907 lines
25 KiB
Go
907 lines
25 KiB
Go
package influxdb
|
|
|
|
import (
|
|
"encoding/json"
|
|
"math"
|
|
"regexp"
|
|
"sort"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/influxdb/influxdb/influxql"
|
|
)
|
|
|
|
// database is a collection of retention policies and shards. It also has methods
|
|
// for keeping an in memory index of all the measurements, series, and tags in the database.
|
|
// Methods on this struct aren't goroutine safe. They assume that the server is handling
|
|
// any locking to make things safe.
|
|
type database struct {
|
|
name string
|
|
|
|
policies map[string]*RetentionPolicy // retention policies by name
|
|
|
|
defaultRetentionPolicy string
|
|
|
|
// in memory indexing structures
|
|
measurements map[string]*Measurement // measurement name to object and index
|
|
series map[uint32]*Series // map series id to the Series object
|
|
names []string // sorted list of the measurement names
|
|
}
|
|
|
|
// newDatabase returns an instance of database.
|
|
func newDatabase() *database {
|
|
return &database{
|
|
policies: make(map[string]*RetentionPolicy),
|
|
measurements: make(map[string]*Measurement),
|
|
series: make(map[uint32]*Series),
|
|
names: make([]string, 0),
|
|
}
|
|
}
|
|
|
|
// shardGroupByTimestamp returns a shard group that owns a given timestamp.
|
|
func (db *database) shardGroupByTimestamp(policy string, timestamp time.Time) (*ShardGroup, error) {
|
|
p := db.policies[policy]
|
|
if p == nil {
|
|
return nil, ErrRetentionPolicyNotFound
|
|
}
|
|
return p.shardGroupByTimestamp(timestamp), nil
|
|
}
|
|
|
|
// MarshalJSON encodes a database into a JSON-encoded byte slice.
|
|
func (db *database) MarshalJSON() ([]byte, error) {
|
|
// Copy over properties to intermediate type.
|
|
var o databaseJSON
|
|
o.Name = db.name
|
|
o.DefaultRetentionPolicy = db.defaultRetentionPolicy
|
|
for _, rp := range db.policies {
|
|
o.Policies = append(o.Policies, rp)
|
|
}
|
|
return json.Marshal(&o)
|
|
}
|
|
|
|
// UnmarshalJSON decodes a JSON-encoded byte slice to a database.
|
|
func (db *database) UnmarshalJSON(data []byte) error {
|
|
// Decode into intermediate type.
|
|
var o databaseJSON
|
|
if err := json.Unmarshal(data, &o); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Copy over properties from intermediate type.
|
|
db.name = o.Name
|
|
db.defaultRetentionPolicy = o.DefaultRetentionPolicy
|
|
|
|
// Copy shard policies.
|
|
db.policies = make(map[string]*RetentionPolicy)
|
|
for _, rp := range o.Policies {
|
|
db.policies[rp.Name] = rp
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// databaseJSON represents the JSON-serialization format for a database.
|
|
type databaseJSON struct {
|
|
Name string `json:"name,omitempty"`
|
|
DefaultRetentionPolicy string `json:"defaultRetentionPolicy,omitempty"`
|
|
Policies []*RetentionPolicy `json:"policies,omitempty"`
|
|
}
|
|
|
|
// Measurement represents a collection of time series in a database. It also contains in memory
|
|
// structures for indexing tags. These structures are accessed through private methods on the Measurement
|
|
// object. Generally these methods are only accessed from Index, which is responsible for ensuring
|
|
// go routine safe access.
|
|
type Measurement struct {
|
|
Name string `json:"name,omitempty"`
|
|
Fields []*Field `json:"fields,omitempty"`
|
|
|
|
// in-memory index fields
|
|
series map[string]*Series // sorted tagset string to the series object
|
|
seriesByID map[uint32]*Series // lookup table for series by their id
|
|
measurement *Measurement
|
|
seriesByTagKeyValue map[string]map[string]seriesIDs // map from tag key to value to sorted set of series ids
|
|
seriesIDs seriesIDs // sorted list of series IDs in this measurement
|
|
}
|
|
|
|
func NewMeasurement(name string) *Measurement {
|
|
return &Measurement{
|
|
Name: name,
|
|
Fields: make([]*Field, 0),
|
|
|
|
series: make(map[string]*Series),
|
|
seriesByID: make(map[uint32]*Series),
|
|
seriesByTagKeyValue: make(map[string]map[string]seriesIDs),
|
|
seriesIDs: make(seriesIDs, 0),
|
|
}
|
|
}
|
|
|
|
// createFieldIfNotExists creates a new field with an autoincrementing ID.
|
|
// Returns an error if 255 fields have already been created on the measurement.
|
|
func (m *Measurement) createFieldIfNotExists(name string, typ influxql.DataType) (*Field, error) {
|
|
// Ignore if the field already exists.
|
|
if f := m.FieldByName(name); f != nil {
|
|
return f, nil
|
|
}
|
|
|
|
// Only 255 fields are allowed. If we go over that then return an error.
|
|
if len(m.Fields)+1 > math.MaxUint8 {
|
|
return nil, ErrFieldOverflow
|
|
}
|
|
|
|
// Create and append a new field.
|
|
f := &Field{
|
|
ID: uint8(len(m.Fields) + 1),
|
|
Name: name,
|
|
Type: typ,
|
|
}
|
|
m.Fields = append(m.Fields, f)
|
|
|
|
return f, nil
|
|
}
|
|
|
|
// Field returns a field by id.
|
|
func (m *Measurement) Field(id uint8) *Field {
|
|
for _, f := range m.Fields {
|
|
if f.ID == id {
|
|
return f
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// FieldByName returns a field by name.
|
|
func (m *Measurement) FieldByName(name string) *Field {
|
|
for _, f := range m.Fields {
|
|
if f.Name == name {
|
|
return f
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// addSeries will add a series to the measurementIndex. Returns false if already present
|
|
func (m *Measurement) addSeries(s *Series) bool {
|
|
if _, ok := m.seriesByID[s.ID]; ok {
|
|
return false
|
|
}
|
|
m.seriesByID[s.ID] = s
|
|
tagset := string(marshalTags(s.Tags))
|
|
m.series[tagset] = s
|
|
m.seriesIDs = append(m.seriesIDs, s.ID)
|
|
|
|
// the series ID should always be higher than all others because it's a new
|
|
// series. So don't do the sort if we don't have to.
|
|
if len(m.seriesIDs) > 1 && m.seriesIDs[len(m.seriesIDs)-1] < m.seriesIDs[len(m.seriesIDs)-2] {
|
|
sort.Sort(m.seriesIDs)
|
|
}
|
|
|
|
// add this series id to the tag index on the measurement
|
|
for k, v := range s.Tags {
|
|
valueMap := m.seriesByTagKeyValue[k]
|
|
if valueMap == nil {
|
|
valueMap = make(map[string]seriesIDs)
|
|
m.seriesByTagKeyValue[k] = valueMap
|
|
}
|
|
ids := valueMap[v]
|
|
ids = append(ids, s.ID)
|
|
|
|
// most of the time the series ID will be higher than all others because it's a new
|
|
// series. So don't do the sort if we don't have to.
|
|
if len(ids) > 1 && ids[len(ids)-1] < ids[len(ids)-2] {
|
|
sort.Sort(ids)
|
|
}
|
|
valueMap[v] = ids
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// seriesByTags returns the Series that matches the given tagset.
|
|
func (m *Measurement) seriesByTags(tags map[string]string) *Series {
|
|
return m.series[string(marshalTags(tags))]
|
|
}
|
|
|
|
// mapValues converts a map of values with string keys to field id keys.
|
|
// Returns nil if any field doesn't exist.
|
|
func (m *Measurement) mapValues(values map[string]interface{}) map[uint8]interface{} {
|
|
other := make(map[uint8]interface{}, len(values))
|
|
for k, v := range values {
|
|
// TODO: Cast value to original field type.
|
|
|
|
f := m.FieldByName(k)
|
|
if f == nil {
|
|
return nil
|
|
}
|
|
other[f.ID] = v
|
|
}
|
|
return other
|
|
}
|
|
|
|
func (m *Measurement) seriesIDsAndFilters(stmt *influxql.SelectStatement) (seriesIDs, map[uint32]influxql.Expr) {
|
|
seriesIdsToExpr := make(map[uint32]influxql.Expr)
|
|
if stmt.Condition == nil {
|
|
return m.seriesIDs, nil
|
|
}
|
|
ids, _, _ := m.walkWhereForSeriesIds(stmt.Condition, seriesIdsToExpr)
|
|
return ids, seriesIdsToExpr
|
|
}
|
|
|
|
// tagSets returns the unique tag sets that exist for the given tag keys. This is used to determine
|
|
// what composite series will be created by a group by. i.e. "group by region" should return:
|
|
// {"region":"uswest"}, {"region":"useast"}
|
|
// or region, service returns
|
|
// {"region": "uswest", "service": "redis"}, {"region": "uswest", "service": "mysql"}, etc...
|
|
func (m *Measurement) tagSets(stmt *influxql.SelectStatement, dimensions []string) map[string]map[uint32]influxql.Expr {
|
|
// get the unique set of series ids and the filters that should be applied to each
|
|
seriesIDs, filters := m.seriesIDsAndFilters(stmt)
|
|
|
|
// build the tag sets
|
|
tagSets := make(map[string]map[uint32]influxql.Expr)
|
|
for _, id := range seriesIDs {
|
|
// get the series and set the tag values for the dimensions we care about
|
|
s := m.seriesByID[id]
|
|
tags := make([]string, len(dimensions))
|
|
for i, dim := range dimensions {
|
|
tags[i] = s.Tags[dim]
|
|
}
|
|
|
|
// marshal it into a string and put this series and its expr into the tagSets map
|
|
t := string(influxql.MarshalStrings(tags))
|
|
set, ok := tagSets[t]
|
|
if !ok {
|
|
set = make(map[uint32]influxql.Expr)
|
|
}
|
|
set[id] = filters[id]
|
|
tagSets[t] = set
|
|
}
|
|
|
|
return tagSets
|
|
}
|
|
|
|
// idsForExpr will return a collection of series ids, a bool indicating if the result should be
|
|
// used (it'll be false if it's a time expr) and a field expression if the passed in expression is against a field.
|
|
func (m *Measurement) idsForExpr(n *influxql.BinaryExpr) (seriesIDs, bool, influxql.Expr) {
|
|
name, ok := n.LHS.(*influxql.VarRef)
|
|
value := n.RHS
|
|
if !ok {
|
|
name, _ = n.RHS.(*influxql.VarRef)
|
|
value = n.LHS
|
|
}
|
|
|
|
// ignore time literals
|
|
if _, ok := value.(*influxql.TimeLiteral); ok {
|
|
return nil, false, nil
|
|
}
|
|
|
|
// if it's a field we can't collapse it so we have to look at all series ids for this
|
|
if m.FieldByName(name.Val) != nil {
|
|
return m.seriesIDs, true, n
|
|
}
|
|
|
|
// tag values can only be strings so if it's not a string this is an empty set
|
|
str, ok := value.(*influxql.StringLiteral)
|
|
if !ok {
|
|
return nil, true, nil
|
|
}
|
|
|
|
vals, ok := m.seriesByTagKeyValue[name.Val]
|
|
if !ok {
|
|
return nil, true, nil
|
|
}
|
|
|
|
return vals[str.Val], true, nil
|
|
}
|
|
|
|
// walkWhereForSeriesIds will recursively walk the where clause and return a collection of series ids, a boolean indicating if this return
|
|
// value should be included in the resulting set, and an expression if the return is a field expression.
|
|
// The map that it takes maps each series id to the field expression that should be used to evaluate it when iterating over its cursor.
|
|
// Series that have no field expressions won't be in the map
|
|
func (m *Measurement) walkWhereForSeriesIds(node influxql.Node, filters map[uint32]influxql.Expr) (seriesIDs, bool, influxql.Expr) {
|
|
switch n := node.(type) {
|
|
case *influxql.BinaryExpr:
|
|
// if it's EQ then it's either a field expression or against a tag. we can return this
|
|
if n.Op == influxql.EQ {
|
|
ids, shouldInclude, expr := m.idsForExpr(n)
|
|
return ids, shouldInclude, expr
|
|
} else if n.Op == influxql.AND || n.Op == influxql.OR { // if it's an AND or OR we need to union or intersect the results
|
|
var ids seriesIDs
|
|
l, il, lexpr := m.walkWhereForSeriesIds(n.LHS, filters)
|
|
r, ir, rexpr := m.walkWhereForSeriesIds(n.RHS, filters)
|
|
|
|
if il && ir { // we should include both the LHS and RHS of the BinaryExpr in the return
|
|
if n.Op == influxql.AND {
|
|
ids = l.intersect(r)
|
|
} else if n.Op == influxql.OR {
|
|
ids = l.union(r)
|
|
}
|
|
} else if !il && !ir { // we don't need to include either so return nothing
|
|
return nil, false, nil
|
|
} else if il { // just include the left side
|
|
ids = l
|
|
} else { // just include the right side
|
|
ids = r
|
|
}
|
|
|
|
if n.Op == influxql.OR && il && ir && (lexpr == nil || rexpr == nil) {
|
|
// if it's an OR and we're going to include both sides and one of those expression is nil,
|
|
// we need to clear out restrictive filters on series that don't need them anymore
|
|
idsToClear := l.intersect(r)
|
|
for _, id := range idsToClear {
|
|
delete(filters, id)
|
|
}
|
|
} else {
|
|
// put the LHS field expression into the filters
|
|
if lexpr != nil {
|
|
for _, id := range ids {
|
|
f := filters[id]
|
|
if f == nil {
|
|
filters[id] = lexpr
|
|
} else {
|
|
filters[id] = &influxql.BinaryExpr{LHS: f, RHS: lexpr, Op: n.Op}
|
|
}
|
|
}
|
|
}
|
|
|
|
// put the RHS field expression into the filters
|
|
if rexpr != nil {
|
|
for _, id := range ids {
|
|
f := filters[id]
|
|
if f == nil {
|
|
filters[id] = rexpr
|
|
} else {
|
|
filters[id] = &influxql.BinaryExpr{LHS: f, RHS: rexpr, Op: n.Op}
|
|
}
|
|
}
|
|
}
|
|
|
|
// if the op is AND and we include both, clear out any of the non-intersecting ids.
|
|
// that is, filters that are no longer part of the end result set
|
|
if n.Op == influxql.AND && il && ir {
|
|
filtersToClear := l.union(r).reject(ids)
|
|
for _, id := range filtersToClear {
|
|
delete(filters, id)
|
|
}
|
|
}
|
|
}
|
|
|
|
// finally return the ids and say that we should include them
|
|
return ids, true, nil
|
|
}
|
|
|
|
return m.idsForExpr(n)
|
|
case *influxql.ParenExpr:
|
|
// walk down the tree
|
|
return m.walkWhereForSeriesIds(n.Expr, filters)
|
|
default:
|
|
return nil, false, nil
|
|
}
|
|
}
|
|
|
|
// expandExpr returns a list of expressions expanded by all possible tag combinations.
|
|
func (m *Measurement) expandExpr(expr influxql.Expr) []tagSetExpr {
|
|
// Retrieve list of unique values for each tag.
|
|
valuesByTagKey := m.uniqueTagValues(expr)
|
|
|
|
// Convert keys to slices.
|
|
keys := make([]string, 0, len(valuesByTagKey))
|
|
for key := range valuesByTagKey {
|
|
keys = append(keys, key)
|
|
}
|
|
sort.Strings(keys)
|
|
|
|
// Order uniques by key.
|
|
uniques := make([][]string, len(keys))
|
|
for i, key := range keys {
|
|
uniques[i] = valuesByTagKey[key]
|
|
}
|
|
|
|
// Reduce a condition for each combination of tag values.
|
|
return expandExprWithValues(expr, keys, []tagExpr{}, uniques, 0)
|
|
}
|
|
|
|
func expandExprWithValues(expr influxql.Expr, keys []string, tagExprs []tagExpr, uniques [][]string, index int) []tagSetExpr {
|
|
// If we have no more keys left then execute the reduction and return.
|
|
if index == len(keys) {
|
|
// Create a map of tag key/values.
|
|
m := make(map[string]*string, len(keys))
|
|
for i, key := range keys {
|
|
if tagExprs[i].op == influxql.EQ {
|
|
m[key] = &tagExprs[i].values[0]
|
|
} else {
|
|
m[key] = nil
|
|
}
|
|
}
|
|
|
|
// TODO: Rewrite full expressions instead of VarRef replacement.
|
|
|
|
// Reduce using the current tag key/value set.
|
|
// Ignore it if reduces down to "false".
|
|
e := influxql.Reduce(expr, &tagValuer{tags: m})
|
|
if e, ok := e.(*influxql.BooleanLiteral); ok && e.Val == false {
|
|
return nil
|
|
}
|
|
|
|
return []tagSetExpr{{values: copyTagExprs(tagExprs), expr: e}}
|
|
}
|
|
|
|
// Otherwise expand for each possible equality value of the key.
|
|
var exprs []tagSetExpr
|
|
for _, v := range uniques[index] {
|
|
exprs = append(exprs, expandExprWithValues(expr, keys, append(tagExprs, tagExpr{keys[index], []string{v}, influxql.EQ}), uniques, index+1)...)
|
|
}
|
|
exprs = append(exprs, expandExprWithValues(expr, keys, append(tagExprs, tagExpr{keys[index], uniques[index], influxql.NEQ}), uniques, index+1)...)
|
|
|
|
return exprs
|
|
}
|
|
|
|
// tagValuer is used during expression expansion to evaluate all sets of tag values.
|
|
type tagValuer struct {
|
|
tags map[string]*string
|
|
}
|
|
|
|
// Value returns the string value of a tag and true if it's listed in the tagset.
|
|
func (v *tagValuer) Value(name string) (interface{}, bool) {
|
|
if value, ok := v.tags[name]; ok {
|
|
if value == nil {
|
|
return nil, true
|
|
}
|
|
return *value, true
|
|
}
|
|
return nil, false
|
|
}
|
|
|
|
// tagSetExpr represents a set of tag keys/values and associated expression.
|
|
type tagSetExpr struct {
|
|
values []tagExpr
|
|
expr influxql.Expr
|
|
}
|
|
|
|
// tagExpr represents one or more values assigned to a given tag.
|
|
type tagExpr struct {
|
|
key string
|
|
values []string
|
|
op influxql.Token // EQ or NEQ
|
|
}
|
|
|
|
func copyTagExprs(a []tagExpr) []tagExpr {
|
|
other := make([]tagExpr, len(a))
|
|
copy(other, a)
|
|
return other
|
|
}
|
|
|
|
// uniqueTagValues returns a list of unique tag values used in an expression.
|
|
func (m *Measurement) uniqueTagValues(expr influxql.Expr) map[string][]string {
|
|
// Track unique value per tag.
|
|
tags := make(map[string]map[string]struct{})
|
|
|
|
// Find all tag values referenced in the expression.
|
|
influxql.WalkFunc(expr, func(n influxql.Node) {
|
|
switch n := n.(type) {
|
|
case *influxql.BinaryExpr:
|
|
// Ignore operators that are not equality.
|
|
if n.Op != influxql.EQ {
|
|
return
|
|
}
|
|
|
|
// Extract ref and string literal.
|
|
var key, value string
|
|
switch lhs := n.LHS.(type) {
|
|
case *influxql.VarRef:
|
|
if rhs, ok := n.RHS.(*influxql.StringLiteral); ok {
|
|
key, value = lhs.Val, rhs.Val
|
|
}
|
|
case *influxql.StringLiteral:
|
|
if rhs, ok := n.RHS.(*influxql.VarRef); ok {
|
|
key, value = rhs.Val, lhs.Val
|
|
}
|
|
}
|
|
if key == "" {
|
|
return
|
|
}
|
|
|
|
// Add value to set.
|
|
if tags[key] == nil {
|
|
tags[key] = make(map[string]struct{})
|
|
}
|
|
tags[key][value] = struct{}{}
|
|
}
|
|
})
|
|
|
|
// Convert to map of slices.
|
|
out := make(map[string][]string)
|
|
for k, values := range tags {
|
|
out[k] = make([]string, 0, len(values))
|
|
for v := range values {
|
|
out[k] = append(out[k], v)
|
|
}
|
|
sort.Strings(out[k])
|
|
}
|
|
return out
|
|
}
|
|
|
|
type Measurements []*Measurement
|
|
|
|
// Field represents a series field.
|
|
type Field struct {
|
|
ID uint8 `json:"id,omitempty"`
|
|
Name string `json:"name,omitempty"`
|
|
Type influxql.DataType `json:"type,omitempty"`
|
|
}
|
|
|
|
// Fields represents a list of fields.
|
|
type Fields []*Field
|
|
|
|
// Series belong to a Measurement and represent unique time series in a database
|
|
type Series struct {
|
|
ID uint32
|
|
Tags map[string]string
|
|
|
|
measurement *Measurement
|
|
}
|
|
|
|
// match returns true if all tags match the series' tags.
|
|
func (s *Series) match(tags map[string]string) bool {
|
|
for k, v := range tags {
|
|
if s.Tags[k] != v {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// seriesIDs is a convenience type for sorting, checking equality, and doing
|
|
// union and intersection of collections of series ids.
|
|
type seriesIDs []uint32
|
|
|
|
func (p seriesIDs) Len() int { return len(p) }
|
|
func (p seriesIDs) Less(i, j int) bool { return p[i] < p[j] }
|
|
func (p seriesIDs) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
// equals assumes that both are sorted.
|
|
func (a seriesIDs) equals(other seriesIDs) bool {
|
|
if len(a) != len(other) {
|
|
return false
|
|
}
|
|
for i, s := range other {
|
|
if a[i] != s {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// intersect returns a new collection of series ids in sorted order that is the intersection of the two.
|
|
// The two collections must already be sorted.
|
|
func (a seriesIDs) intersect(other seriesIDs) seriesIDs {
|
|
l := a
|
|
r := other
|
|
|
|
// we want to iterate through the shortest one and stop
|
|
if len(other) < len(a) {
|
|
l = other
|
|
r = a
|
|
}
|
|
|
|
// they're in sorted order so advance the counter as needed.
|
|
// That is, don't run comparisons against lower values that we've already passed
|
|
var i, j int
|
|
|
|
ids := make([]uint32, 0, len(l))
|
|
for i < len(l) {
|
|
if l[i] == r[j] {
|
|
ids = append(ids, l[i])
|
|
i += 1
|
|
j += 1
|
|
} else if l[i] < r[j] {
|
|
i += 1
|
|
} else {
|
|
j += 1
|
|
}
|
|
}
|
|
|
|
return seriesIDs(ids)
|
|
}
|
|
|
|
// union returns a new collection of series ids in sorted order that is the union of the two.
|
|
// The two collections must already be sorted.
|
|
func (l seriesIDs) union(r seriesIDs) seriesIDs {
|
|
ids := make([]uint32, 0, len(l)+len(r))
|
|
var i, j int
|
|
for i < len(l) && j < len(r) {
|
|
if l[i] == r[j] {
|
|
ids = append(ids, l[i])
|
|
i += 1
|
|
j += 1
|
|
} else if l[i] < r[j] {
|
|
ids = append(ids, l[i])
|
|
i += 1
|
|
} else {
|
|
ids = append(ids, r[j])
|
|
j += 1
|
|
}
|
|
}
|
|
|
|
// now append the remainder
|
|
if i < len(l) {
|
|
ids = append(ids, l[i:]...)
|
|
} else if j < len(r) {
|
|
ids = append(ids, r[j:]...)
|
|
}
|
|
|
|
return ids
|
|
}
|
|
|
|
// reject returns a new collection of series ids in sorted order with the passed in set removed from the original.
|
|
// This is useful for the NOT operator. The two collections must already be sorted.
|
|
func (l seriesIDs) reject(r seriesIDs) seriesIDs {
|
|
var i, j int
|
|
|
|
ids := make([]uint32, 0, len(l))
|
|
for i < len(l) && j < len(r) {
|
|
if l[i] == r[j] {
|
|
i += 1
|
|
j += 1
|
|
} else if l[i] < r[j] {
|
|
ids = append(ids, l[i])
|
|
i += 1
|
|
} else {
|
|
j += 1
|
|
}
|
|
}
|
|
|
|
// Append the remainder
|
|
if i < len(l) {
|
|
ids = append(ids, l[i:]...)
|
|
}
|
|
|
|
return seriesIDs(ids)
|
|
}
|
|
|
|
// RetentionPolicy represents a policy for creating new shards in a database and how long they're kept around for.
|
|
type RetentionPolicy struct {
|
|
// Unique name within database. Required.
|
|
Name string
|
|
|
|
// Length of time to keep data around
|
|
Duration time.Duration
|
|
|
|
// The number of copies to make of each shard.
|
|
ReplicaN uint32
|
|
|
|
shardGroups []*ShardGroup
|
|
}
|
|
|
|
// NewRetentionPolicy returns a new instance of RetentionPolicy with defaults set.
|
|
func NewRetentionPolicy(name string) *RetentionPolicy {
|
|
return &RetentionPolicy{
|
|
Name: name,
|
|
ReplicaN: DefaultReplicaN,
|
|
Duration: DefaultShardRetention,
|
|
}
|
|
}
|
|
|
|
// shardGroupByTimestamp returns the group in the policy that owns a timestamp.
|
|
// Returns nil group does not exist.
|
|
func (rp *RetentionPolicy) shardGroupByTimestamp(timestamp time.Time) *ShardGroup {
|
|
for _, g := range rp.shardGroups {
|
|
if timeBetweenInclusive(timestamp, g.StartTime, g.EndTime) {
|
|
return g
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// MarshalJSON encodes a retention policy to a JSON-encoded byte slice.
|
|
func (rp *RetentionPolicy) MarshalJSON() ([]byte, error) {
|
|
var o retentionPolicyJSON
|
|
o.Name = rp.Name
|
|
o.Duration = rp.Duration
|
|
o.ReplicaN = rp.ReplicaN
|
|
for _, g := range rp.shardGroups {
|
|
o.ShardGroups = append(o.ShardGroups, g)
|
|
}
|
|
return json.Marshal(&o)
|
|
}
|
|
|
|
// UnmarshalJSON decodes a JSON-encoded byte slice to a retention policy.
|
|
func (rp *RetentionPolicy) UnmarshalJSON(data []byte) error {
|
|
// Decode into intermediate type.
|
|
var o retentionPolicyJSON
|
|
if err := json.Unmarshal(data, &o); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Copy over properties from intermediate type.
|
|
rp.Name = o.Name
|
|
rp.ReplicaN = o.ReplicaN
|
|
rp.Duration = o.Duration
|
|
rp.shardGroups = o.ShardGroups
|
|
|
|
return nil
|
|
}
|
|
|
|
// retentionPolicyJSON represents an intermediate struct for JSON marshaling.
|
|
type retentionPolicyJSON struct {
|
|
Name string `json:"name"`
|
|
ReplicaN uint32 `json:"replicaN,omitempty"`
|
|
SplitN uint32 `json:"splitN,omitempty"`
|
|
Duration time.Duration `json:"duration,omitempty"`
|
|
ShardGroups []*ShardGroup `json:"shardGroups,omitempty"`
|
|
}
|
|
|
|
// TagFilter represents a tag filter when looking up other tags or measurements.
|
|
type TagFilter struct {
|
|
Not bool
|
|
Key string
|
|
Value string
|
|
Regex *regexp.Regexp
|
|
}
|
|
|
|
// SeriesIDs is a convenience type for sorting, checking equality, and doing union and
|
|
// intersection of collections of series ids.
|
|
type SeriesIDs []uint32
|
|
|
|
func (p SeriesIDs) Len() int { return len(p) }
|
|
func (p SeriesIDs) Less(i, j int) bool { return p[i] < p[j] }
|
|
func (p SeriesIDs) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
|
|
|
|
// Equals assumes that both are sorted. This is by design, no touchy!
|
|
func (a SeriesIDs) Equals(seriesIDs SeriesIDs) bool {
|
|
if len(a) != len(seriesIDs) {
|
|
return false
|
|
}
|
|
for i, s := range seriesIDs {
|
|
if a[i] != s {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Intersect returns a new collection of series ids in sorted order that is the intersection of the two.
|
|
// The two collections must already be sorted.
|
|
func (a SeriesIDs) Intersect(seriesIDs SeriesIDs) SeriesIDs {
|
|
l := a
|
|
r := seriesIDs
|
|
|
|
// we want to iterate through the shortest one and stop
|
|
if len(seriesIDs) < len(a) {
|
|
l = seriesIDs
|
|
r = a
|
|
}
|
|
|
|
// they're in sorted order so advance the counter as needed.
|
|
// That is, don't run comparisons against lower values that we've already passed
|
|
var i, j int
|
|
|
|
ids := make([]uint32, 0, len(l))
|
|
for i < len(l) && j < len(r) {
|
|
if l[i] == r[j] {
|
|
ids = append(ids, l[i])
|
|
i += 1
|
|
j += 1
|
|
} else if l[i] < r[j] {
|
|
i += 1
|
|
} else {
|
|
j += 1
|
|
}
|
|
}
|
|
|
|
return SeriesIDs(ids)
|
|
}
|
|
|
|
// Union returns a new collection of series ids in sorted order that is the union of the two.
|
|
// The two collections must already be sorted.
|
|
func (l SeriesIDs) Union(r SeriesIDs) SeriesIDs {
|
|
ids := make([]uint32, 0, len(l)+len(r))
|
|
var i, j int
|
|
for i < len(l) && j < len(r) {
|
|
if l[i] == r[j] {
|
|
ids = append(ids, l[i])
|
|
i += 1
|
|
j += 1
|
|
} else if l[i] < r[j] {
|
|
ids = append(ids, l[i])
|
|
i += 1
|
|
} else {
|
|
ids = append(ids, r[j])
|
|
j += 1
|
|
}
|
|
}
|
|
|
|
// now append the remainder
|
|
if i < len(l) {
|
|
ids = append(ids, l[i:]...)
|
|
} else if j < len(r) {
|
|
ids = append(ids, r[j:]...)
|
|
}
|
|
|
|
return ids
|
|
}
|
|
|
|
// Reject returns a new collection of series ids in sorted order with the passed in set removed from the original. This is useful for the NOT operator.
|
|
// The two collections must already be sorted.
|
|
func (l SeriesIDs) Reject(r SeriesIDs) SeriesIDs {
|
|
var i, j int
|
|
|
|
ids := make([]uint32, 0, len(l))
|
|
for i < len(l) && j < len(r) {
|
|
if l[i] == r[j] {
|
|
i += 1
|
|
j += 1
|
|
} else if l[i] < r[j] {
|
|
ids = append(ids, l[i])
|
|
i += 1
|
|
} else {
|
|
j += 1
|
|
}
|
|
}
|
|
|
|
// append the remainder
|
|
if i < len(l) {
|
|
ids = append(ids, l[i:]...)
|
|
}
|
|
|
|
return SeriesIDs(ids)
|
|
}
|
|
|
|
// addSeriesToIndex adds the series for the given measurement to the index. Returns false if already present
|
|
func (d *database) addSeriesToIndex(measurementName string, s *Series) bool {
|
|
// if there is a measurement for this id, it's already been added
|
|
if d.series[s.ID] != nil {
|
|
return false
|
|
}
|
|
|
|
// get or create the measurement index and index it globally and in the measurement
|
|
idx := d.createMeasurementIfNotExists(measurementName)
|
|
|
|
s.measurement = idx
|
|
d.series[s.ID] = s
|
|
|
|
// TODO: add this series to the global tag index
|
|
|
|
return idx.addSeries(s)
|
|
}
|
|
|
|
// createMeasurementIfNotExists will either add a measurement object to the index or return the existing one.
|
|
func (d *database) createMeasurementIfNotExists(name string) *Measurement {
|
|
idx := d.measurements[name]
|
|
if idx == nil {
|
|
idx = NewMeasurement(name)
|
|
d.measurements[name] = idx
|
|
d.names = append(d.names, name)
|
|
sort.Strings(d.names)
|
|
}
|
|
return idx
|
|
}
|
|
|
|
// MeasurementAndSeries returns the Measurement and the Series for a given measurement name and tag set.
|
|
func (d *database) MeasurementAndSeries(name string, tags map[string]string) (*Measurement, *Series) {
|
|
idx := d.measurements[name]
|
|
if idx == nil {
|
|
return nil, nil
|
|
}
|
|
return idx, idx.seriesByTags(tags)
|
|
}
|
|
|
|
// used to convert the tag set to bytes for use as a lookup key
|
|
func marshalTags(tags map[string]string) []byte {
|
|
s := make([]string, 0, len(tags))
|
|
// pull out keys to sort
|
|
for k := range tags {
|
|
s = append(s, k)
|
|
}
|
|
sort.Strings(s)
|
|
|
|
// now append on the key values in key sorted order
|
|
for _, k := range s {
|
|
s = append(s, tags[k])
|
|
}
|
|
return []byte(strings.Join(s, "|"))
|
|
}
|
|
|
|
// timeBetweenInclusive returns true if t is between min and max, inclusive.
|
|
func timeBetweenInclusive(t, min, max time.Time) bool {
|
|
return (t.Equal(min) || t.After(min)) && (t.Equal(max) || t.Before(max))
|
|
}
|