influxdb/task/backend/scheduler.go

481 lines
14 KiB
Go

package backend
import (
"context"
"errors"
"fmt"
"math"
"sync"
"sync/atomic"
"time"
"github.com/influxdata/platform"
"github.com/prometheus/client_golang/prometheus"
"go.uber.org/zap"
)
var ErrRunCanceled = errors.New("run canceled")
var ErrTaskNotClaimed = errors.New("task not claimed")
// DesiredState persists the desired state of a run.
type DesiredState interface {
// CreateNextRun requests the next run from the desired state, delegating to (*StoreTaskMeta).CreateNextRun.
// This allows the scheduler to be "dumb" and just tell DesiredState what time the scheduler thinks it is,
// and the DesiredState will create the appropriate run according to the task's cron schedule,
// and according to what's in progress and what's been finished.
//
// If a Run is requested and the cron schedule says the schedule isn't ready, a RunNotYetDueError is returned.
CreateNextRun(ctx context.Context, taskID platform.ID, now int64) (RunCreation, error)
// FinishRun indicates that the given run is no longer intended to be executed.
// This may be called after a successful or failed execution, or upon cancellation.
FinishRun(ctx context.Context, taskID, runID platform.ID) error
}
// Executor handles execution of a run.
type Executor interface {
// Execute attempts to begin execution of a run.
// If there is an error invoking execution, that error is returned and RunPromise is nil.
// TODO(mr): this assumes you can execute a run just from a taskID and a now time.
// We may need to include the script content in this method signature.
Execute(ctx context.Context, run QueuedRun) (RunPromise, error)
}
// QueuedRun is a task run that has been assigned an ID,
// but whose execution has not necessarily started.
type QueuedRun struct {
TaskID, RunID platform.ID
// The Unix timestamp (seconds since January 1, 1970 UTC) that will be set
// as the "now" option when executing the task.
Now int64
}
// RunPromise represents an in-progress run whose result is not yet known.
type RunPromise interface {
// Run returns the details about the queued run.
Run() QueuedRun
// Wait blocks until the run completes.
// Wait may be called concurrently.
// Subsequent calls to Wait will return identical values.
Wait() (RunResult, error)
// Cancel interrupts the RunFuture.
// Calls to Wait() will immediately unblock and return nil, ErrRunCanceled.
// Cancel is safe to call concurrently.
// If Wait() has already returned, Cancel is a no-op.
Cancel()
}
type RunResult interface {
// If the run did not succeed, Err returns the error associated with the run.
Err() error
// IsRetryable returns true if the error was non-terminal and the run is eligible for retry.
IsRetryable() bool
// TODO(mr): add more detail here like number of points written, execution time, etc.
}
// Scheduler accepts tasks and handles their scheduling.
//
// TODO(mr): right now the methods on Scheduler are synchronous.
// We'll probably want to make them asynchronous in the near future,
// which likely means we will change the method signatures to something where
// we can wait for the result to complete and possibly inspect any relevant output.
type Scheduler interface {
// Tick updates the time of the scheduler.
// Any owned tasks who are due to execute and who have a free concurrency slot,
// will begin a new execution.
Tick(now int64)
// ClaimTask begins control of task execution in this scheduler.
ClaimTask(task *StoreTask, meta *StoreTaskMeta) error
// ReleaseTask immediately cancels any in-progress runs for the given task ID,
// and releases any resources related to management of that task.
ReleaseTask(taskID platform.ID) error
}
type SchedulerOption func(Scheduler)
func WithTicker(ctx context.Context, d time.Duration) SchedulerOption {
return func(s Scheduler) {
ticker := time.NewTicker(d)
go func() {
<-ctx.Done()
ticker.Stop()
}()
for time := range ticker.C {
go s.Tick(time.Unix())
}
}
}
// WithLogger sets the logger for the scheduler.
// If not set, the scheduler will use a no-op logger.
func WithLogger(logger *zap.Logger) SchedulerOption {
return func(s Scheduler) {
switch sched := s.(type) {
case *outerScheduler:
sched.logger = logger.With(zap.String("svc", "taskd/scheduler"))
default:
panic(fmt.Sprintf("cannot apply WithLogger to Scheduler of type %T", s))
}
}
}
// NewScheduler returns a new scheduler with the given desired state and the given now UTC timestamp.
func NewScheduler(desiredState DesiredState, executor Executor, lw LogWriter, now int64, opts ...SchedulerOption) Scheduler {
o := &outerScheduler{
desiredState: desiredState,
executor: executor,
logWriter: lw,
now: now,
taskSchedulers: make(map[string]*taskScheduler),
logger: zap.NewNop(),
metrics: newSchedulerMetrics(),
}
for _, opt := range opts {
opt(o)
}
return o
}
type outerScheduler struct {
desiredState DesiredState
executor Executor
logWriter LogWriter
now int64
logger *zap.Logger
metrics *schedulerMetrics
schedulerMu sync.Mutex // Protects access and modification of taskSchedulers map.
taskSchedulers map[string]*taskScheduler // Stringified task ID -> task scheduler.
}
func (s *outerScheduler) Tick(now int64) {
atomic.StoreInt64(&s.now, now)
s.schedulerMu.Lock()
defer s.schedulerMu.Unlock()
for _, ts := range s.taskSchedulers {
if now >= ts.NextDue() {
ts.Work(now)
}
}
}
func (s *outerScheduler) ClaimTask(task *StoreTask, meta *StoreTaskMeta) (err error) {
defer s.metrics.ClaimTask(err == nil)
ts, err := newTaskScheduler(s, task, meta, s.metrics)
if err != nil {
return err
}
tid := task.ID.String()
s.schedulerMu.Lock()
_, ok := s.taskSchedulers[tid]
if ok {
s.schedulerMu.Unlock()
return errors.New("task has already been claimed")
}
s.taskSchedulers[tid] = ts
s.schedulerMu.Unlock()
// Okay to read ts.nextDue without locking,
// because we just created it and there won't be any concurrent access.
if now := atomic.LoadInt64(&s.now); now >= ts.nextDue {
ts.Work(now)
}
return nil
}
func (s *outerScheduler) ReleaseTask(taskID platform.ID) error {
s.schedulerMu.Lock()
defer s.schedulerMu.Unlock()
tid := taskID.String()
t, ok := s.taskSchedulers[tid]
if !ok {
return ErrTaskNotClaimed
}
t.Cancel()
delete(s.taskSchedulers, tid)
s.metrics.ReleaseTask(tid)
return nil
}
func (s *outerScheduler) PrometheusCollectors() []prometheus.Collector {
return s.metrics.PrometheusCollectors()
}
// taskScheduler is a lightweight wrapper around a collection of runners.
type taskScheduler struct {
// Task we are scheduling for.
task *StoreTask
// CancelFunc for context passed to runners, to enable Cancel method.
cancel context.CancelFunc
// Fixed-length slice of runners.
runners []*runner
logger *zap.Logger
metrics *schedulerMetrics
nextDueMu sync.RWMutex // Protects following fields.
nextDue int64 // Unix timestamp of next due.
nextDueSource int64 // Run time that produced nextDue.
}
func newTaskScheduler(
s *outerScheduler,
task *StoreTask,
meta *StoreTaskMeta,
metrics *schedulerMetrics,
) (*taskScheduler, error) {
firstDue, err := meta.NextDueRun()
if err != nil {
return nil, err
}
ctx, cancel := context.WithCancel(context.Background())
ts := &taskScheduler{
task: task,
cancel: cancel,
runners: make([]*runner, meta.MaxConcurrency),
logger: s.logger.With(zap.String("task_id", task.ID.String())),
metrics: s.metrics,
nextDue: firstDue,
nextDueSource: math.MinInt64,
}
for i := range ts.runners {
logger := ts.logger.With(zap.Int("run_slot", i))
ts.runners[i] = newRunner(ctx, logger, task, s.desiredState, s.executor, s.logWriter, ts)
}
return ts, nil
}
// Work begins a work cycle on the taskScheduler.
// As many runners are started as possible.
func (ts *taskScheduler) Work(now int64) {
for _, r := range ts.runners {
r.Start(now)
if r.IsIdle() {
// Ran out of jobs to start.
break
}
}
}
// Cancel interrupts this taskScheduler and its runners.
func (ts *taskScheduler) Cancel() {
ts.cancel()
}
// NextDue returns the next due timestamp.
func (ts *taskScheduler) NextDue() int64 {
ts.nextDueMu.RLock()
defer ts.nextDueMu.RUnlock()
return ts.nextDue
}
// SetNextDue sets the next due timestamp and records the source (the now value of the run who reported nextDue).
func (ts *taskScheduler) SetNextDue(nextDue, source int64) {
// TODO(mr): we may need some logic around source to handle if SetNextDue is called out of order.
ts.nextDueMu.Lock()
defer ts.nextDueMu.Unlock()
ts.nextDue = nextDue
ts.nextDueSource = source
}
// A runner is one eligible "concurrency slot" for a given task.
type runner struct {
state *uint32
// Cancelable context from parent taskScheduler.
ctx context.Context
task *StoreTask
desiredState DesiredState
executor Executor
logWriter LogWriter
// Parent taskScheduler.
ts *taskScheduler
logger *zap.Logger
}
func newRunner(
ctx context.Context,
logger *zap.Logger,
task *StoreTask,
desiredState DesiredState,
executor Executor,
logWriter LogWriter,
ts *taskScheduler,
) *runner {
return &runner{
ctx: ctx,
state: new(uint32),
task: task,
desiredState: desiredState,
executor: executor,
logWriter: logWriter,
ts: ts,
logger: logger,
}
}
// Valid runner states.
const (
// Available to pick up a new run.
runnerIdle uint32 = iota
// Busy, cannot pick up a new run.
runnerWorking
// TODO(mr): use more granular runner states, so we can inspect the overall state of a taskScheduler.
)
// IsIdle returns true if the runner is idle.
// This uses an atomic load, so it is possible that the runner is no longer idle immediately after this returns true.
func (r *runner) IsIdle() bool {
return atomic.LoadUint32(r.state) == runnerIdle
}
// Start checks if a new run is ready to be scheduled, and if so,
// creates a run on this goroutine and begins executing it on a separate goroutine.
func (r *runner) Start(now int64) {
if !atomic.CompareAndSwapUint32(r.state, runnerIdle, runnerWorking) {
// Already working. Cannot start.
return
}
r.startFromWorking(now)
}
// startFromWorking attempts to create a run if one is due, and then begins execution on a separate goroutine.
// r.state must be runnerWorking when this is called.
func (r *runner) startFromWorking(now int64) {
if now < r.ts.NextDue() {
// Not ready for a new run. Go idle again.
atomic.StoreUint32(r.state, runnerIdle)
return
}
rc, err := r.desiredState.CreateNextRun(r.ctx, r.task.ID, now)
if err != nil {
r.logger.Info("Failed to create run", zap.Error(err))
atomic.StoreUint32(r.state, runnerIdle)
return
}
qr := rc.Created
r.ts.SetNextDue(rc.NextDue, qr.Now)
// Create a new child logger for the individual run.
// We can't do r.logger = r.logger.With(zap.String("run_id", qr.RunID.String()) because zap doesn't deduplicate fields,
// and we'll quickly end up with many run_ids associated with the log.
runLogger := r.logger.With(zap.String("run_id", qr.RunID.String()), zap.Int64("now", qr.Now))
runLogger.Info("Beginning execution")
go r.executeAndWait(now, qr, runLogger)
r.updateRunState(qr, RunStarted, runLogger)
}
func (r *runner) executeAndWait(now int64, qr QueuedRun, runLogger *zap.Logger) {
rp, err := r.executor.Execute(r.ctx, qr)
if err != nil {
// TODO(mr): retry? and log error.
atomic.StoreUint32(r.state, runnerIdle)
r.updateRunState(qr, RunFail, runLogger)
return
}
ready := make(chan struct{})
go func() {
// If the runner's context is canceled, cancel the RunPromise.
select {
// Canceled context.
case <-r.ctx.Done():
rp.Cancel()
// Wait finished.
case <-ready:
}
}()
// TODO(mr): handle res.IsRetryable().
_, err = rp.Wait()
close(ready)
if err != nil {
if err == ErrRunCanceled {
_ = r.desiredState.FinishRun(r.ctx, qr.TaskID, qr.RunID)
r.updateRunState(qr, RunCanceled, runLogger)
} else {
runLogger.Info("Failed to wait for execution result", zap.Error(err))
// TODO(mr): retry?
r.updateRunState(qr, RunFail, runLogger)
}
atomic.StoreUint32(r.state, runnerIdle)
return
}
if err := r.desiredState.FinishRun(r.ctx, qr.TaskID, qr.RunID); err != nil {
runLogger.Info("Failed to finish run", zap.Error(err))
// TODO(mr): retry?
// Need to think about what it means if there was an error finishing a run.
atomic.StoreUint32(r.state, runnerIdle)
r.updateRunState(qr, RunFail, runLogger)
return
}
r.updateRunState(qr, RunSuccess, runLogger)
runLogger.Info("Execution succeeded")
// Check again if there is a new run available, without returning to idle state.
r.startFromWorking(now)
}
func (r *runner) updateRunState(qr QueuedRun, s RunStatus, runLogger *zap.Logger) {
switch s {
case RunStarted:
r.ts.metrics.StartRun(r.task.ID.String())
case RunSuccess:
r.ts.metrics.FinishRun(r.task.ID.String(), true)
case RunFail, RunCanceled:
r.ts.metrics.FinishRun(r.task.ID.String(), false)
default:
// We are deliberately not handling RunQueued yet.
// There is not really a notion of being queued in this runner architecture.
runLogger.Warn("Unhandled run state", zap.Stringer("state", s))
}
// Arbitrarily chosen short time limit for how fast the log write must complete.
// If we start seeing errors from this, we know the time limit is too short or the system is overloaded.
ctx, cancel := context.WithTimeout(r.ctx, 10*time.Millisecond)
defer cancel()
if err := r.logWriter.UpdateRunState(ctx, r.task, qr.RunID, time.Now(), s); err != nil {
runLogger.Info("Error updating run state", zap.Stringer("state", s), zap.Error(err))
}
}