influxdb/tsdb/functions.go

1536 lines
35 KiB
Go

package tsdb
// All aggregate and query functions are defined in this file along with any intermediate data objects they need to process.
// Query functions are represented as two discreet functions: Map and Reduce. These roughly follow the MapReduce
// paradigm popularized by Google and Hadoop.
//
// When adding an aggregate function, define a mapper, a reducer, and add them in the switch statement in the MapreduceFuncs function
import (
"container/heap"
"encoding/json"
"fmt"
"math"
"math/rand"
"reflect"
"sort"
"strings"
"github.com/influxdb/influxdb/influxql"
)
// iterator represents a forward-only iterator over a set of points.
// These are used by the mapFunctions in this file
type Iterator interface {
Next() (time int64, value interface{})
Tags() map[string]string
TMin() int64
}
// mapFunc represents a function used for mapping over a sequential series of data.
// The iterator represents a single group by interval
type mapFunc func(Iterator) interface{}
// reduceFunc represents a function used for reducing mapper output.
type reduceFunc func([]interface{}) interface{}
// UnmarshalFunc represents a function that can take bytes from a mapper from remote
// server and marshal it into an interface the reducer can use
type unmarshalFunc func([]byte) (interface{}, error)
// initializemapFunc takes an aggregate call from the query and returns the mapFunc
func initializeMapFunc(c *influxql.Call) (mapFunc, error) {
// see if it's a query for raw data
if c == nil {
return MapRawQuery, nil
}
// Retrieve map function by name.
switch c.Name {
case "count":
if _, ok := c.Args[0].(*influxql.Distinct); ok {
return MapCountDistinct, nil
}
if c, ok := c.Args[0].(*influxql.Call); ok {
if c.Name == "distinct" {
return MapCountDistinct, nil
}
}
return MapCount, nil
case "distinct":
return MapDistinct, nil
case "sum":
return MapSum, nil
case "mean":
return MapMean, nil
case "median":
return MapStddev, nil
case "min":
return MapMin, nil
case "max":
return MapMax, nil
case "spread":
return MapSpread, nil
case "stddev":
return MapStddev, nil
case "first":
return MapFirst, nil
case "last":
return MapLast, nil
case "top", "bottom":
return func(itr Iterator) interface{} {
return MapTopBottom(itr, c)
}, nil
case "percentile":
return MapEcho, nil
case "derivative", "non_negative_derivative":
// If the arg is another aggregate e.g. derivative(mean(value)), then
// use the map func for that nested aggregate
if fn, ok := c.Args[0].(*influxql.Call); ok {
return initializeMapFunc(fn)
}
return MapRawQuery, nil
default:
return nil, fmt.Errorf("function not found: %q", c.Name)
}
}
// InitializereduceFunc takes an aggregate call from the query and returns the reduceFunc
func initializeReduceFunc(c *influxql.Call) (reduceFunc, error) {
// Retrieve reduce function by name.
switch c.Name {
case "count":
if _, ok := c.Args[0].(*influxql.Distinct); ok {
return ReduceCountDistinct, nil
}
if c, ok := c.Args[0].(*influxql.Call); ok {
if c.Name == "distinct" {
return ReduceCountDistinct, nil
}
}
return ReduceSum, nil
case "distinct":
return ReduceDistinct, nil
case "sum":
return ReduceSum, nil
case "mean":
return ReduceMean, nil
case "median":
return ReduceMedian, nil
case "min":
return ReduceMin, nil
case "max":
return ReduceMax, nil
case "spread":
return ReduceSpread, nil
case "stddev":
return ReduceStddev, nil
case "first":
return ReduceFirst, nil
case "last":
return ReduceLast, nil
case "top", "bottom":
return func(values []interface{}) interface{} {
return ReduceTopBottom(values, c)
}, nil
case "percentile":
return func(values []interface{}) interface{} {
return ReducePercentile(values, c)
}, nil
case "derivative", "non_negative_derivative":
// If the arg is another aggregate e.g. derivative(mean(value)), then
// use the map func for that nested aggregate
if fn, ok := c.Args[0].(*influxql.Call); ok {
return initializeReduceFunc(fn)
}
return nil, fmt.Errorf("expected function argument to %s", c.Name)
default:
return nil, fmt.Errorf("function not found: %q", c.Name)
}
}
func initializeUnmarshaller(c *influxql.Call) (unmarshalFunc, error) {
// if c is nil it's a raw data query
if c == nil {
return func(b []byte) (interface{}, error) {
a := make([]*rawQueryMapOutput, 0)
err := json.Unmarshal(b, &a)
return a, err
}, nil
}
// Retrieve marshal function by name
switch c.Name {
case "mean":
return func(b []byte) (interface{}, error) {
var o meanMapOutput
err := json.Unmarshal(b, &o)
return &o, err
}, nil
case "spread":
return func(b []byte) (interface{}, error) {
var o spreadMapOutput
err := json.Unmarshal(b, &o)
return &o, err
}, nil
case "distinct":
return func(b []byte) (interface{}, error) {
var val interfaceValues
err := json.Unmarshal(b, &val)
return val, err
}, nil
case "first":
return func(b []byte) (interface{}, error) {
var o firstLastMapOutput
err := json.Unmarshal(b, &o)
return &o, err
}, nil
case "last":
return func(b []byte) (interface{}, error) {
var o firstLastMapOutput
err := json.Unmarshal(b, &o)
return &o, err
}, nil
case "stddev":
return func(b []byte) (interface{}, error) {
val := make([]float64, 0)
err := json.Unmarshal(b, &val)
return val, err
}, nil
case "median":
return func(b []byte) (interface{}, error) {
a := make([]float64, 0)
err := json.Unmarshal(b, &a)
return a, err
}, nil
default:
return func(b []byte) (interface{}, error) {
var val interface{}
err := json.Unmarshal(b, &val)
return val, err
}, nil
}
}
// MapCount computes the number of values in an iterator.
func MapCount(itr Iterator) interface{} {
n := float64(0)
for k, _ := itr.Next(); k != -1; k, _ = itr.Next() {
n++
}
if n > 0 {
return n
}
return nil
}
type interfaceValues []interface{}
func (d interfaceValues) Len() int { return len(d) }
func (d interfaceValues) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
func (d interfaceValues) Less(i, j int) bool {
cmpt, a, b := typeCompare(d[i], d[j])
cmpv := valueCompare(a, b)
if cmpv == 0 {
return cmpt < 0
}
return cmpv < 0
}
// MapDistinct computes the unique values in an iterator.
func MapDistinct(itr Iterator) interface{} {
var index = make(map[interface{}]struct{})
for time, value := itr.Next(); time != -1; time, value = itr.Next() {
index[value] = struct{}{}
}
if len(index) == 0 {
return nil
}
results := make(interfaceValues, len(index))
var i int
for value, _ := range index {
results[i] = value
i++
}
return results
}
// ReduceDistinct finds the unique values for each key.
func ReduceDistinct(values []interface{}) interface{} {
var index = make(map[interface{}]struct{})
// index distinct values from each mapper
for _, v := range values {
if v == nil {
continue
}
d, ok := v.(interfaceValues)
if !ok {
msg := fmt.Sprintf("expected distinctValues, got: %T", v)
panic(msg)
}
for _, distinctValue := range d {
index[distinctValue] = struct{}{}
}
}
// convert map keys to an array
results := make(interfaceValues, len(index))
var i int
for k, _ := range index {
results[i] = k
i++
}
if len(results) > 0 {
sort.Sort(results)
return results
}
return nil
}
// MapCountDistinct computes the unique count of values in an iterator.
func MapCountDistinct(itr Iterator) interface{} {
var index = make(map[interface{}]struct{})
for time, value := itr.Next(); time != -1; time, value = itr.Next() {
index[value] = struct{}{}
}
if len(index) == 0 {
return nil
}
return index
}
// ReduceCountDistinct finds the unique counts of values.
func ReduceCountDistinct(values []interface{}) interface{} {
var index = make(map[interface{}]struct{})
// index distinct values from each mapper
for _, v := range values {
if v == nil {
continue
}
d, ok := v.(map[interface{}]struct{})
if !ok {
msg := fmt.Sprintf("expected map[interface{}]struct{}, got: %T", v)
panic(msg)
}
for distinctCountValue, _ := range d {
index[distinctCountValue] = struct{}{}
}
}
return len(index)
}
type NumberType int8
const (
Float64Type NumberType = iota
Int64Type
)
// MapSum computes the summation of values in an iterator.
func MapSum(itr Iterator) interface{} {
n := float64(0)
count := 0
var resultType NumberType
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
count++
switch n1 := v.(type) {
case float64:
n += n1
case int64:
n += float64(n1)
resultType = Int64Type
}
}
if count > 0 {
switch resultType {
case Float64Type:
return n
case Int64Type:
return int64(n)
}
}
return nil
}
// ReduceSum computes the sum of values for each key.
func ReduceSum(values []interface{}) interface{} {
var n float64
count := 0
var resultType NumberType
for _, v := range values {
if v == nil {
continue
}
count++
switch n1 := v.(type) {
case float64:
n += n1
case int64:
n += float64(n1)
resultType = Int64Type
}
}
if count > 0 {
switch resultType {
case Float64Type:
return n
case Int64Type:
return int64(n)
}
}
return nil
}
// MapMean computes the count and sum of values in an iterator to be combined by the reducer.
func MapMean(itr Iterator) interface{} {
out := &meanMapOutput{}
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
out.Count++
switch n1 := v.(type) {
case float64:
out.Mean += (n1 - out.Mean) / float64(out.Count)
case int64:
out.Mean += (float64(n1) - out.Mean) / float64(out.Count)
out.ResultType = Int64Type
}
}
if out.Count > 0 {
return out
}
return nil
}
type meanMapOutput struct {
Count int
Mean float64
ResultType NumberType
}
// ReduceMean computes the mean of values for each key.
func ReduceMean(values []interface{}) interface{} {
out := &meanMapOutput{}
var countSum int
for _, v := range values {
if v == nil {
continue
}
val := v.(*meanMapOutput)
countSum = out.Count + val.Count
out.Mean = val.Mean*(float64(val.Count)/float64(countSum)) + out.Mean*(float64(out.Count)/float64(countSum))
out.Count = countSum
}
if out.Count > 0 {
return out.Mean
}
return nil
}
// ReduceMedian computes the median of values
func ReduceMedian(values []interface{}) interface{} {
var data []float64
// Collect all the data points
for _, value := range values {
if value == nil {
continue
}
data = append(data, value.([]float64)...)
}
length := len(data)
if length < 2 {
if length == 0 {
return nil
}
return data[0]
}
middle := length / 2
var sortedRange []float64
if length%2 == 0 {
sortedRange = getSortedRange(data, middle-1, 2)
var low, high = sortedRange[0], sortedRange[1]
return low + (high-low)/2
}
sortedRange = getSortedRange(data, middle, 1)
return sortedRange[0]
}
// getSortedRange returns a sorted subset of data. By using discardLowerRange and discardUpperRange to get the target
// subset (unsorted) and then just sorting that subset, the work can be reduced from O(N lg N), where N is len(data), to
// O(N + count lg count) for the average case
// - O(N) to discard the unwanted items
// - O(count lg count) to sort the count number of extracted items
// This can be useful for:
// - finding the median: getSortedRange(data, middle, 1)
// - finding the top N: getSortedRange(data, len(data) - N, N)
// - finding the bottom N: getSortedRange(data, 0, N)
func getSortedRange(data []float64, start int, count int) []float64 {
out := discardLowerRange(data, start)
k := len(out) - count
if k > 0 {
out = discardUpperRange(out, k)
}
sort.Float64s(out)
return out
}
// discardLowerRange discards the lower k elements of the sorted data set without sorting all the data. Sorting all of
// the data would take O(NlgN), where N is len(data), but partitioning to find the kth largest number is O(N) in the
// average case. The remaining N-k unsorted elements are returned - no kind of ordering is guaranteed on these elements.
func discardLowerRange(data []float64, k int) []float64 {
out := make([]float64, len(data)-k)
i := 0
// discard values lower than the desired range
for k > 0 {
lows, pivotValue, highs := partition(data)
lowLength := len(lows)
if lowLength > k {
// keep all the highs and the pivot
out[i] = pivotValue
i++
copy(out[i:], highs)
i += len(highs)
// iterate over the lows again
data = lows
} else {
// discard all the lows
data = highs
k -= lowLength
if k == 0 {
// if discarded enough lows, keep the pivot
out[i] = pivotValue
i++
} else {
// able to discard the pivot too
k--
}
}
}
copy(out[i:], data)
return out
}
// discardUpperRange discards the upper k elements of the sorted data set without sorting all the data. Sorting all of
// the data would take O(NlgN), where N is len(data), but partitioning to find the kth largest number is O(N) in the
// average case. The remaining N-k unsorted elements are returned - no kind of ordering is guaranteed on these elements.
func discardUpperRange(data []float64, k int) []float64 {
out := make([]float64, len(data)-k)
i := 0
// discard values higher than the desired range
for k > 0 {
lows, pivotValue, highs := partition(data)
highLength := len(highs)
if highLength > k {
// keep all the lows and the pivot
out[i] = pivotValue
i++
copy(out[i:], lows)
i += len(lows)
// iterate over the highs again
data = highs
} else {
// discard all the highs
data = lows
k -= highLength
if k == 0 {
// if discarded enough highs, keep the pivot
out[i] = pivotValue
i++
} else {
// able to discard the pivot too
k--
}
}
}
copy(out[i:], data)
return out
}
// partition takes a list of data, chooses a random pivot index and returns a list of elements lower than the
// pivotValue, the pivotValue, and a list of elements higher than the pivotValue. partition mutates data.
func partition(data []float64) (lows []float64, pivotValue float64, highs []float64) {
length := len(data)
// there are better (more complex) ways to calculate pivotIndex (e.g. median of 3, median of 3 medians) if this
// proves to be inadequate.
pivotIndex := rand.Int() % length
pivotValue = data[pivotIndex]
low, high := 1, length-1
// put the pivot in the first position
data[pivotIndex], data[0] = data[0], data[pivotIndex]
// partition the data around the pivot
for low <= high {
for low <= high && data[low] <= pivotValue {
low++
}
for high >= low && data[high] >= pivotValue {
high--
}
if low < high {
data[low], data[high] = data[high], data[low]
}
}
return data[1:low], pivotValue, data[high+1:]
}
type minMaxMapOut struct {
Val float64
Type NumberType
}
// MapMin collects the values to pass to the reducer
func MapMin(itr Iterator) interface{} {
min := &minMaxMapOut{}
pointsYielded := false
var val float64
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
switch n := v.(type) {
case float64:
val = n
case int64:
val = float64(n)
min.Type = Int64Type
}
// Initialize min
if !pointsYielded {
min.Val = val
pointsYielded = true
}
min.Val = math.Min(min.Val, val)
}
if pointsYielded {
return min
}
return nil
}
// ReduceMin computes the min of value.
func ReduceMin(values []interface{}) interface{} {
min := &minMaxMapOut{}
pointsYielded := false
for _, value := range values {
if value == nil {
continue
}
v, ok := value.(*minMaxMapOut)
if !ok {
continue
}
// Initialize min
if !pointsYielded {
min.Val = v.Val
min.Type = v.Type
pointsYielded = true
}
min.Val = math.Min(min.Val, v.Val)
}
if pointsYielded {
switch min.Type {
case Float64Type:
return min.Val
case Int64Type:
return int64(min.Val)
}
}
return nil
}
// MapMax collects the values to pass to the reducer
func MapMax(itr Iterator) interface{} {
max := &minMaxMapOut{}
pointsYielded := false
var val float64
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
switch n := v.(type) {
case float64:
val = n
case int64:
val = float64(n)
max.Type = Int64Type
}
// Initialize max
if !pointsYielded {
max.Val = val
pointsYielded = true
}
max.Val = math.Max(max.Val, val)
}
if pointsYielded {
return max
}
return nil
}
// ReduceMax computes the max of value.
func ReduceMax(values []interface{}) interface{} {
max := &minMaxMapOut{}
pointsYielded := false
for _, value := range values {
if value == nil {
continue
}
v, ok := value.(*minMaxMapOut)
if !ok {
continue
}
// Initialize max
if !pointsYielded {
max.Val = v.Val
max.Type = v.Type
pointsYielded = true
}
max.Val = math.Max(max.Val, v.Val)
}
if pointsYielded {
switch max.Type {
case Float64Type:
return max.Val
case Int64Type:
return int64(max.Val)
}
}
return nil
}
type spreadMapOutput struct {
Min, Max float64
Type NumberType
}
// MapSpread collects the values to pass to the reducer
func MapSpread(itr Iterator) interface{} {
out := &spreadMapOutput{}
pointsYielded := false
var val float64
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
switch n := v.(type) {
case float64:
val = n
case int64:
val = float64(n)
out.Type = Int64Type
}
// Initialize
if !pointsYielded {
out.Max = val
out.Min = val
pointsYielded = true
}
out.Max = math.Max(out.Max, val)
out.Min = math.Min(out.Min, val)
}
if pointsYielded {
return out
}
return nil
}
// ReduceSpread computes the spread of values.
func ReduceSpread(values []interface{}) interface{} {
result := &spreadMapOutput{}
pointsYielded := false
for _, v := range values {
if v == nil {
continue
}
val := v.(*spreadMapOutput)
// Initialize
if !pointsYielded {
result.Max = val.Max
result.Min = val.Min
result.Type = val.Type
pointsYielded = true
}
result.Max = math.Max(result.Max, val.Max)
result.Min = math.Min(result.Min, val.Min)
}
if pointsYielded {
switch result.Type {
case Float64Type:
return result.Max - result.Min
case Int64Type:
return int64(result.Max - result.Min)
}
}
return nil
}
// MapStddev collects the values to pass to the reducer
func MapStddev(itr Iterator) interface{} {
var values []float64
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
switch n := v.(type) {
case float64:
values = append(values, n)
case int64:
values = append(values, float64(n))
}
}
return values
}
// ReduceStddev computes the stddev of values.
func ReduceStddev(values []interface{}) interface{} {
var data []float64
// Collect all the data points
for _, value := range values {
if value == nil {
continue
}
data = append(data, value.([]float64)...)
}
// If no data or we only have one point, it's nil or undefined
if len(data) < 2 {
return nil
}
// Get the mean
var mean float64
var count int
for _, v := range data {
count++
mean += (v - mean) / float64(count)
}
// Get the variance
var variance float64
for _, v := range data {
dif := v - mean
sq := math.Pow(dif, 2)
variance += sq
}
variance = variance / float64(count-1)
stddev := math.Sqrt(variance)
return stddev
}
type firstLastMapOutput struct {
Time int64
Val interface{}
}
// MapFirst collects the values to pass to the reducer
// This function assumes time ordered input
func MapFirst(itr Iterator) interface{} {
k, v := itr.Next()
if k == -1 {
return nil
}
nextk, nextv := itr.Next()
for nextk == k {
if greaterThan(nextv, v) {
v = nextv
}
nextk, nextv = itr.Next()
}
return &firstLastMapOutput{k, v}
}
// ReduceFirst computes the first of value.
func ReduceFirst(values []interface{}) interface{} {
out := &firstLastMapOutput{}
pointsYielded := false
for _, v := range values {
if v == nil {
continue
}
val := v.(*firstLastMapOutput)
// Initialize first
if !pointsYielded {
out.Time = val.Time
out.Val = val.Val
pointsYielded = true
}
if val.Time < out.Time {
out.Time = val.Time
out.Val = val.Val
} else if val.Time == out.Time && greaterThan(val.Val, out.Val) {
out.Val = val.Val
}
}
if pointsYielded {
return out.Val
}
return nil
}
// MapLast collects the values to pass to the reducer
func MapLast(itr Iterator) interface{} {
out := &firstLastMapOutput{}
pointsYielded := false
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
// Initialize last
if !pointsYielded {
out.Time = k
out.Val = v
pointsYielded = true
}
if k > out.Time {
out.Time = k
out.Val = v
} else if k == out.Time && greaterThan(v, out.Val) {
out.Val = v
}
}
if pointsYielded {
return out
}
return nil
}
// ReduceLast computes the last of value.
func ReduceLast(values []interface{}) interface{} {
out := &firstLastMapOutput{}
pointsYielded := false
for _, v := range values {
if v == nil {
continue
}
val := v.(*firstLastMapOutput)
// Initialize last
if !pointsYielded {
out.Time = val.Time
out.Val = val.Val
pointsYielded = true
}
if val.Time > out.Time {
out.Time = val.Time
out.Val = val.Val
} else if val.Time == out.Time && greaterThan(val.Val, out.Val) {
out.Val = val.Val
}
}
if pointsYielded {
return out.Val
}
return nil
}
type positionOut struct {
points PositionPoints
callArgs []string // ordered args in the call
}
func (p *positionOut) lessKey(a, b *PositionPoint) bool {
t1, t2 := a.Tags, b.Tags
for _, k := range p.callArgs {
if t1[k] != t2[k] {
return t1[k] < t2[k]
}
}
return false
}
// typeCompare compares the types of a and b and returns an arbitrary ordering.
// It returns -1 if type(a) < type(b) , 0 if type(a) == type(b), or 1 if type(a) > type(b), following the strcmp convention
// from C.
//
// If the types are not equal, then it will attempt to coerce them to floating point and return them in the last 2 arguments.
// If the type cannot be coerced to floating point, it is returned unaltered.
func typeCompare(a, b interface{}) (int, interface{}, interface{}) {
const (
stringWeight = iota
boolWeight
intWeight
floatWeight
)
va := reflect.ValueOf(a)
vb := reflect.ValueOf(b)
vakind := va.Type().Kind()
vbkind := vb.Type().Kind()
// same kind. Ordering is dependent on value
if vakind == vbkind {
return 0, a, b
}
wa, a := inferFloat(va)
wb, b := inferFloat(vb)
if wa < wb {
return -1, a, b
} else if wa == wb {
return 0, a, b
}
return 1, a, b
}
// returns a weighting and if applicable, the value coerced to a float
func inferFloat(v reflect.Value) (weight int, value interface{}) {
const (
stringWeight = iota
boolWeight
intWeight
floatWeight
)
kind := v.Kind()
switch kind {
case reflect.Uint64, reflect.Uint32, reflect.Uint16, reflect.Uint8:
return intWeight, float64(v.Uint())
case reflect.Int64, reflect.Int32, reflect.Int16, reflect.Int8:
return intWeight, float64(v.Int())
case reflect.Float64, reflect.Float32:
return floatWeight, v.Float()
case reflect.Bool:
return boolWeight, v.Interface()
case reflect.String:
return stringWeight, v.Interface()
}
panic(fmt.Sprintf("interfaceValues.Less - unreachable code; type was %T", v.Interface()))
}
func cmpFloat(a, b float64) int {
if a == b {
return 0
} else if a < b {
return -1
}
return 1
}
func cmpInt(a, b int64) int {
if a == b {
return 0
} else if a < b {
return -1
}
return 1
}
func cmpUint(a, b uint64) int {
if a == b {
return 0
} else if a < b {
return -1
}
return 1
}
// valueCompare returns -1 if a < b , 0 if a == b, or 1 if a > b
// If the interfaces are 2 different types, then 0 is returned
func valueCompare(a, b interface{}) int {
if reflect.TypeOf(a).Kind() != reflect.TypeOf(b).Kind() {
return 0
}
// compare by float64/int64 first as that is the most likely match
{
d1, ok1 := a.(float64)
d2, ok2 := b.(float64)
if ok1 && ok2 {
return cmpFloat(d1, d2)
}
}
{
d1, ok1 := a.(int64)
d2, ok2 := b.(int64)
if ok1 && ok2 {
return cmpInt(d1, d2)
}
}
// compare by every numeric type left
{
d1, ok1 := a.(float32)
d2, ok2 := b.(float32)
if ok1 && ok2 {
return cmpFloat(float64(d1), float64(d2))
}
}
{
d1, ok1 := a.(uint64)
d2, ok2 := b.(uint64)
if ok1 && ok2 {
return cmpUint(d1, d2)
}
}
{
d1, ok1 := a.(uint32)
d2, ok2 := b.(uint32)
if ok1 && ok2 {
return cmpUint(uint64(d1), uint64(d2))
}
}
{
d1, ok1 := a.(uint16)
d2, ok2 := b.(uint16)
if ok1 && ok2 {
return cmpUint(uint64(d1), uint64(d2))
}
}
{
d1, ok1 := a.(uint8)
d2, ok2 := b.(uint8)
if ok1 && ok2 {
return cmpUint(uint64(d1), uint64(d2))
}
}
{
d1, ok1 := a.(int32)
d2, ok2 := b.(int32)
if ok1 && ok2 {
return cmpInt(int64(d1), int64(d2))
}
}
{
d1, ok1 := a.(int16)
d2, ok2 := b.(int16)
if ok1 && ok2 {
return cmpInt(int64(d1), int64(d2))
}
}
{
d1, ok1 := a.(int8)
d2, ok2 := b.(int8)
if ok1 && ok2 {
return cmpInt(int64(d1), int64(d2))
}
}
{
d1, ok1 := a.(bool)
d2, ok2 := b.(bool)
if ok1 && ok2 {
if d1 == d2 {
return 0
} else if d1 == true && d2 == false {
return 1
}
return -1
}
}
{
d1, ok1 := a.(string)
d2, ok2 := b.(string)
if ok1 && ok2 {
return strings.Compare(d1, d2)
}
}
panic(fmt.Sprintf("unreachable code; types were %T, %T", a, b))
}
type PositionPoints []PositionPoint
type PositionPoint struct {
Time int64
Value interface{}
Tags map[string]string
}
type topBottomMapOut struct {
*positionOut
bottom bool
}
func (t *topBottomMapOut) Len() int { return len(t.points) }
func (t *topBottomMapOut) Swap(i, j int) { t.points[i], t.points[j] = t.points[j], t.points[i] }
func (t *topBottomMapOut) Less(i, j int) bool {
return t.positionPointLess(&t.points[i], &t.points[j])
}
func (t *topBottomMapOut) positionPointLess(pa, pb *PositionPoint) bool {
// old C trick makes this code easier to read. Imagine
// that the OP in "cmp(i, j) OP 0" is the comparison you want
// between i and j
cmpt, a, b := typeCompare(pa.Value, pb.Value)
cmpv := valueCompare(a, b)
if cmpv != 0 {
if t.bottom {
return cmpv > 0
}
return cmpv < 0
}
if cmpt != 0 {
return cmpt < 0
}
k1, k2 := pa.Time, pb.Time
if k1 != k2 {
return k1 > k2
}
return !t.lessKey(pa, pb)
}
// We never use this function, so make it a no-op.
func (t *topBottomMapOut) Push(i interface{}) {
panic("someone used the function")
}
// this function doesn't return anything meaningful, since we don't look at the
// return value and we don't want to allocate for generating an interface.
func (t *topBottomMapOut) Pop() interface{} {
t.points = t.points[:len(t.points)-1]
return nil
}
func (t *topBottomMapOut) insert(p PositionPoint) {
t.points[0] = p
heap.Fix(t, 0)
}
type topBottomReduceOut struct {
positionOut
bottom bool
}
func (t topBottomReduceOut) Len() int { return len(t.points) }
func (t topBottomReduceOut) Swap(i, j int) { t.points[i], t.points[j] = t.points[j], t.points[i] }
func (t topBottomReduceOut) Less(i, j int) bool {
// Now sort by time first, not value
k1, k2 := t.points[i].Time, t.points[j].Time
if k1 != k2 {
return k1 < k2
}
cmpt, a, b := typeCompare(t.points[i].Value, t.points[j].Value)
cmpv := valueCompare(a, b)
if cmpv != 0 {
if t.bottom {
return cmpv < 0
}
return cmpv > 0
}
if cmpt != 0 {
return cmpt < 0
}
return t.lessKey(&t.points[i], &t.points[j])
}
// callArgs will get any additional field/tag names that may be needed to sort with
// it is important to maintain the order of these that they were asked for in the call
// for sorting purposes
func topCallArgs(c *influxql.Call) []string {
var names []string
for _, v := range c.Args[1 : len(c.Args)-1] {
if f, ok := v.(*influxql.VarRef); ok {
names = append(names, f.Val)
}
}
return names
}
func tagkeytop(args []string, fields map[string]interface{}, keys map[string]string) string {
key := ""
for _, a := range args {
if v, ok := fields[a]; ok {
key += a + ":" + fmt.Sprintf("%v", v) + ","
continue
}
if v, ok := keys[a]; ok {
key += a + ":" + v + ","
continue
}
}
return key
}
// map iterator. We need this for the top
// query, but luckily that doesn't require ordered
// iteration, so we can fake it
type mapIter struct {
m map[string]PositionPoint
currTags map[string]string
tmin int64
}
func (m *mapIter) TMin() int64 {
return m.tmin
}
func (m *mapIter) Tags() map[string]string {
return m.currTags
}
func (m *mapIter) Next() (time int64, value interface{}) {
// this is a bit ugly, but can't think of any other way that doesn't involve dumping
// the entire map to an array
for key, p := range m.m {
m.currTags = p.Tags
time = p.Time
value = p.Value
delete(m.m, key)
return
}
return -1, nil
}
// MapTopBottom emits the top/bottom data points for each group by interval
func MapTopBottom(itr Iterator, c *influxql.Call) interface{} {
// Capture the limit if it was specified in the call
lit, _ := c.Args[len(c.Args)-1].(*influxql.NumberLiteral)
limit := int(lit.Val)
out := positionOut{callArgs: topCallArgs(c)}
out.points = make([]PositionPoint, 0, limit)
minheap := topBottomMapOut{
&out,
c.Name == "bottom",
}
tagmap := make(map[string]PositionPoint)
// throughout this function, we refer to max and top. This is by the ordering specified by
// minheap, not the ordering based on value. Since this function handles both top and bottom
// max can be the lowest valued entry.
// buffer so we don't allocate every time through
var pp PositionPoint
if len(c.Args) > 2 {
// this is a tag aggregating query.
// For each unique permutation of the tags given,
// select the max and then fall through to select top of those
// points
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
pp = PositionPoint{k, v, itr.Tags()}
callArgs := c.Fields()
tags := itr.Tags()
// TODO in the future we need to send in fields as well
// this will allow a user to query on both fields and tags
// fields will take the priority over tags if there is a name collision
key := tagkeytop(callArgs, nil, tags)
p, ok := tagmap[key]
if !ok || minheap.positionPointLess(&p, &pp) {
tagmap[key] = pp
}
}
itr = &mapIter{
m: tagmap,
tmin: itr.TMin(),
}
}
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
t := k
if bt := itr.TMin(); bt > -1 {
t = bt
}
if len(out.points) < limit {
out.points = append(out.points, PositionPoint{t, v, itr.Tags()})
if len(out.points) == limit {
heap.Init(&minheap)
}
} else {
// we're over the limit, so find out if we're bigger than the
// smallest point in the set and eject it if we are
minval := &out.points[0]
pp = PositionPoint{t, v, itr.Tags()}
if minheap.positionPointLess(minval, &pp) {
minheap.insert(pp)
}
}
}
// should only happen on empty iterator.
if len(out.points) == 0 {
return nil
} else if len(out.points) < limit {
// it would be as fast to just sort regularly here,
// but falling down to the heapsort will mean we can get
// rid of another sort order.
heap.Init(&minheap)
}
// minheap should now contain the largest/smallest values that were encountered
// during iteration.
//
// we want these values in ascending sorted order. We can achieve this by iteratively
// removing the lowest element and putting it at the end of the array. This is analogous
// to a heap sort.
//
// computer science is fun!
result := out.points
for len(out.points) > 0 {
p := out.points[0]
heap.Pop(&minheap)
// reslice so that we can get to the element just after the heap
endslice := out.points[:len(out.points)+1]
endslice[len(endslice)-1] = p
}
// the ascending order is now in the result slice
return result
}
// ReduceTop computes the top values for each key.
// This function assumes that its inputs are in sorted ascending order.
func ReduceTopBottom(values []interface{}, c *influxql.Call) interface{} {
lit, _ := c.Args[len(c.Args)-1].(*influxql.NumberLiteral)
limit := int(lit.Val)
out := positionOut{callArgs: topCallArgs(c)}
minheap := topBottomMapOut{&out, c.Name == "bottom"}
results := make([]PositionPoints, 0, len(values))
out.points = make([]PositionPoint, 0, limit)
for _, v := range values {
if v == nil {
continue
}
o, ok := v.(PositionPoints)
if ok {
results = append(results, o)
}
}
// These ranges are all in sorted ascending order
// so we can grab the top value out of all of them
// to figure out the top X ones.
for i := 0; i < limit; i++ {
var max *PositionPoint
whichselected := -1
for iter, v := range results {
if len(v) > 0 && (max == nil || minheap.positionPointLess(max, &v[0])) {
max = &v[0]
whichselected = iter
}
}
if whichselected == -1 {
// none of the points have any values
// so we can return what we have now
sort.Sort(topBottomReduceOut{out, c.Name == "bottom"})
return out.points
}
v := results[whichselected]
out.points = append(out.points, v[0])
results[whichselected] = v[1:]
}
// now we need to resort the tops by time
sort.Sort(topBottomReduceOut{out, c.Name == "bottom"})
return out.points
}
// MapEcho emits the data points for each group by interval
func MapEcho(itr Iterator) interface{} {
var values []interface{}
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
values = append(values, v)
}
return values
}
// ReducePercentile computes the percentile of values for each key.
func ReducePercentile(values []interface{}, c *influxql.Call) interface{} {
// Checks that this arg exists and is a valid type are done in the parsing validation
// and have test coverage there
lit, _ := c.Args[1].(*influxql.NumberLiteral)
percentile := lit.Val
var allValues []float64
for _, v := range values {
if v == nil {
continue
}
vals := v.([]interface{})
for _, v := range vals {
switch v.(type) {
case int64:
allValues = append(allValues, float64(v.(int64)))
case float64:
allValues = append(allValues, v.(float64))
}
}
}
sort.Float64s(allValues)
length := len(allValues)
index := int(math.Floor(float64(length)*percentile/100.0+0.5)) - 1
if index < 0 || index >= len(allValues) {
return nil
}
return allValues[index]
}
// IsNumeric returns whether a given aggregate can only be run on numeric fields.
func IsNumeric(c *influxql.Call) bool {
switch c.Name {
case "count", "first", "last", "distinct":
return false
default:
return true
}
}
// MapRawQuery is for queries without aggregates
func MapRawQuery(itr Iterator) interface{} {
var values []*rawQueryMapOutput
for k, v := itr.Next(); k != -1; k, v = itr.Next() {
val := &rawQueryMapOutput{k, v}
values = append(values, val)
}
return values
}
type rawQueryMapOutput struct {
Time int64
Values interface{}
}
func (r *rawQueryMapOutput) String() string {
return fmt.Sprintf("{%#v %#v}", r.Time, r.Values)
}
type rawOutputs []*rawQueryMapOutput
func (a rawOutputs) Len() int { return len(a) }
func (a rawOutputs) Less(i, j int) bool { return a[i].Time < a[j].Time }
func (a rawOutputs) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func greaterThan(a, b interface{}) bool {
switch t := a.(type) {
case int64:
return t > b.(int64)
case float64:
return t > b.(float64)
case string:
return t > b.(string)
case bool:
return t == true
}
return false
}