of the continuous query to be created.
Name string
// Name of the database to create the continuous query on.
Database string
// Source of data (SELECT statement).
Source *SelectStatement
// Interval to resample previous queries.
ResampleEvery time.Duration
// Maximum duration to resample previous queries.
ResampleFor time.Duration
}
// String returns a string representation of the statement.
func (s *CreateContinuousQueryStatement) String() string {
var buf bytes.Buffer
fmt.Fprintf(&buf, "CREATE CONTINUOUS QUERY %s ON %s ", QuoteIdent(s.Name), QuoteIdent(s.Database))
if s.ResampleEvery > 0 || s.ResampleFor > 0 {
buf.WriteString("RESAMPLE ")
if s.ResampleEvery > 0 {
fmt.Fprintf(&buf, "EVERY %s ", FormatDuration(s.ResampleEvery))
}
if s.ResampleFor > 0 {
fmt.Fprintf(&buf, "FOR %s ", FormatDuration(s.ResampleFor))
}
}
fmt.Fprintf(&buf, "BEGIN %s END", s.Source.String())
return buf.String()
}
// DefaultDatabase returns the default database from the statement.
func (s *CreateContinuousQueryStatement) DefaultDatabase() string {
return s.Database
}
// RequiredPrivileges returns the privilege required to execute a CreateContinuousQueryStatement.
func (s *CreateContinuousQueryStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
ep := ExecutionPrivileges{{Admin: false, Name: s.Database, Privilege: ReadPrivilege}}
// Selecting into a database that's different from the source?
if s.Source.Target.Measurement.Database != "" {
// Change source database privilege requirement to read.
ep[0].Privilege = ReadPrivilege
// Add destination database privilege requirement and set it to write.
p := ExecutionPrivilege{
Admin: false,
Name: s.Source.Target.Measurement.Database,
Privilege: WritePrivilege,
}
ep = append(ep, p)
}
return ep, nil
}
func (s *CreateContinuousQueryStatement) validate() error {
interval, err := s.Source.GroupByInterval()
if err != nil {
return err
}
if s.ResampleFor != 0 {
if s.ResampleEvery != 0 && s.ResampleEvery > interval {
interval = s.ResampleEvery
}
if interval > s.ResampleFor {
return fmt.Errorf("FOR duration must be >= GROUP BY time duration: must be a minimum of %s, got %s", FormatDuration(interval), FormatDuration(s.ResampleFor))
}
}
return nil
}
// DropContinuousQueryStatement represents a command for removing a continuous query.
type DropContinuousQueryStatement struct {
Name string
Database string
}
// String returns a string representation of the statement.
func (s *DropContinuousQueryStatement) String() string {
return fmt.Sprintf("DROP CONTINUOUS QUERY %s ON %s", QuoteIdent(s.Name), QuoteIdent(s.Database))
}
// RequiredPrivileges returns the privilege(s) required to execute a DropContinuousQueryStatement
func (s *DropContinuousQueryStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: WritePrivilege}}, nil
}
// ShowMeasurementsStatement represents a command for listing measurements.
type ShowMeasurementsStatement struct {
// Database to query. If blank, use the default database.
Database string
// Measurement name or regex.
Source Source
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowMeasurementsStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW MEASUREMENTS")
if s.Database != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(s.Database)
}
if s.Source != nil {
_, _ = buf.WriteString(" WITH MEASUREMENT ")
if m, ok := s.Source.(*Measurement); ok && m.Regex != nil {
_, _ = buf.WriteString("=~ ")
} else {
_, _ = buf.WriteString("= ")
}
_, _ = buf.WriteString(s.Source.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowMeasurementsStatement.
func (s *ShowMeasurementsStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}, nil
}
// DropMeasurementStatement represents a command to drop a measurement.
type DropMeasurementStatement struct {
// Name of the measurement to be dropped.
Name string
}
// String returns a string representation of the drop measurement statement.
func (s *DropMeasurementStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("DROP MEASUREMENT ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a DropMeasurementStatement
func (s *DropMeasurementStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// ShowQueriesStatement represents a command for listing all running queries.
type ShowQueriesStatement struct{}
// String returns a string representation of the show queries statement.
func (s *ShowQueriesStatement) String() string {
return "SHOW QUERIES"
}
// RequiredPrivileges returns the privilege required to execute a ShowQueriesStatement.
func (s *ShowQueriesStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}, nil
}
// ShowRetentionPoliciesStatement represents a command for listing retention policies.
type ShowRetentionPoliciesStatement struct {
// Name of the database to list policies for.
Database string
}
// String returns a string representation of a ShowRetentionPoliciesStatement.
func (s *ShowRetentionPoliciesStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW RETENTION POLICIES")
if s.Database != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowRetentionPoliciesStatement
func (s *ShowRetentionPoliciesStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}, nil
}
// ShowStatsStatement displays statistics for a given module.
type ShowStatsStatement struct {
Module string
}
// String returns a string representation of a ShowStatsStatement.
func (s *ShowStatsStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW STATS")
if s.Module != "" {
_, _ = buf.WriteString(" FOR ")
_, _ = buf.WriteString(QuoteString(s.Module))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowStatsStatement
func (s *ShowStatsStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// ShowShardGroupsStatement represents a command for displaying shard groups in the cluster.
type ShowShardGroupsStatement struct{}
// String returns a string representation of the SHOW SHARD GROUPS command.
func (s *ShowShardGroupsStatement) String() string { return "SHOW SHARD GROUPS" }
// RequiredPrivileges returns the privileges required to execute the statement.
func (s *ShowShardGroupsStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// ShowShardsStatement represents a command for displaying shards in the cluster.
type ShowShardsStatement struct{}
// String returns a string representation.
func (s *ShowShardsStatement) String() string { return "SHOW SHARDS" }
// RequiredPrivileges returns the privileges required to execute the statement.
func (s *ShowShardsStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// ShowDiagnosticsStatement represents a command for show node diagnostics.
type ShowDiagnosticsStatement struct {
// Module
Module string
}
// String returns a string representation of the ShowDiagnosticsStatement.
func (s *ShowDiagnosticsStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW DIAGNOSTICS")
if s.Module != "" {
_, _ = buf.WriteString(" FOR ")
_, _ = buf.WriteString(QuoteString(s.Module))
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a ShowDiagnosticsStatement
func (s *ShowDiagnosticsStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// CreateSubscriptionStatement represents a command to add a subscription to the incoming data stream.
type CreateSubscriptionStatement struct {
Name string
Database string
RetentionPolicy string
Destinations []string
Mode string
}
// String returns a string representation of the CreateSubscriptionStatement.
func (s *CreateSubscriptionStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("CREATE SUBSCRIPTION ")
_, _ = buf.WriteString(QuoteIdent(s.Name))
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
_, _ = buf.WriteString(".")
_, _ = buf.WriteString(QuoteIdent(s.RetentionPolicy))
_, _ = buf.WriteString(" DESTINATIONS ")
_, _ = buf.WriteString(s.Mode)
_, _ = buf.WriteString(" ")
for i, dest := range s.Destinations {
if i != 0 {
_, _ = buf.WriteString(", ")
}
_, _ = buf.WriteString(QuoteString(dest))
}
return buf.String()
}
// RequiredPrivileges returns the privilege required to execute a CreateSubscriptionStatement.
func (s *CreateSubscriptionStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// DropSubscriptionStatement represents a command to drop a subscription to the incoming data stream.
type DropSubscriptionStatement struct {
Name string
Database string
RetentionPolicy string
}
// String returns a string representation of the DropSubscriptionStatement.
func (s *DropSubscriptionStatement) String() string {
return fmt.Sprintf(`DROP SUBSCRIPTION %s ON %s.%s`, QuoteIdent(s.Name), QuoteIdent(s.Database), QuoteIdent(s.RetentionPolicy))
}
// RequiredPrivileges returns the privilege required to execute a DropSubscriptionStatement
func (s *DropSubscriptionStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// ShowSubscriptionsStatement represents a command to show a list of subscriptions.
type ShowSubscriptionsStatement struct {
}
// String returns a string representation of the ShowSubscriptionsStatement.
func (s *ShowSubscriptionsStatement) String() string {
return "SHOW SUBSCRIPTIONS"
}
// RequiredPrivileges returns the privilege required to execute a ShowSubscriptionsStatement.
func (s *ShowSubscriptionsStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// ShowTagKeysStatement represents a command for listing tag keys.
type ShowTagKeysStatement struct {
// Database to query. If blank, use the default database.
// The database can also be specified per source in the Sources.
Database string
// Data sources that fields are extracted from.
Sources Sources
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by.
SortFields SortFields
// Maximum number of tag keys per measurement. Unlimited if zero.
Limit int
// Returns tag keys starting at an offset from the first row.
Offset int
// Maxiumum number of series to be returned. Unlimited if zero.
SLimit int
// Returns series starting at an offset from the first one.
SOffset int
}
// String returns a string representation of the statement.
func (s *ShowTagKeysStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW TAG KEYS")
if s.Database != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
}
if s.Sources != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
if s.SLimit > 0 {
_, _ = buf.WriteString(" SLIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.SLimit))
}
if s.SOffset > 0 {
_, _ = buf.WriteString(" SOFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.SOffset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowTagKeysStatement.
func (s *ShowTagKeysStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}, nil
}
// ShowTagValuesStatement represents a command for listing tag values.
type ShowTagValuesStatement struct {
// Database to query. If blank, use the default database.
// The database can also be specified per source in the Sources.
Database string
// Data source that fields are extracted from.
Sources Sources
// Operation to use when selecting tag key(s).
Op Token
// Literal to compare the tag key(s) with.
TagKeyExpr Literal
// An expression evaluated on data point.
Condition Expr
// Fields to sort results by.
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowTagValuesStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW TAG VALUES")
if s.Database != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
}
if s.Sources != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
_, _ = buf.WriteString(" WITH KEY ")
_, _ = buf.WriteString(s.Op.String())
_, _ = buf.WriteString(" ")
if lit, ok := s.TagKeyExpr.(*StringLiteral); ok {
_, _ = buf.WriteString(QuoteIdent(lit.Val))
} else {
_, _ = buf.WriteString(s.TagKeyExpr.String())
}
if s.Condition != nil {
_, _ = buf.WriteString(" WHERE ")
_, _ = buf.WriteString(s.Condition.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowTagValuesStatement.
func (s *ShowTagValuesStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}, nil
}
// ShowUsersStatement represents a command for listing users.
type ShowUsersStatement struct{}
// String returns a string representation of the ShowUsersStatement.
func (s *ShowUsersStatement) String() string {
return "SHOW USERS"
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowUsersStatement
func (s *ShowUsersStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: true, Name: "", Privilege: AllPrivileges}}, nil
}
// ShowFieldKeysStatement represents a command for listing field keys.
type ShowFieldKeysStatement struct {
// Database to query. If blank, use the default database.
// The database can also be specified per source in the Sources.
Database string
// Data sources that fields are extracted from.
Sources Sources
// Fields to sort results by
SortFields SortFields
// Maximum number of rows to be returned.
// Unlimited if zero.
Limit int
// Returns rows starting at an offset from the first row.
Offset int
}
// String returns a string representation of the statement.
func (s *ShowFieldKeysStatement) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("SHOW FIELD KEYS")
if s.Database != "" {
_, _ = buf.WriteString(" ON ")
_, _ = buf.WriteString(QuoteIdent(s.Database))
}
if s.Sources != nil {
_, _ = buf.WriteString(" FROM ")
_, _ = buf.WriteString(s.Sources.String())
}
if len(s.SortFields) > 0 {
_, _ = buf.WriteString(" ORDER BY ")
_, _ = buf.WriteString(s.SortFields.String())
}
if s.Limit > 0 {
_, _ = buf.WriteString(" LIMIT ")
_, _ = buf.WriteString(strconv.Itoa(s.Limit))
}
if s.Offset > 0 {
_, _ = buf.WriteString(" OFFSET ")
_, _ = buf.WriteString(strconv.Itoa(s.Offset))
}
return buf.String()
}
// RequiredPrivileges returns the privilege(s) required to execute a ShowFieldKeysStatement.
func (s *ShowFieldKeysStatement) RequiredPrivileges() (ExecutionPrivileges, error) {
return ExecutionPrivileges{{Admin: false, Name: "", Privilege: ReadPrivilege}}, nil
}
// Fields represents a list of fields.
type Fields []*Field
// AliasNames returns a list of calculated field names in
// order of alias, function name, then field.
func (a Fields) AliasNames() []string {
names := []string{}
for _, f := range a {
names = append(names, f.Name())
}
return names
}
// Names returns a list of field names.
func (a Fields) Names() []string {
names := []string{}
for _, f := range a {
switch expr := f.Expr.(type) {
case *Call:
names = append(names, expr.Name)
case *VarRef:
names = append(names, expr.Val)
case *BinaryExpr:
names = append(names, walkNames(expr)...)
case *ParenExpr:
names = append(names, walkNames(expr)...)
}
}
return names
}
// String returns a string representation of the fields.
func (a Fields) String() string {
var str []string
for _, f := range a {
str = append(str, f.String())
}
return strings.Join(str, ", ")
}
// Field represents an expression retrieved from a select statement.
type Field struct {
Expr Expr
Alias string
}
// Name returns the name of the field. Returns alias, if set.
// Otherwise uses the function name or variable name.
func (f *Field) Name() string {
// Return alias, if set.
if f.Alias != "" {
return f.Alias
}
// Return the function name or variable name, if available.
switch expr := f.Expr.(type) {
case *Call:
return expr.Name
case *BinaryExpr:
return BinaryExprName(expr)
case *ParenExpr:
f := Field{Expr: expr.Expr}
return f.Name()
case *VarRef:
return expr.Val
}
// Otherwise return a blank name.
return ""
}
// String returns a string representation of the field.
func (f *Field) String() string {
str := f.Expr.String()
if f.Alias == "" {
return str
}
return fmt.Sprintf("%s AS %s", str, QuoteIdent(f.Alias))
}
// Len implements sort.Interface.
func (a Fields) Len() int { return len(a) }
// Less implements sort.Interface.
func (a Fields) Less(i, j int) bool { return a[i].Name() < a[j].Name() }
// Swap implements sort.Interface.
func (a Fields) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// Dimensions represents a list of dimensions.
type Dimensions []*Dimension
// String returns a string representation of the dimensions.
func (a Dimensions) String() string {
var str []string
for _, d := range a {
str = append(str, d.String())
}
return strings.Join(str, ", ")
}
// Normalize returns the interval and tag dimensions separately.
// Returns 0 if no time interval is specified.
func (a Dimensions) Normalize() (time.Duration, []string) {
var dur time.Duration
var tags []string
for _, dim := range a {
switch expr := dim.Expr.(type) {
case *Call:
lit, _ := expr.Args[0].(*DurationLiteral)
dur = lit.Val
case *VarRef:
tags = append(tags, expr.Val)
}
}
return dur, tags
}
// Dimension represents an expression that a select statement is grouped by.
type Dimension struct {
Expr Expr
}
// String returns a string representation of the dimension.
func (d *Dimension) String() string { return d.Expr.String() }
// Measurements represents a list of measurements.
type Measurements []*Measurement
// String returns a string representation of the measurements.
func (a Measurements) String() string {
var str []string
for _, m := range a {
str = append(str, m.String())
}
return strings.Join(str, ", ")
}
// Measurement represents a single measurement used as a datasource.
type Measurement struct {
Database string
RetentionPolicy string
Name string
Regex *RegexLiteral
IsTarget bool
}
// String returns a string representation of the measurement.
func (m *Measurement) String() string {
var buf bytes.Buffer
if m.Database != "" {
_, _ = buf.WriteString(QuoteIdent(m.Database))
_, _ = buf.WriteString(".")
}
if m.RetentionPolicy != "" {
_, _ = buf.WriteString(QuoteIdent(m.RetentionPolicy))
}
if m.Database != "" || m.RetentionPolicy != "" {
_, _ = buf.WriteString(`.`)
}
if m.Name != "" {
_, _ = buf.WriteString(QuoteIdent(m.Name))
} else if m.Regex != nil {
_, _ = buf.WriteString(m.Regex.String())
}
return buf.String()
}
func encodeMeasurement(mm *Measurement) *internal.Measurement {
pb := &internal.Measurement{
Database: proto.String(mm.Database),
RetentionPolicy: proto.String(mm.RetentionPolicy),
Name: proto.String(mm.Name),
IsTarget: proto.Bool(mm.IsTarget),
}
if mm.Regex != nil {
pb.Regex = proto.String(mm.Regex.Val.String())
}
return pb
}
func decodeMeasurement(pb *internal.Measurement) (*Measurement, error) {
mm := &Measurement{
Database: pb.GetDatabase(),
RetentionPolicy: pb.GetRetentionPolicy(),
Name: pb.GetName(),
IsTarget: pb.GetIsTarget(),
}
if pb.Regex != nil {
regex, err := regexp.Compile(pb.GetRegex())
if err != nil {
return nil, fmt.Errorf("invalid binary measurement regex: value=%q, err=%s", pb.GetRegex(), err)
}
mm.Regex = &RegexLiteral{Val: regex}
}
return mm, nil
}
// SubQuery is a source with a SelectStatement as the backing store.
type SubQuery struct {
Statement *SelectStatement
}
// String returns a string representation of the subquery.
func (s *SubQuery) String() string {
return fmt.Sprintf("(%s)", s.Statement.String())
}
// VarRef represents a reference to a variable.
type VarRef struct {
Val string
Type DataType
}
// String returns a string representation of the variable reference.
func (r *VarRef) String() string {
buf := bytes.NewBufferString(QuoteIdent(r.Val))
if r.Type != Unknown {
buf.WriteString("::")
buf.WriteString(r.Type.String())
}
return buf.String()
}
// VarRefs represents a slice of VarRef types.
type VarRefs []VarRef
// Len implements sort.Interface.
func (a VarRefs) Len() int { return len(a) }
// Less implements sort.Interface.
func (a VarRefs) Less(i, j int) bool {
if a[i].Val != a[j].Val {
return a[i].Val < a[j].Val
}
return a[i].Type < a[j].Type
}
// Swap implements sort.Interface.
func (a VarRefs) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// Strings returns a slice of the variable names.
func (a VarRefs) Strings() []string {
s := make([]string, len(a))
for i, ref := range a {
s[i] = ref.Val
}
return s
}
// Call represents a function call.
type Call struct {
Name string
Args []Expr
}
// String returns a string representation of the call.
func (c *Call) String() string {
// Join arguments.
var str []string
for _, arg := range c.Args {
str = append(str, arg.String())
}
// Write function name and args.
return fmt.Sprintf("%s(%s)", c.Name, strings.Join(str, ", "))
}
// Distinct represents a DISTINCT expression.
type Distinct struct {
// Identifier following DISTINCT
Val string
}
// String returns a string representation of the expression.
func (d *Distinct) String() string {
return fmt.Sprintf("DISTINCT %s", d.Val)
}
// NewCall returns a new call expression from this expressions.
func (d *Distinct) NewCall() *Call {
return &Call{
Name: "distinct",
Args: []Expr{
&VarRef{Val: d.Val},
},
}
}
// NumberLiteral represents a numeric literal.
type NumberLiteral struct {
Val float64
}
// String returns a string representation of the literal.
func (l *NumberLiteral) String() string { return strconv.FormatFloat(l.Val, 'f', 3, 64) }
// IntegerLiteral represents an integer literal.
type IntegerLiteral struct {
Val int64
}
// String returns a string representation of the literal.
func (l *IntegerLiteral) String() string { return fmt.Sprintf("%d", l.Val) }
// BooleanLiteral represents a boolean literal.
type BooleanLiteral struct {
Val bool
}
// String returns a string representation of the literal.
func (l *BooleanLiteral) String() string {
if l.Val {
return "true"
}
return "false"
}
// isTrueLiteral returns true if the expression is a literal "true" value.
func isTrueLiteral(expr Expr) bool {
if expr, ok := expr.(*BooleanLiteral); ok {
return expr.Val == true
}
return false
}
// isFalseLiteral returns true if the expression is a literal "false" value.
func isFalseLiteral(expr Expr) bool {
if expr, ok := expr.(*BooleanLiteral); ok {
return expr.Val == false
}
return false
}
// ListLiteral represents a list of tag key literals.
type ListLiteral struct {
Vals []string
}
// String returns a string representation of the literal.
func (s *ListLiteral) String() string {
var buf bytes.Buffer
_, _ = buf.WriteString("(")
for idx, tagKey := range s.Vals {
if idx != 0 {
_, _ = buf.WriteString(", ")
}
_, _ = buf.WriteString(QuoteIdent(tagKey))
}
_, _ = buf.WriteString(")")
return buf.String()
}
// StringLiteral represents a string literal.
type StringLiteral struct {
Val string
}
// String returns a string representation of the literal.
func (l *StringLiteral) String() string { return QuoteString(l.Val) }
// IsTimeLiteral returns if this string can be interpreted as a time literal.
func (l *StringLiteral) IsTimeLiteral() bool {
return isDateTimeString(l.Val) || isDateString(l.Val)
}
// ToTimeLiteral returns a time literal if this string can be converted to a time literal.
func (l *StringLiteral) ToTimeLiteral() (*TimeLiteral, error) {
if isDateTimeString(l.Val) {
t, err := time.Parse(DateTimeFormat, l.Val)
if err != nil {
// try to parse it as an RFCNano time
t, err = time.Parse(time.RFC3339Nano, l.Val)
if err != nil {
return nil, ErrInvalidTime
}
}
return &TimeLiteral{Val: t}, nil
} else if isDateString(l.Val) {
t, err := time.Parse(DateFormat, l.Val)
if err != nil {
return nil, ErrInvalidTime
}
return &TimeLiteral{Val: t}, nil
}
return nil, ErrInvalidTime
}
// TimeLiteral represents a point-in-time literal.
type TimeLiteral struct {
Val time.Time
}
// String returns a string representation of the literal.
func (l *TimeLiteral) String() string {
return `'` + l.Val.UTC().Format(time.RFC3339Nano) + `'`
}
// DurationLiteral represents a duration literal.
type DurationLiteral struct {
Val time.Duration
}
// String returns a string representation of the literal.
func (l *DurationLiteral) String() string { return FormatDuration(l.Val) }
// nilLiteral represents a nil literal.
// This is not available to the query language itself. It's only used internally.
type nilLiteral struct{}
// String returns a string representation of the literal.
func (l *nilLiteral) String() string { return `nil` }
// BinaryExpr represents an operation between two expressions.
type BinaryExpr struct {
Op Token
LHS Expr
RHS Expr
}
// String returns a string representation of the binary expression.
func (e *BinaryExpr) String() string {
return fmt.Sprintf("%s %s %s", e.LHS.String(), e.Op.String(), e.RHS.String())
}
func (e *BinaryExpr) validate() error {
v := binaryExprValidator{}
Walk(&v, e)
if v.err != nil {
return v.err
} else if v.calls && v.refs {
return errors.New("binary expressions cannot mix aggregates and raw fields")
}
return nil
}
type binaryExprValidator struct {
calls bool
refs bool
err error
}
func (v *binaryExprValidator) Visit(n Node) Visitor {
if v.err != nil {
return nil
}
switch n := n.(type) {
case *Call:
v.calls = true
if n.Name == "top" || n.Name == "bottom" {
v.err = fmt.Errorf("cannot use %s() inside of a binary expression", n.Name)
return nil
}
for _, expr := range n.Args {
switch e := expr.(type) {
case *BinaryExpr:
v.err = e.validate()
return nil
}
}
return nil
case *VarRef:
v.refs = true
return nil
}
return v
}
// BinaryExprName returns the name of a binary expression by concatenating
// the variables in the binary expression with underscores.
func BinaryExprName(expr *BinaryExpr) string {
v := binaryExprNameVisitor{}
Walk(&v, expr)
return strings.Join(v.names, "_")
}
type binaryExprNameVisitor struct {
names []string
}
func (v *binaryExprNameVisitor) Visit(n Node) Visitor {
switch n := n.(type) {
case *VarRef:
v.names = append(v.names, n.Val)
case *Call:
v.names = append(v.names, n.Name)
return nil
}
return v
}
// ParenExpr represents a parenthesized expression.
type ParenExpr struct {
Expr Expr
}
// String returns a string representation of the parenthesized expression.
func (e *ParenExpr) String() string { return fmt.Sprintf("(%s)", e.Expr.String()) }
// RegexLiteral represents a regular expression.
type RegexLiteral struct {
Val *regexp.Regexp
}
// String returns a string representation of the literal.
func (r *RegexLiteral) String() string {
if r.Val != nil {
return fmt.Sprintf("/%s/", strings.Replace(r.Val.String(), `/`, `\/`, -1))
}
return ""
}
// CloneRegexLiteral returns a clone of the RegexLiteral.
func CloneRegexLiteral(r *RegexLiteral) *RegexLiteral {
if r == nil {
return nil
}
clone := &RegexLiteral{}
if r.Val != nil {
clone.Val = regexp.MustCompile(r.Val.String())
}
return clone
}
// Wildcard represents a wild card expression.
type Wildcard struct {
Type Token
}
// String returns a string representation of the wildcard.
func (e *Wildcard) String() string {
switch e.Type {
case FIELD:
return "*::field"
case TAG:
return "*::tag"
default:
return "*"
}
}
// CloneExpr returns a deep copy of the expression.
func CloneExpr(expr Expr) Expr {
if expr == nil {
return nil
}
switch expr := expr.(type) {
case *BinaryExpr:
return &BinaryExpr{Op: expr.Op, LHS: CloneExpr(expr.LHS), RHS: CloneExpr(expr.RHS)}
case *BooleanLiteral:
return &BooleanLiteral{Val: expr.Val}
case *Call:
args := make([]Expr, len(expr.Args))
for i, arg := range expr.Args {
args[i] = CloneExpr(arg)
}
return &Call{Name: expr.Name, Args: args}
case *Distinct:
return &Distinct{Val: expr.Val}
case *DurationLiteral:
return &DurationLiteral{Val: expr.Val}
case *IntegerLiteral:
return &IntegerLiteral{Val: expr.Val}
case *NumberLiteral:
return &NumberLiteral{Val: expr.Val}
case *ParenExpr:
return &ParenExpr{Expr: CloneExpr(expr.Expr)}
case *RegexLiteral:
return &RegexLiteral{Val: expr.Val}
case *StringLiteral:
return &StringLiteral{Val: expr.Val}
case *TimeLiteral:
return &TimeLiteral{Val: expr.Val}
case *VarRef:
return &VarRef{Val: expr.Val, Type: expr.Type}
case *Wildcard:
return &Wildcard{Type: expr.Type}
}
panic("unreachable")
}
// HasTimeExpr returns true if the expression has a time term.
func HasTimeExpr(expr Expr) bool {
switch n := expr.(type) {
case *BinaryExpr:
if n.Op == AND || n.Op == OR {
return HasTimeExpr(n.LHS) || HasTimeExpr(n.RHS)
}
if ref, ok := n.LHS.(*VarRef); ok && strings.ToLower(ref.Val) == "time" {
return true
}
return false
case *ParenExpr:
// walk down the tree
return HasTimeExpr(n.Expr)
default:
return false
}
}
// OnlyTimeExpr returns true if the expression only has time constraints.
func OnlyTimeExpr(expr Expr) bool {
if expr == nil {
return false
}
switch n := expr.(type) {
case *BinaryExpr:
if n.Op == AND || n.Op == OR {
return OnlyTimeExpr(n.LHS) && OnlyTimeExpr(n.RHS)
}
if ref, ok := n.LHS.(*VarRef); ok && strings.ToLower(ref.Val) == "time" {
return true
}
return false
case *ParenExpr:
// walk down the tree
return OnlyTimeExpr(n.Expr)
default:
return false
}
}
// TimeRange returns the minimum and maximum times specified by an expression.
// It returns zero times if there is no bound.
func TimeRange(expr Expr) (min, max time.Time, err error) {
WalkFunc(expr, func(n Node) {
if err != nil {
return
}
if n, ok := n.(*BinaryExpr); ok {
// Extract literal expression & operator on LHS.
// Check for "time" on the left-hand side first.
// Otherwise check for for the right-hand side and flip the operator.
op := n.Op
var value time.Time
value, err = timeExprValue(n.LHS, n.RHS)
if err != nil {
return
} else if value.IsZero() {
if value, err = timeExprValue(n.RHS, n.LHS); value.IsZero() || err != nil {
return
} else if op == LT {
op = GT
} else if op == LTE {
op = GTE
} else if op == GT {
op = LT
} else if op == GTE {
op = LTE
}
}
// Update the min/max depending on the operator.
// The GT & LT update the value by +/- 1ns not make them "not equal".
switch op {
case GT:
if min.IsZero() || value.After(min) {
min = value.Add(time.Nanosecond)
}
case GTE:
if min.IsZero() || value.After(min) {
min = value
}
case LT:
if max.IsZero() || value.Before(max) {
max = value.Add(-time.Nanosecond)
}
case LTE:
if max.IsZero() || value.Before(max) {
max = value
}
case EQ:
if min.IsZero() || value.After(min) {
min = value
}
if max.IsZero() || value.Add(1*time.Nanosecond).Before(max) {
max = value.Add(1 * time.Nanosecond)
}
}
}
})
return
}
// TimeRangeAsEpochNano returns the minimum and maximum times, as epoch nano, specified by
// an expression. If there is no lower bound, the minimum time is returned
// for minimum. If there is no higher bound, now is returned for maximum.
func TimeRangeAsEpochNano(expr Expr) (min, max int64, err error) {
tmin, tmax, err := TimeRange(expr)
if err != nil {
return 0, 0, err
}
if tmin.IsZero() {
min = time.Unix(0, MinTime).UnixNano()
} else {
min = tmin.UnixNano()
}
if tmax.IsZero() {
max = time.Now().UnixNano()
} else {
max = tmax.UnixNano()
}
return
}
// timeExprValue returns the time literal value of a "time == <TimeLiteral>" expression.
// Returns zero time if the expression is not a time expression.
func timeExprValue(ref Expr, lit Expr) (t time.Time, err error) {
if ref, ok := ref.(*VarRef); ok && strings.ToLower(ref.Val) == "time" {
// If literal looks like a date time then parse it as a time literal.
if strlit, ok := lit.(*StringLiteral); ok {
if strlit.IsTimeLiteral() {
t, err := strlit.ToTimeLiteral()
if err != nil {
return time.Time{}, err
}
lit = t
}
}
switch lit := lit.(type) {
case *TimeLiteral:
if lit.Val.After(time.Unix(0, MaxTime)) {
return time.Time{}, fmt.Errorf("time %s overflows time literal", lit.Val.Format(time.RFC3339))
} else if lit.Val.Before(time.Unix(0, MinTime+1)) {
// The minimum allowable time literal is one greater than the minimum time because the minimum time
// is a sentinel value only used internally.
return time.Time{}, fmt.Errorf("time %s underflows time literal", lit.Val.Format(time.RFC3339))
}
return lit.Val, nil
case *DurationLiteral:
return time.Unix(0, int64(lit.Val)).UTC(), nil
case *NumberLiteral:
return time.Unix(0, int64(lit.Val)).UTC(), nil
case *IntegerLiteral:
return time.Unix(0, lit.Val).UTC(), nil
default:
return time.Time{}, fmt.Errorf("invalid operation: time and %T are not compatible", lit)
}
}
return time.Time{}, nil
}
// Visitor can be called by Walk to traverse an AST hierarchy.
// The Visit() function is called once per node.
type Visitor interface {
Visit(Node) Visitor
}
// Walk traverses a node hierarchy in depth-first order.
func Walk(v Visitor, node Node) {
if node == nil {
return
}
if v = v.Visit(node); v == nil {
return
}
switch n := node.(type) {
case *BinaryExpr:
Walk(v, n.LHS)
Walk(v, n.RHS)
case *Call:
for _, expr := range n.Args {
Walk(v, expr)
}
case *CreateContinuousQueryStatement:
Walk(v, n.Source)
case *Dimension:
Walk(v, n.Expr)
case Dimensions:
for _, c := range n {
Walk(v, c)
}
case *DeleteSeriesStatement:
Walk(v, n.Sources)
Walk(v, n.Condition)
case *DropSeriesStatement:
Walk(v, n.Sources)
Walk(v, n.Condition)
case *Field:
Walk(v, n.Expr)
case Fields:
for _, c := range n {
Walk(v, c)
}
case *ParenExpr:
Walk(v, n.Expr)
case *Query:
Walk(v, n.Statements)
case *SelectStatement:
Walk(v, n.Fields)
Walk(v, n.Target)
Walk(v, n.Dimensions)
Walk(v, n.Sources)
Walk(v, n.Condition)
Walk(v, n.SortFields)
case *ShowSeriesStatement:
Walk(v, n.Sources)
Walk(v, n.Condition)
case *ShowTagKeysStatement:
Walk(v, n.Sources)
Walk(v, n.Condition)
Walk(v, n.SortFields)
case *ShowTagValuesStatement:
Walk(v, n.Sources)
Walk(v, n.Condition)
Walk(v, n.SortFields)
case *ShowFieldKeysStatement:
Walk(v, n.Sources)
Walk(v, n.SortFields)
case SortFields:
for _, sf := range n {
Walk(v, sf)
}
case Sources:
for _, s := range n {
Walk(v, s)
}
case *SubQuery:
Walk(v, n.Statement)
case Statements:
for _, s := range n {
Walk(v, s)
}
case *Target:
if n != nil {
Walk(v, n.Measurement)
}
}
}
// WalkFunc traverses a node hierarchy in depth-first order.
func WalkFunc(node Node, fn func(Node)) {
Walk(walkFuncVisitor(fn), node)
}
type walkFuncVisitor func(Node)
func (fn walkFuncVisitor) Visit(n Node) Visitor { fn(n); return fn }
// Rewriter can be called by Rewrite to replace nodes in the AST hierarchy.
// The Rewrite() function is called once per node.
type Rewriter interface {
Rewrite(Node) Node
}
// Rewrite recursively invokes the rewriter to replace each node.
// Nodes are traversed depth-first and rewritten from leaf to root.
func Rewrite(r Rewriter, node Node) Node {
switch n := node.(type) {
case *Query:
n.Statements = Rewrite(r, n.Statements).(Statements)
case Statements:
for i, s := range n {
n[i] = Rewrite(r, s).(Statement)
}
case *SelectStatement:
n.Fields = Rewrite(r, n.Fields).(Fields)
n.Dimensions = Rewrite(r, n.Dimensions).(Dimensions)
n.Sources = Rewrite(r, n.Sources).(Sources)
n.Condition = Rewrite(r, n.Condition).(Expr)
case *SubQuery:
n.Statement = Rewrite(r, n.Statement).(*SelectStatement)
case Fields:
for i, f := range n {
n[i] = Rewrite(r, f).(*Field)
}
case *Field:
n.Expr = Rewrite(r, n.Expr).(Expr)
case Dimensions:
for i, d := range n {
n[i] = Rewrite(r, d).(*Dimension)
}
case *Dimension:
n.Expr = Rewrite(r, n.Expr).(Expr)
case *BinaryExpr:
n.LHS = Rewrite(r, n.LHS).(Expr)
n.RHS = Rewrite(r, n.RHS).(Expr)
case *ParenExpr:
n.Expr = Rewrite(r, n.Expr).(Expr)
case *Call:
for i, expr := range n.Args {
n.Args[i] = Rewrite(r, expr).(Expr)
}
}
return r.Rewrite(node)
}
// RewriteFunc rewrites a node hierarchy.
func RewriteFunc(node Node, fn func(Node) Node) Node {
return Rewrite(rewriterFunc(fn), node)
}
type rewriterFunc func(Node) Node
func (fn rewriterFunc) Rewrite(n Node) Node { return fn(n) }
// RewriteExpr recursively invokes the function to replace each expr.
// Nodes are traversed depth-first and rewritten from leaf to root.
func RewriteExpr(expr Expr, fn func(Expr) Expr) Expr {
switch e := expr.(type) {
case *BinaryExpr:
e.LHS = RewriteExpr(e.LHS, fn)
e.RHS = RewriteExpr(e.RHS, fn)
if e.LHS != nil && e.RHS == nil {
expr = e.LHS
} else if e.RHS != nil && e.LHS == nil {
expr = e.RHS
} else if e.LHS == nil && e.RHS == nil {
return nil
}
case *ParenExpr:
e.Expr = RewriteExpr(e.Expr, fn)
if e.Expr == nil {
return nil
}
case *Call:
for i, expr := range e.Args {
e.Args[i] = RewriteExpr(expr, fn)
}
}
return fn(expr)
}
// Eval evaluates expr against a map.
func Eval(expr Expr, m map[string]interface{}) interface{} {
if expr == nil {
return nil
}
switch expr := expr.(type) {
case *BinaryExpr:
return evalBinaryExpr(expr, m)
case *BooleanLiteral:
return expr.Val
case *IntegerLiteral:
return expr.Val
case *NumberLiteral:
return expr.Val
case *ParenExpr:
return Eval(expr.Expr, m)
case *RegexLiteral:
return expr.Val
case *StringLiteral:
return expr.Val
case *VarRef:
return m[expr.Val]
default:
return nil
}
}
func evalBinaryExpr(expr *BinaryExpr, m map[string]interface{}) interface{} {
lhs := Eval(expr.LHS, m)
rhs := Eval(expr.RHS, m)
// Evaluate if both sides are simple types.
switch lhs := lhs.(type) {
case bool:
rhs, ok := rhs.(bool)
switch expr.Op {
case AND:
return ok && (lhs && rhs)
case OR:
return ok && (lhs || rhs)
case EQ:
return ok && (lhs == rhs)
case NEQ:
return ok && (lhs != rhs)
}
case float64:
// Try the rhs as a float64 or int64
rhsf, ok := rhs.(float64)
if !ok {
var rhsi int64
if rhsi, ok = rhs.(int64); ok {
rhsf = float64(rhsi)
}
}
rhs := rhsf
switch expr.Op {
case EQ:
return ok && (lhs == rhs)
case NEQ:
return ok && (lhs != rhs)
case LT:
return ok && (lhs < rhs)
case LTE:
return ok && (lhs <= rhs)
case GT:
return ok && (lhs > rhs)
case GTE:
return ok && (lhs >= rhs)
case ADD:
if !ok {
return nil
}
return lhs + rhs
case SUB:
if !ok {
return nil
}
return lhs - rhs
case MUL:
if !ok {
return nil
}
return lhs * rhs
case DIV:
if !ok {
return nil
} else if rhs == 0 {
return float64(0)
}
return lhs / rhs
case MOD:
if !ok {
return nil
}
return math.Mod(lhs, rhs)
}
case int64:
// Try as a float64 to see if a float cast is required.
rhsf, ok := rhs.(float64)
if ok {
lhs := float64(lhs)
rhs := rhsf
switch expr.Op {
case EQ:
return lhs == rhs
case NEQ:
return lhs != rhs
case LT:
return lhs < rhs
case LTE:
return lhs <= rhs
case GT:
return lhs > rhs
case GTE:
return lhs >= rhs
case ADD:
return lhs + rhs
case SUB:
return lhs - rhs
case MUL:
return lhs * rhs
case DIV:
if rhs == 0 {
return float64(0)
}
return lhs / rhs
case MOD:
return math.Mod(lhs, rhs)
}
} else {
rhs, ok := rhs.(int64)
switch expr.Op {
case EQ:
return ok && (lhs == rhs)
case NEQ:
return ok && (lhs != rhs)
case LT:
return ok && (lhs < rhs)
case LTE:
return ok && (lhs <= rhs)
case GT:
return ok && (lhs > rhs)
case GTE:
return ok && (lhs >= rhs)
case ADD:
if !ok {
return nil
}
return lhs + rhs
case SUB:
if !ok {
return nil
}
return lhs - rhs
case MUL:
if !ok {
return nil
}
return lhs * rhs
case DIV:
if !ok {
return nil
} else if rhs == 0 {
return float64(0)
}
return lhs / rhs
case MOD:
if !ok {
return nil
} else if rhs == 0 {
return int64(0)
}
return lhs % rhs
}
}
case string:
switch expr.Op {
case EQ:
rhs, ok := rhs.(string)
return ok && lhs == rhs
case NEQ:
rhs, ok := rhs.(string)
return ok && lhs != rhs
case EQREGEX:
rhs, ok := rhs.(*regexp.Regexp)
return ok && rhs.MatchString(lhs)
case NEQREGEX:
rhs, ok := rhs.(*regexp.Regexp)
return ok && !rhs.MatchString(lhs)
}
}
return nil
}
// EvalBool evaluates expr and returns true if result is a boolean true.
// Otherwise returns false.
func EvalBool(expr Expr, m map[string]interface{}) bool {
v, _ := Eval(expr, m).(bool)
return v
}
// TypeMapper maps a data type to the measurement and field.
type TypeMapper interface {
MapType(measurement *Measurement, field string) DataType
}
type nilTypeMapper struct{}
func (nilTypeMapper) MapType(*Measurement, string) DataType { return Unknown }
// EvalType evaluates the expression's type.
func EvalType(expr Expr, sources Sources, typmap TypeMapper) DataType {
if typmap == nil {
typmap = nilTypeMapper{}
}
switch expr := expr.(type) {
case *VarRef:
// If this variable already has an assigned type, just use that.
if expr.Type != Unknown && expr.Type != AnyField {
return expr.Type
}
var typ DataType
for _, src := range sources {
switch src := src.(type) {
case *Measurement:
t := typmap.MapType(src, expr.Val)
if typ == Unknown || t < typ {
typ = t
}
case *SubQuery:
_, e := src.Statement.FieldExprByName(expr.Val)
if e != nil {
t := EvalType(e, src.Statement.Sources, typmap)
if typ == Unknown || t < typ {
typ = t
}
}
if typ == Unknown {
for _, d := range src.Statement.Dimensions {
if d, ok := d.Expr.(*VarRef); ok && expr.Val == d.Val {
typ = Tag
}
}
}
}
}
return typ
case *Call:
switch expr.Name {
case "mean", "median":
return Float
case "count":
return Integer
default:
return EvalType(expr.Args[0], sources, typmap)
}
case *ParenExpr:
return EvalType(expr.Expr, sources, typmap)
case *NumberLiteral:
return Float
case *IntegerLiteral:
return Integer
case *StringLiteral:
return String
case *BooleanLiteral:
return Boolean
case *BinaryExpr:
lhs := EvalType(expr.LHS, sources, typmap)
rhs := EvalType(expr.RHS, sources, typmap)
if lhs != Unknown && rhs != Unknown {
if lhs < rhs {
return lhs
} else {
return rhs
}
} else if lhs != Unknown {
return lhs
} else {
return rhs
}
}
return Unknown
}
func FieldDimensions(sources Sources, m FieldMapper) (fields map[string]DataType, dimensions map[string]struct{}, err error) {
fields = make(map[string]DataType)
dimensions = make(map[string]struct{})
for _, src := range sources {
switch src := src.(type) {
case *Measurement:
f, d, err := m.FieldDimensions(src)
if err != nil {
return nil, nil, err
}
for k, typ := range f {
if _, ok := fields[k]; typ != Unknown && (!ok || typ < fields[k]) {
fields[k] = typ
}
}
for k := range d {
dimensions[k] = struct{}{}
}
case *SubQuery:
for _, f := range src.Statement.Fields {
k := f.Name()
typ := EvalType(f.Expr, src.Statement.Sources, m)
if _, ok := fields[k]; typ != Unknown && (!ok || typ < fields[k]) {
fields[k] = typ
}
}
for _, d := range src.Statement.Dimensions {
if expr, ok := d.Expr.(*VarRef); ok {
dimensions[expr.Val] = struct{}{}
}
}
}
}
return
}
// Reduce evaluates expr using the available values in valuer.
// References that don't exist in valuer are ignored.
func Reduce(expr Expr, valuer Valuer) Expr {
expr = reduce(expr, valuer)
// Unwrap parens at top level.
if expr, ok := expr.(*ParenExpr); ok {
return expr.Expr
}
return expr
}
func reduce(expr Expr, valuer Valuer) Expr {
if expr == nil {
return nil
}
switch expr := expr.(type) {
case *BinaryExpr:
return reduceBinaryExpr(expr, valuer)
case *Call:
return reduceCall(expr, valuer)
case *ParenExpr:
return reduceParenExpr(expr, valuer)
case *VarRef:
return reduceVarRef(expr, valuer)
case *nilLiteral:
return expr
default:
return CloneExpr(expr)
}
}
func reduceBinaryExpr(expr *BinaryExpr, valuer Valuer) Expr {
// Reduce both sides first.
op := expr.Op
lhs := reduce(expr.LHS, valuer)
rhs := reduce(expr.RHS, valuer)
// Do not evaluate if one side is nil.
if lhs == nil || rhs == nil {
return &BinaryExpr{LHS: lhs, RHS: rhs, Op: expr.Op}
}
// If we have a logical operator (AND, OR) and one side is a boolean literal
// then we need to have special handling.
if op == AND {
if isFalseLiteral(lhs) || isFalseLiteral(rhs) {
return &BooleanLiteral{Val: false}
} else if isTrueLiteral(lhs) {
return rhs
} else if isTrueLiteral(rhs) {
return lhs
}
} else if op == OR {
if isTrueLiteral(lhs) || isTrueLiteral(rhs) {
return &BooleanLiteral{Val: true}
} else if isFalseLiteral(lhs) {
return rhs
} else if isFalseLiteral(rhs) {
return lhs
}
}
// Evaluate if both sides are simple types.
switch lhs := lhs.(type) {
case *BooleanLiteral:
return reduceBinaryExprBooleanLHS(op, lhs, rhs)
case *DurationLiteral:
return reduceBinaryExprDurationLHS(op, lhs, rhs)
case *IntegerLiteral:
return reduceBinaryExprIntegerLHS(op, lhs, rhs)
case *nilLiteral:
return reduceBinaryExprNilLHS(op, lhs, rhs)
case *NumberLiteral:
return reduceBinaryExprNumberLHS(op, lhs, rhs)
case *StringLiteral:
return reduceBinaryExprStringLHS(op, lhs, rhs)
case *TimeLiteral:
return reduceBinaryExprTimeLHS(op, lhs, rhs)
default:
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
}
func reduceBinaryExprBooleanLHS(op Token, lhs *BooleanLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *BooleanLiteral:
switch op {
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case AND:
return &BooleanLiteral{Val: lhs.Val && rhs.Val}
case OR:
return &BooleanLiteral{Val: lhs.Val || rhs.Val}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprDurationLHS(op Token, lhs *DurationLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *DurationLiteral:
switch op {
case ADD:
return &DurationLiteral{Val: lhs.Val + rhs.Val}
case SUB:
return &DurationLiteral{Val: lhs.Val - rhs.Val}
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case GT:
return &BooleanLiteral{Val: lhs.Val > rhs.Val}
case GTE:
return &BooleanLiteral{Val: lhs.Val >= rhs.Val}
case LT:
return &BooleanLiteral{Val: lhs.Val < rhs.Val}
case LTE:
return &BooleanLiteral{Val: lhs.Val <= rhs.Val}
}
case *NumberLiteral:
switch op {
case MUL:
return &DurationLiteral{Val: lhs.Val * time.Duration(rhs.Val)}
case DIV:
if rhs.Val == 0 {
return &DurationLiteral{Val: 0}
}
return &DurationLiteral{Val: lhs.Val / time.Duration(rhs.Val)}
}
case *IntegerLiteral:
switch op {
case MUL:
return &DurationLiteral{Val: lhs.Val * time.Duration(rhs.Val)}
case DIV:
if rhs.Val == 0 {
return &DurationLiteral{Val: 0}
}
return &DurationLiteral{Val: lhs.Val / time.Duration(rhs.Val)}
}
case *TimeLiteral:
switch op {
case ADD:
return &TimeLiteral{Val: rhs.Val.Add(lhs.Val)}
}
case *StringLiteral:
t, err := rhs.ToTimeLiteral()
if err != nil {
break
}
expr := reduceBinaryExprDurationLHS(op, lhs, t)
// If the returned expression is still a binary expr, that means
// we couldn't reduce it so this wasn't used in a time literal context.
if _, ok := expr.(*BinaryExpr); !ok {
return expr
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprIntegerLHS(op Token, lhs *IntegerLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *NumberLiteral:
return reduceBinaryExprNumberLHS(op, &NumberLiteral{Val: float64(lhs.Val)}, rhs)
case *IntegerLiteral:
switch op {
case ADD:
return &IntegerLiteral{Val: lhs.Val + rhs.Val}
case SUB:
return &IntegerLiteral{Val: lhs.Val - rhs.Val}
case MUL:
return &IntegerLiteral{Val: lhs.Val * rhs.Val}
case DIV:
if rhs.Val == 0 {
return &NumberLiteral{Val: 0}
}
return &NumberLiteral{Val: float64(lhs.Val) / float64(rhs.Val)}
case MOD:
if rhs.Val == 0 {
return &IntegerLiteral{Val: 0}
}
return &IntegerLiteral{Val: lhs.Val % rhs.Val}
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case GT:
return &BooleanLiteral{Val: lhs.Val > rhs.Val}
case GTE:
return &BooleanLiteral{Val: lhs.Val >= rhs.Val}
case LT:
return &BooleanLiteral{Val: lhs.Val < rhs.Val}
case LTE:
return &BooleanLiteral{Val: lhs.Val <= rhs.Val}
}
case *DurationLiteral:
// Treat the integer as a timestamp.
switch op {
case ADD:
return &TimeLiteral{Val: time.Unix(0, lhs.Val).Add(rhs.Val)}
case SUB:
return &TimeLiteral{Val: time.Unix(0, lhs.Val).Add(-rhs.Val)}
}
case *TimeLiteral:
d := &DurationLiteral{Val: time.Duration(lhs.Val)}
expr := reduceBinaryExprDurationLHS(op, d, rhs)
if _, ok := expr.(*BinaryExpr); !ok {
return expr
}
case *StringLiteral:
t, err := rhs.ToTimeLiteral()
if err != nil {
break
}
d := &DurationLiteral{Val: time.Duration(lhs.Val)}
expr := reduceBinaryExprDurationLHS(op, d, t)
if _, ok := expr.(*BinaryExpr); !ok {
return expr
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprNilLHS(op Token, lhs *nilLiteral, rhs Expr) Expr {
switch op {
case EQ, NEQ:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprNumberLHS(op Token, lhs *NumberLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *NumberLiteral:
switch op {
case ADD:
return &NumberLiteral{Val: lhs.Val + rhs.Val}
case SUB:
return &NumberLiteral{Val: lhs.Val - rhs.Val}
case MUL:
return &NumberLiteral{Val: lhs.Val * rhs.Val}
case DIV:
if rhs.Val == 0 {
return &NumberLiteral{Val: 0}
}
return &NumberLiteral{Val: lhs.Val / rhs.Val}
case MOD:
return &NumberLiteral{Val: math.Mod(lhs.Val, rhs.Val)}
case EQ:
return &BooleanLiteral{Val: lhs.Val == rhs.Val}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != rhs.Val}
case GT:
return &BooleanLiteral{Val: lhs.Val > rhs.Val}
case GTE:
return &BooleanLiteral{Val: lhs.Val >= rhs.Val}
case LT:
return &BooleanLiteral{Val: lhs.Val < rhs.Val}
case LTE:
return &BooleanLiteral{Val: lhs.Val <= rhs.Val}
}
case *IntegerLiteral:
switch op {
case ADD:
return &NumberLiteral{Val: lhs.Val + float64(rhs.Val)}
case SUB:
return &NumberLiteral{Val: lhs.Val - float64(rhs.Val)}
case MUL:
return &NumberLiteral{Val: lhs.Val * float64(rhs.Val)}
case DIV:
if float64(rhs.Val) == 0 {
return &NumberLiteral{Val: 0}
}
return &NumberLiteral{Val: lhs.Val / float64(rhs.Val)}
case MOD:
return &NumberLiteral{Val: math.Mod(lhs.Val, float64(rhs.Val))}
case EQ:
return &BooleanLiteral{Val: lhs.Val == float64(rhs.Val)}
case NEQ:
return &BooleanLiteral{Val: lhs.Val != float64(rhs.Val)}
case GT:
return &BooleanLiteral{Val: lhs.Val > float64(rhs.Val)}
case GTE:
return &BooleanLiteral{Val: lhs.Val >= float64(rhs.Val)}
case LT:
return &BooleanLiteral{Val: lhs.Val < float64(rhs.Val)}
case LTE:
return &BooleanLiteral{Val: lhs.Val <= float64(rhs.Val)}
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprStringLHS(op Token, lhs *StringLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *StringLiteral:
switch op {
case EQ:
var expr Expr = &BooleanLiteral{Val: lhs.Val == rhs.Val}
// This might be a comparison between time literals.
// If it is, parse the time literals and then compare since it
// could be a different result if they use different formats
// for the same time.
if lhs.IsTimeLiteral() && rhs.IsTimeLiteral() {
tlhs, err := lhs.ToTimeLiteral()
if err != nil {
return expr
}
trhs, err := rhs.ToTimeLiteral()
if err != nil {
return expr
}
t := reduceBinaryExprTimeLHS(op, tlhs, trhs)
if _, ok := t.(*BinaryExpr); !ok {
expr = t
}
}
return expr
case NEQ:
var expr Expr = &BooleanLiteral{Val: lhs.Val != rhs.Val}
// This might be a comparison between time literals.
// If it is, parse the time literals and then compare since it
// could be a different result if they use different formats
// for the same time.
if lhs.IsTimeLiteral() && rhs.IsTimeLiteral() {
tlhs, err := lhs.ToTimeLiteral()
if err != nil {
return expr
}
trhs, err := rhs.ToTimeLiteral()
if err != nil {
return expr
}
t := reduceBinaryExprTimeLHS(op, tlhs, trhs)
if _, ok := t.(*BinaryExpr); !ok {
expr = t
}
}
return expr
case ADD:
return &StringLiteral{Val: lhs.Val + rhs.Val}
default:
// Attempt to convert the string literal to a time literal.
t, err := lhs.ToTimeLiteral()
if err != nil {
break
}
expr := reduceBinaryExprTimeLHS(op, t, rhs)
// If the returned expression is still a binary expr, that means
// we couldn't reduce it so this wasn't used in a time literal context.
if _, ok := expr.(*BinaryExpr); !ok {
return expr
}
}
case *DurationLiteral:
// Attempt to convert the string literal to a time literal.
t, err := lhs.ToTimeLiteral()
if err != nil {
break
}
expr := reduceBinaryExprTimeLHS(op, t, rhs)
// If the returned expression is still a binary expr, that means
// we couldn't reduce it so this wasn't used in a time literal context.
if _, ok := expr.(*BinaryExpr); !ok {
return expr
}
case *TimeLiteral:
// Attempt to convert the string literal to a time literal.
t, err := lhs.ToTimeLiteral()
if err != nil {
break
}
expr := reduceBinaryExprTimeLHS(op, t, rhs)
// If the returned expression is still a binary expr, that means
// we couldn't reduce it so this wasn't used in a time literal context.
if _, ok := expr.(*BinaryExpr); !ok {
return expr
}
case *IntegerLiteral:
// Attempt to convert the string literal to a time literal.
t, err := lhs.ToTimeLiteral()
if err != nil {
break
}
expr := reduceBinaryExprTimeLHS(op, t, rhs)
// If the returned expression is still a binary expr, that means
// we couldn't reduce it so this wasn't used in a time literal context.
if _, ok := expr.(*BinaryExpr); !ok {
return expr
}
case *nilLiteral:
switch op {
case EQ, NEQ:
return &BooleanLiteral{Val: false}
}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceBinaryExprTimeLHS(op Token, lhs *TimeLiteral, rhs Expr) Expr {
switch rhs := rhs.(type) {
case *DurationLiteral:
switch op {
case ADD:
return &TimeLiteral{Val: lhs.Val.Add(rhs.Val)}
case SUB:
return &TimeLiteral{Val: lhs.Val.Add(-rhs.Val)}
}
case *IntegerLiteral:
d := &DurationLiteral{Val: time.Duration(rhs.Val)}
expr := reduceBinaryExprTimeLHS(op, lhs, d)
if _, ok := expr.(*BinaryExpr); !ok {
return expr
}
case *TimeLiteral:
switch op {
case SUB:
return &DurationLiteral{Val: lhs.Val.Sub(rhs.Val)}
case EQ:
return &BooleanLiteral{Val: lhs.Val.Equal(rhs.Val)}
case NEQ:
return &BooleanLiteral{Val: !lhs.Val.Equal(rhs.Val)}
case GT:
return &BooleanLiteral{Val: lhs.Val.After(rhs.Val)}
case GTE:
return &BooleanLiteral{Val: lhs.Val.After(rhs.Val) || lhs.Val.Equal(rhs.Val)}
case LT:
return &BooleanLiteral{Val: lhs.Val.Before(rhs.Val)}
case LTE:
return &BooleanLiteral{Val: lhs.Val.Before(rhs.Val) || lhs.Val.Equal(rhs.Val)}
}
case *StringLiteral:
t, err := rhs.ToTimeLiteral()
if err != nil {
break
}
expr := reduceBinaryExprTimeLHS(op, lhs, t)
// If the returned expression is still a binary expr, that means
// we couldn't reduce it so this wasn't used in a time literal context.
if _, ok := expr.(*BinaryExpr); !ok {
return expr
}
case *nilLiteral:
return &BooleanLiteral{Val: false}
}
return &BinaryExpr{Op: op, LHS: lhs, RHS: rhs}
}
func reduceCall(expr *Call, valuer Valuer) Expr {
// Evaluate "now()" if valuer is set.
if expr.Name == "now" && len(expr.Args) == 0 && valuer != nil {
if v, ok := valuer.Value("now()"); ok {
v, _ := v.(time.Time)
return &TimeLiteral{Val: v}
}
}
// Otherwise reduce arguments.
args := make([]Expr, len(expr.Args))
for i, arg := range expr.Args {
args[i] = reduce(arg, valuer)
}
return &Call{Name: expr.Name, Args: args}
}
func reduceParenExpr(expr *ParenExpr, valuer Valuer) Expr {
subexpr := reduce(expr.Expr, valuer)
if subexpr, ok := subexpr.(*BinaryExpr); ok {
return &ParenExpr{Expr: subexpr}
}
return subexpr
}
func reduceVarRef(expr *VarRef, valuer Valuer) Expr {
// Ignore if there is no valuer.
if valuer == nil {
return &VarRef{Val: expr.Val, Type: expr.Type}
}
// Retrieve the value of the ref.
// Ignore if the value doesn't exist.
v, ok := valuer.Value(expr.Val)
if !ok {
return &VarRef{Val: expr.Val, Type: expr.Type}
}
// Return the value as a literal.
switch v := v.(type) {
case bool:
return &BooleanLiteral{Val: v}
case time.Duration:
return &DurationLiteral{Val: v}
case float64:
return &NumberLiteral{Val: v}
case string:
return &StringLiteral{Val: v}
case time.Time:
return &TimeLiteral{Val: v}
default:
return &nilLiteral{}
}
}
// Valuer is the interface that wraps the Value() method.
type Valuer interface {
// Value returns the value and existence flag for a given key.
Value(key string) (interface{}, bool)
}
// NowValuer returns only the value for "now()".
type NowValuer struct {
Now time.Time
}
// Value is a method that returns the value and existence flag for a given key.
func (v *NowValuer) Value(key string) (interface{}, bool) {
if key == "now()" {
return v.Now, true
}
return nil, false
}
// ContainsVarRef returns true if expr is a VarRef or contains one.
func ContainsVarRef(expr Expr) bool {
var v containsVarRefVisitor
Walk(&v, expr)
return v.contains
}
type containsVarRefVisitor struct {
contains bool
}
func (v *containsVarRefVisitor) Visit(n Node) Visitor {
switch n.(type) {
case *Call:
return nil
case *VarRef:
v.contains = true
}
return v
}
func IsSelector(expr Expr) bool {
if call, ok := expr.(*Call); ok {
switch call.Name {
case "first", "last", "min", "max", "percentile", "sample", "top", "bottom":
return true
}
}
return false
}