2464 lines
60 KiB
Go
2464 lines
60 KiB
Go
// Package models implements basic objects used throughout the TICK stack.
|
|
package models // import "github.com/influxdata/influxdb/models"
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
|
|
"github.com/influxdata/influxdb/pkg/escape"
|
|
)
|
|
|
|
type escapeSet struct {
|
|
k [1]byte
|
|
esc [2]byte
|
|
}
|
|
|
|
var (
|
|
measurementEscapeCodes = [...]escapeSet{
|
|
{k: [1]byte{','}, esc: [2]byte{'\\', ','}},
|
|
{k: [1]byte{' '}, esc: [2]byte{'\\', ' '}},
|
|
}
|
|
|
|
tagEscapeCodes = [...]escapeSet{
|
|
{k: [1]byte{','}, esc: [2]byte{'\\', ','}},
|
|
{k: [1]byte{' '}, esc: [2]byte{'\\', ' '}},
|
|
{k: [1]byte{'='}, esc: [2]byte{'\\', '='}},
|
|
}
|
|
|
|
// ErrPointMustHaveAField is returned when operating on a point that does not have any fields.
|
|
ErrPointMustHaveAField = errors.New("point without fields is unsupported")
|
|
|
|
// ErrInvalidNumber is returned when a number is expected but not provided.
|
|
ErrInvalidNumber = errors.New("invalid number")
|
|
|
|
// ErrInvalidPoint is returned when a point cannot be parsed correctly.
|
|
ErrInvalidPoint = errors.New("point is invalid")
|
|
)
|
|
|
|
const (
|
|
// MaxKeyLength is the largest allowed size of the combined measurement and tag keys.
|
|
MaxKeyLength = 65535
|
|
)
|
|
|
|
// enableUint64Support will enable uint64 support if set to true.
|
|
var enableUint64Support = false
|
|
|
|
// EnableUintSupport manually enables uint support for the point parser.
|
|
// This function will be removed in the future and only exists for unit tests during the
|
|
// transition.
|
|
func EnableUintSupport() {
|
|
enableUint64Support = true
|
|
}
|
|
|
|
// Point defines the values that will be written to the database.
|
|
type Point interface {
|
|
// Name return the measurement name for the point.
|
|
Name() []byte
|
|
|
|
// SetName updates the measurement name for the point.
|
|
SetName(string)
|
|
|
|
// Tags returns the tag set for the point.
|
|
Tags() Tags
|
|
|
|
// ForEachTag iterates over each tag invoking fn. If fn return false, iteration stops.
|
|
ForEachTag(fn func(k, v []byte) bool)
|
|
|
|
// AddTag adds or replaces a tag value for a point.
|
|
AddTag(key, value string)
|
|
|
|
// SetTags replaces the tags for the point.
|
|
SetTags(tags Tags)
|
|
|
|
// HasTag returns true if the tag exists for the point.
|
|
HasTag(tag []byte) bool
|
|
|
|
// Fields returns the fields for the point.
|
|
Fields() (Fields, error)
|
|
|
|
// Time return the timestamp for the point.
|
|
Time() time.Time
|
|
|
|
// SetTime updates the timestamp for the point.
|
|
SetTime(t time.Time)
|
|
|
|
// UnixNano returns the timestamp of the point as nanoseconds since Unix epoch.
|
|
UnixNano() int64
|
|
|
|
// HashID returns a non-cryptographic checksum of the point's key.
|
|
HashID() uint64
|
|
|
|
// Key returns the key (measurement joined with tags) of the point.
|
|
Key() []byte
|
|
|
|
// String returns a string representation of the point. If there is a
|
|
// timestamp associated with the point then it will be specified with the default
|
|
// precision of nanoseconds.
|
|
String() string
|
|
|
|
// MarshalBinary returns a binary representation of the point.
|
|
MarshalBinary() ([]byte, error)
|
|
|
|
// PrecisionString returns a string representation of the point. If there
|
|
// is a timestamp associated with the point then it will be specified in the
|
|
// given unit.
|
|
PrecisionString(precision string) string
|
|
|
|
// RoundedString returns a string representation of the point. If there
|
|
// is a timestamp associated with the point, then it will be rounded to the
|
|
// given duration.
|
|
RoundedString(d time.Duration) string
|
|
|
|
// Split will attempt to return multiple points with the same timestamp whose
|
|
// string representations are no longer than size. Points with a single field or
|
|
// a point without a timestamp may exceed the requested size.
|
|
Split(size int) []Point
|
|
|
|
// Round will round the timestamp of the point to the given duration.
|
|
Round(d time.Duration)
|
|
|
|
// StringSize returns the length of the string that would be returned by String().
|
|
StringSize() int
|
|
|
|
// AppendString appends the result of String() to the provided buffer and returns
|
|
// the result, potentially reducing string allocations.
|
|
AppendString(buf []byte) []byte
|
|
|
|
// FieldIterator retuns a FieldIterator that can be used to traverse the
|
|
// fields of a point without constructing the in-memory map.
|
|
FieldIterator() FieldIterator
|
|
}
|
|
|
|
// FieldType represents the type of a field.
|
|
type FieldType int
|
|
|
|
const (
|
|
// Integer indicates the field's type is integer.
|
|
Integer FieldType = iota
|
|
|
|
// Float indicates the field's type is float.
|
|
Float
|
|
|
|
// Boolean indicates the field's type is boolean.
|
|
Boolean
|
|
|
|
// String indicates the field's type is string.
|
|
String
|
|
|
|
// Empty is used to indicate that there is no field.
|
|
Empty
|
|
|
|
// Unsigned indicates the field's type is an unsigned integer.
|
|
Unsigned
|
|
)
|
|
|
|
// FieldIterator provides a low-allocation interface to iterate through a point's fields.
|
|
type FieldIterator interface {
|
|
// Next indicates whether there any fields remaining.
|
|
Next() bool
|
|
|
|
// FieldKey returns the key of the current field.
|
|
FieldKey() []byte
|
|
|
|
// Type returns the FieldType of the current field.
|
|
Type() FieldType
|
|
|
|
// StringValue returns the string value of the current field.
|
|
StringValue() string
|
|
|
|
// IntegerValue returns the integer value of the current field.
|
|
IntegerValue() (int64, error)
|
|
|
|
// UnsignedValue returns the unsigned value of the current field.
|
|
UnsignedValue() (uint64, error)
|
|
|
|
// BooleanValue returns the boolean value of the current field.
|
|
BooleanValue() (bool, error)
|
|
|
|
// FloatValue returns the float value of the current field.
|
|
FloatValue() (float64, error)
|
|
|
|
// Reset resets the iterator to its initial state.
|
|
Reset()
|
|
}
|
|
|
|
// Points represents a sortable list of points by timestamp.
|
|
type Points []Point
|
|
|
|
// Len implements sort.Interface.
|
|
func (a Points) Len() int { return len(a) }
|
|
|
|
// Less implements sort.Interface.
|
|
func (a Points) Less(i, j int) bool { return a[i].Time().Before(a[j].Time()) }
|
|
|
|
// Swap implements sort.Interface.
|
|
func (a Points) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
|
|
|
// point is the default implementation of Point.
|
|
type point struct {
|
|
time time.Time
|
|
|
|
// text encoding of measurement and tags
|
|
// key must always be stored sorted by tags, if the original line was not sorted,
|
|
// we need to resort it
|
|
key []byte
|
|
|
|
// text encoding of field data
|
|
fields []byte
|
|
|
|
// text encoding of timestamp
|
|
ts []byte
|
|
|
|
// cached version of parsed fields from data
|
|
cachedFields map[string]interface{}
|
|
|
|
// cached version of parsed name from key
|
|
cachedName string
|
|
|
|
// cached version of parsed tags
|
|
cachedTags Tags
|
|
|
|
it fieldIterator
|
|
}
|
|
|
|
// type assertions
|
|
var (
|
|
_ Point = (*point)(nil)
|
|
_ FieldIterator = (*point)(nil)
|
|
)
|
|
|
|
const (
|
|
// the number of characters for the largest possible int64 (9223372036854775807)
|
|
maxInt64Digits = 19
|
|
|
|
// the number of characters for the smallest possible int64 (-9223372036854775808)
|
|
minInt64Digits = 20
|
|
|
|
// the number of characters for the largest possible uint64 (18446744073709551615)
|
|
maxUint64Digits = 20
|
|
|
|
// the number of characters required for the largest float64 before a range check
|
|
// would occur during parsing
|
|
maxFloat64Digits = 25
|
|
|
|
// the number of characters required for smallest float64 before a range check occur
|
|
// would occur during parsing
|
|
minFloat64Digits = 27
|
|
)
|
|
|
|
// ParsePoints returns a slice of Points from a text representation of a point
|
|
// with each point separated by newlines. If any points fail to parse, a non-nil error
|
|
// will be returned in addition to the points that parsed successfully.
|
|
func ParsePoints(buf []byte) ([]Point, error) {
|
|
return ParsePointsWithPrecision(buf, time.Now().UTC(), "n")
|
|
}
|
|
|
|
// ParsePointsString is identical to ParsePoints but accepts a string.
|
|
func ParsePointsString(buf string) ([]Point, error) {
|
|
return ParsePoints([]byte(buf))
|
|
}
|
|
|
|
// ParseKey returns the measurement name and tags from a point.
|
|
//
|
|
// NOTE: to minimize heap allocations, the returned Tags will refer to subslices of buf.
|
|
// This can have the unintended effect preventing buf from being garbage collected.
|
|
func ParseKey(buf []byte) (string, Tags) {
|
|
name, tags := ParseKeyBytes(buf)
|
|
return string(name), tags
|
|
}
|
|
|
|
func ParseKeyBytes(buf []byte) ([]byte, Tags) {
|
|
return ParseKeyBytesWithTags(buf, nil)
|
|
}
|
|
|
|
func ParseKeyBytesWithTags(buf []byte, tags Tags) ([]byte, Tags) {
|
|
// Ignore the error because scanMeasurement returns "missing fields" which we ignore
|
|
// when just parsing a key
|
|
state, i, _ := scanMeasurement(buf, 0)
|
|
|
|
var name []byte
|
|
if state == tagKeyState {
|
|
tags = parseTags(buf, tags)
|
|
// scanMeasurement returns the location of the comma if there are tags, strip that off
|
|
name = buf[:i-1]
|
|
} else {
|
|
name = buf[:i]
|
|
}
|
|
return unescapeMeasurement(name), tags
|
|
}
|
|
|
|
func ParseTags(buf []byte) Tags {
|
|
return parseTags(buf, nil)
|
|
}
|
|
|
|
func ParseName(buf []byte) []byte {
|
|
// Ignore the error because scanMeasurement returns "missing fields" which we ignore
|
|
// when just parsing a key
|
|
state, i, _ := scanMeasurement(buf, 0)
|
|
var name []byte
|
|
if state == tagKeyState {
|
|
name = buf[:i-1]
|
|
} else {
|
|
name = buf[:i]
|
|
}
|
|
|
|
return unescapeMeasurement(name)
|
|
}
|
|
|
|
// ParsePointsWithPrecision is similar to ParsePoints, but allows the
|
|
// caller to provide a precision for time.
|
|
//
|
|
// NOTE: to minimize heap allocations, the returned Points will refer to subslices of buf.
|
|
// This can have the unintended effect preventing buf from being garbage collected.
|
|
func ParsePointsWithPrecision(buf []byte, defaultTime time.Time, precision string) ([]Point, error) {
|
|
points := make([]Point, 0, bytes.Count(buf, []byte{'\n'})+1)
|
|
var (
|
|
pos int
|
|
block []byte
|
|
failed []string
|
|
)
|
|
for pos < len(buf) {
|
|
pos, block = scanLine(buf, pos)
|
|
pos++
|
|
|
|
if len(block) == 0 {
|
|
continue
|
|
}
|
|
|
|
// lines which start with '#' are comments
|
|
start := skipWhitespace(block, 0)
|
|
|
|
// If line is all whitespace, just skip it
|
|
if start >= len(block) {
|
|
continue
|
|
}
|
|
|
|
if block[start] == '#' {
|
|
continue
|
|
}
|
|
|
|
// strip the newline if one is present
|
|
if block[len(block)-1] == '\n' {
|
|
block = block[:len(block)-1]
|
|
}
|
|
|
|
pt, err := parsePoint(block[start:], defaultTime, precision)
|
|
if err != nil {
|
|
failed = append(failed, fmt.Sprintf("unable to parse '%s': %v", string(block[start:]), err))
|
|
} else {
|
|
points = append(points, pt)
|
|
}
|
|
|
|
}
|
|
if len(failed) > 0 {
|
|
return points, fmt.Errorf("%s", strings.Join(failed, "\n"))
|
|
}
|
|
return points, nil
|
|
|
|
}
|
|
|
|
func parsePoint(buf []byte, defaultTime time.Time, precision string) (Point, error) {
|
|
// scan the first block which is measurement[,tag1=value1,tag2=value=2...]
|
|
pos, key, err := scanKey(buf, 0)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// measurement name is required
|
|
if len(key) == 0 {
|
|
return nil, fmt.Errorf("missing measurement")
|
|
}
|
|
|
|
if len(key) > MaxKeyLength {
|
|
return nil, fmt.Errorf("max key length exceeded: %v > %v", len(key), MaxKeyLength)
|
|
}
|
|
|
|
// scan the second block is which is field1=value1[,field2=value2,...]
|
|
pos, fields, err := scanFields(buf, pos)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// at least one field is required
|
|
if len(fields) == 0 {
|
|
return nil, fmt.Errorf("missing fields")
|
|
}
|
|
|
|
var maxKeyErr error
|
|
err = walkFields(fields, func(k, v []byte) bool {
|
|
if sz := seriesKeySize(key, k); sz > MaxKeyLength {
|
|
maxKeyErr = fmt.Errorf("max key length exceeded: %v > %v", sz, MaxKeyLength)
|
|
return false
|
|
}
|
|
return true
|
|
})
|
|
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if maxKeyErr != nil {
|
|
return nil, maxKeyErr
|
|
}
|
|
|
|
// scan the last block which is an optional integer timestamp
|
|
pos, ts, err := scanTime(buf, pos)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pt := &point{
|
|
key: key,
|
|
fields: fields,
|
|
ts: ts,
|
|
}
|
|
|
|
if len(ts) == 0 {
|
|
pt.time = defaultTime
|
|
pt.SetPrecision(precision)
|
|
} else {
|
|
ts, err := parseIntBytes(ts, 10, 64)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
pt.time, err = SafeCalcTime(ts, precision)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Determine if there are illegal non-whitespace characters after the
|
|
// timestamp block.
|
|
for pos < len(buf) {
|
|
if buf[pos] != ' ' {
|
|
return nil, ErrInvalidPoint
|
|
}
|
|
pos++
|
|
}
|
|
}
|
|
return pt, nil
|
|
}
|
|
|
|
// GetPrecisionMultiplier will return a multiplier for the precision specified.
|
|
func GetPrecisionMultiplier(precision string) int64 {
|
|
d := time.Nanosecond
|
|
switch precision {
|
|
case "u":
|
|
d = time.Microsecond
|
|
case "ms":
|
|
d = time.Millisecond
|
|
case "s":
|
|
d = time.Second
|
|
case "m":
|
|
d = time.Minute
|
|
case "h":
|
|
d = time.Hour
|
|
}
|
|
return int64(d)
|
|
}
|
|
|
|
// scanKey scans buf starting at i for the measurement and tag portion of the point.
|
|
// It returns the ending position and the byte slice of key within buf. If there
|
|
// are tags, they will be sorted if they are not already.
|
|
func scanKey(buf []byte, i int) (int, []byte, error) {
|
|
start := skipWhitespace(buf, i)
|
|
|
|
i = start
|
|
|
|
// Determines whether the tags are sort, assume they are
|
|
sorted := true
|
|
|
|
// indices holds the indexes within buf of the start of each tag. For example,
|
|
// a buf of 'cpu,host=a,region=b,zone=c' would have indices slice of [4,11,20]
|
|
// which indicates that the first tag starts at buf[4], seconds at buf[11], and
|
|
// last at buf[20]
|
|
indices := make([]int, 100)
|
|
|
|
// tracks how many commas we've seen so we know how many values are indices.
|
|
// Since indices is an arbitrarily large slice,
|
|
// we need to know how many values in the buffer are in use.
|
|
commas := 0
|
|
|
|
// First scan the Point's measurement.
|
|
state, i, err := scanMeasurement(buf, i)
|
|
if err != nil {
|
|
return i, buf[start:i], err
|
|
}
|
|
|
|
// Optionally scan tags if needed.
|
|
if state == tagKeyState {
|
|
i, commas, indices, err = scanTags(buf, i, indices)
|
|
if err != nil {
|
|
return i, buf[start:i], err
|
|
}
|
|
}
|
|
|
|
// Now we know where the key region is within buf, and the location of tags, we
|
|
// need to determine if duplicate tags exist and if the tags are sorted. This iterates
|
|
// over the list comparing each tag in the sequence with each other.
|
|
for j := 0; j < commas-1; j++ {
|
|
// get the left and right tags
|
|
_, left := scanTo(buf[indices[j]:indices[j+1]-1], 0, '=')
|
|
_, right := scanTo(buf[indices[j+1]:indices[j+2]-1], 0, '=')
|
|
|
|
// If left is greater than right, the tags are not sorted. We do not have to
|
|
// continue because the short path no longer works.
|
|
// If the tags are equal, then there are duplicate tags, and we should abort.
|
|
// If the tags are not sorted, this pass may not find duplicate tags and we
|
|
// need to do a more exhaustive search later.
|
|
if cmp := bytes.Compare(left, right); cmp > 0 {
|
|
sorted = false
|
|
break
|
|
} else if cmp == 0 {
|
|
return i, buf[start:i], fmt.Errorf("duplicate tags")
|
|
}
|
|
}
|
|
|
|
// If the tags are not sorted, then sort them. This sort is inline and
|
|
// uses the tag indices we created earlier. The actual buffer is not sorted, the
|
|
// indices are using the buffer for value comparison. After the indices are sorted,
|
|
// the buffer is reconstructed from the sorted indices.
|
|
if !sorted && commas > 0 {
|
|
// Get the measurement name for later
|
|
measurement := buf[start : indices[0]-1]
|
|
|
|
// Sort the indices
|
|
indices := indices[:commas]
|
|
insertionSort(0, commas, buf, indices)
|
|
|
|
// Create a new key using the measurement and sorted indices
|
|
b := make([]byte, len(buf[start:i]))
|
|
pos := copy(b, measurement)
|
|
for _, i := range indices {
|
|
b[pos] = ','
|
|
pos++
|
|
_, v := scanToSpaceOr(buf, i, ',')
|
|
pos += copy(b[pos:], v)
|
|
}
|
|
|
|
// Check again for duplicate tags now that the tags are sorted.
|
|
for j := 0; j < commas-1; j++ {
|
|
// get the left and right tags
|
|
_, left := scanTo(buf[indices[j]:], 0, '=')
|
|
_, right := scanTo(buf[indices[j+1]:], 0, '=')
|
|
|
|
// If the tags are equal, then there are duplicate tags, and we should abort.
|
|
// If the tags are not sorted, this pass may not find duplicate tags and we
|
|
// need to do a more exhaustive search later.
|
|
if bytes.Equal(left, right) {
|
|
return i, b, fmt.Errorf("duplicate tags")
|
|
}
|
|
}
|
|
|
|
return i, b, nil
|
|
}
|
|
|
|
return i, buf[start:i], nil
|
|
}
|
|
|
|
// The following constants allow us to specify which state to move to
|
|
// next, when scanning sections of a Point.
|
|
const (
|
|
tagKeyState = iota
|
|
tagValueState
|
|
fieldsState
|
|
)
|
|
|
|
// scanMeasurement examines the measurement part of a Point, returning
|
|
// the next state to move to, and the current location in the buffer.
|
|
func scanMeasurement(buf []byte, i int) (int, int, error) {
|
|
// Check first byte of measurement, anything except a comma is fine.
|
|
// It can't be a space, since whitespace is stripped prior to this
|
|
// function call.
|
|
if i >= len(buf) || buf[i] == ',' {
|
|
return -1, i, fmt.Errorf("missing measurement")
|
|
}
|
|
|
|
for {
|
|
i++
|
|
if i >= len(buf) {
|
|
// cpu
|
|
return -1, i, fmt.Errorf("missing fields")
|
|
}
|
|
|
|
if buf[i-1] == '\\' {
|
|
// Skip character (it's escaped).
|
|
continue
|
|
}
|
|
|
|
// Unescaped comma; move onto scanning the tags.
|
|
if buf[i] == ',' {
|
|
return tagKeyState, i + 1, nil
|
|
}
|
|
|
|
// Unescaped space; move onto scanning the fields.
|
|
if buf[i] == ' ' {
|
|
// cpu value=1.0
|
|
return fieldsState, i, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// scanTags examines all the tags in a Point, keeping track of and
|
|
// returning the updated indices slice, number of commas and location
|
|
// in buf where to start examining the Point fields.
|
|
func scanTags(buf []byte, i int, indices []int) (int, int, []int, error) {
|
|
var (
|
|
err error
|
|
commas int
|
|
state = tagKeyState
|
|
)
|
|
|
|
for {
|
|
switch state {
|
|
case tagKeyState:
|
|
// Grow our indices slice if we have too many tags.
|
|
if commas >= len(indices) {
|
|
newIndics := make([]int, cap(indices)*2)
|
|
copy(newIndics, indices)
|
|
indices = newIndics
|
|
}
|
|
indices[commas] = i
|
|
commas++
|
|
|
|
i, err = scanTagsKey(buf, i)
|
|
state = tagValueState // tag value always follows a tag key
|
|
case tagValueState:
|
|
state, i, err = scanTagsValue(buf, i)
|
|
case fieldsState:
|
|
indices[commas] = i + 1
|
|
return i, commas, indices, nil
|
|
}
|
|
|
|
if err != nil {
|
|
return i, commas, indices, err
|
|
}
|
|
}
|
|
}
|
|
|
|
// scanTagsKey scans each character in a tag key.
|
|
func scanTagsKey(buf []byte, i int) (int, error) {
|
|
// First character of the key.
|
|
if i >= len(buf) || buf[i] == ' ' || buf[i] == ',' || buf[i] == '=' {
|
|
// cpu,{'', ' ', ',', '='}
|
|
return i, fmt.Errorf("missing tag key")
|
|
}
|
|
|
|
// Examine each character in the tag key until we hit an unescaped
|
|
// equals (the tag value), or we hit an error (i.e., unescaped
|
|
// space or comma).
|
|
for {
|
|
i++
|
|
|
|
// Either we reached the end of the buffer or we hit an
|
|
// unescaped comma or space.
|
|
if i >= len(buf) ||
|
|
((buf[i] == ' ' || buf[i] == ',') && buf[i-1] != '\\') {
|
|
// cpu,tag{'', ' ', ','}
|
|
return i, fmt.Errorf("missing tag value")
|
|
}
|
|
|
|
if buf[i] == '=' && buf[i-1] != '\\' {
|
|
// cpu,tag=
|
|
return i + 1, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// scanTagsValue scans each character in a tag value.
|
|
func scanTagsValue(buf []byte, i int) (int, int, error) {
|
|
// Tag value cannot be empty.
|
|
if i >= len(buf) || buf[i] == ',' || buf[i] == ' ' {
|
|
// cpu,tag={',', ' '}
|
|
return -1, i, fmt.Errorf("missing tag value")
|
|
}
|
|
|
|
// Examine each character in the tag value until we hit an unescaped
|
|
// comma (move onto next tag key), an unescaped space (move onto
|
|
// fields), or we error out.
|
|
for {
|
|
i++
|
|
if i >= len(buf) {
|
|
// cpu,tag=value
|
|
return -1, i, fmt.Errorf("missing fields")
|
|
}
|
|
|
|
// An unescaped equals sign is an invalid tag value.
|
|
if buf[i] == '=' && buf[i-1] != '\\' {
|
|
// cpu,tag={'=', 'fo=o'}
|
|
return -1, i, fmt.Errorf("invalid tag format")
|
|
}
|
|
|
|
if buf[i] == ',' && buf[i-1] != '\\' {
|
|
// cpu,tag=foo,
|
|
return tagKeyState, i + 1, nil
|
|
}
|
|
|
|
// cpu,tag=foo value=1.0
|
|
// cpu, tag=foo\= value=1.0
|
|
if buf[i] == ' ' && buf[i-1] != '\\' {
|
|
return fieldsState, i, nil
|
|
}
|
|
}
|
|
}
|
|
|
|
func insertionSort(l, r int, buf []byte, indices []int) {
|
|
for i := l + 1; i < r; i++ {
|
|
for j := i; j > l && less(buf, indices, j, j-1); j-- {
|
|
indices[j], indices[j-1] = indices[j-1], indices[j]
|
|
}
|
|
}
|
|
}
|
|
|
|
func less(buf []byte, indices []int, i, j int) bool {
|
|
// This grabs the tag names for i & j, it ignores the values
|
|
_, a := scanTo(buf, indices[i], '=')
|
|
_, b := scanTo(buf, indices[j], '=')
|
|
return bytes.Compare(a, b) < 0
|
|
}
|
|
|
|
// scanFields scans buf, starting at i for the fields section of a point. It returns
|
|
// the ending position and the byte slice of the fields within buf.
|
|
func scanFields(buf []byte, i int) (int, []byte, error) {
|
|
start := skipWhitespace(buf, i)
|
|
i = start
|
|
quoted := false
|
|
|
|
// tracks how many '=' we've seen
|
|
equals := 0
|
|
|
|
// tracks how many commas we've seen
|
|
commas := 0
|
|
|
|
for {
|
|
// reached the end of buf?
|
|
if i >= len(buf) {
|
|
break
|
|
}
|
|
|
|
// escaped characters?
|
|
if buf[i] == '\\' && i+1 < len(buf) {
|
|
i += 2
|
|
continue
|
|
}
|
|
|
|
// If the value is quoted, scan until we get to the end quote
|
|
// Only quote values in the field value since quotes are not significant
|
|
// in the field key
|
|
if buf[i] == '"' && equals > commas {
|
|
quoted = !quoted
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// If we see an =, ensure that there is at least on char before and after it
|
|
if buf[i] == '=' && !quoted {
|
|
equals++
|
|
|
|
// check for "... =123" but allow "a\ =123"
|
|
if buf[i-1] == ' ' && buf[i-2] != '\\' {
|
|
return i, buf[start:i], fmt.Errorf("missing field key")
|
|
}
|
|
|
|
// check for "...a=123,=456" but allow "a=123,a\,=456"
|
|
if buf[i-1] == ',' && buf[i-2] != '\\' {
|
|
return i, buf[start:i], fmt.Errorf("missing field key")
|
|
}
|
|
|
|
// check for "... value="
|
|
if i+1 >= len(buf) {
|
|
return i, buf[start:i], fmt.Errorf("missing field value")
|
|
}
|
|
|
|
// check for "... value=,value2=..."
|
|
if buf[i+1] == ',' || buf[i+1] == ' ' {
|
|
return i, buf[start:i], fmt.Errorf("missing field value")
|
|
}
|
|
|
|
if isNumeric(buf[i+1]) || buf[i+1] == '-' || buf[i+1] == 'N' || buf[i+1] == 'n' {
|
|
var err error
|
|
i, err = scanNumber(buf, i+1)
|
|
if err != nil {
|
|
return i, buf[start:i], err
|
|
}
|
|
continue
|
|
}
|
|
// If next byte is not a double-quote, the value must be a boolean
|
|
if buf[i+1] != '"' {
|
|
var err error
|
|
i, _, err = scanBoolean(buf, i+1)
|
|
if err != nil {
|
|
return i, buf[start:i], err
|
|
}
|
|
continue
|
|
}
|
|
}
|
|
|
|
if buf[i] == ',' && !quoted {
|
|
commas++
|
|
}
|
|
|
|
// reached end of block?
|
|
if buf[i] == ' ' && !quoted {
|
|
break
|
|
}
|
|
i++
|
|
}
|
|
|
|
if quoted {
|
|
return i, buf[start:i], fmt.Errorf("unbalanced quotes")
|
|
}
|
|
|
|
// check that all field sections had key and values (e.g. prevent "a=1,b"
|
|
if equals == 0 || commas != equals-1 {
|
|
return i, buf[start:i], fmt.Errorf("invalid field format")
|
|
}
|
|
|
|
return i, buf[start:i], nil
|
|
}
|
|
|
|
// scanTime scans buf, starting at i for the time section of a point. It
|
|
// returns the ending position and the byte slice of the timestamp within buf
|
|
// and and error if the timestamp is not in the correct numeric format.
|
|
func scanTime(buf []byte, i int) (int, []byte, error) {
|
|
start := skipWhitespace(buf, i)
|
|
i = start
|
|
|
|
for {
|
|
// reached the end of buf?
|
|
if i >= len(buf) {
|
|
break
|
|
}
|
|
|
|
// Reached end of block or trailing whitespace?
|
|
if buf[i] == '\n' || buf[i] == ' ' {
|
|
break
|
|
}
|
|
|
|
// Handle negative timestamps
|
|
if i == start && buf[i] == '-' {
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// Timestamps should be integers, make sure they are so we don't need
|
|
// to actually parse the timestamp until needed.
|
|
if buf[i] < '0' || buf[i] > '9' {
|
|
return i, buf[start:i], fmt.Errorf("bad timestamp")
|
|
}
|
|
i++
|
|
}
|
|
return i, buf[start:i], nil
|
|
}
|
|
|
|
func isNumeric(b byte) bool {
|
|
return (b >= '0' && b <= '9') || b == '.'
|
|
}
|
|
|
|
// scanNumber returns the end position within buf, start at i after
|
|
// scanning over buf for an integer, or float. It returns an
|
|
// error if a invalid number is scanned.
|
|
func scanNumber(buf []byte, i int) (int, error) {
|
|
start := i
|
|
var isInt, isUnsigned bool
|
|
|
|
// Is negative number?
|
|
if i < len(buf) && buf[i] == '-' {
|
|
i++
|
|
// There must be more characters now, as just '-' is illegal.
|
|
if i == len(buf) {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
}
|
|
|
|
// how many decimal points we've see
|
|
decimal := false
|
|
|
|
// indicates the number is float in scientific notation
|
|
scientific := false
|
|
|
|
for {
|
|
if i >= len(buf) {
|
|
break
|
|
}
|
|
|
|
if buf[i] == ',' || buf[i] == ' ' {
|
|
break
|
|
}
|
|
|
|
if buf[i] == 'i' && i > start && !(isInt || isUnsigned) {
|
|
isInt = true
|
|
i++
|
|
continue
|
|
} else if buf[i] == 'u' && i > start && !(isInt || isUnsigned) {
|
|
isUnsigned = true
|
|
i++
|
|
continue
|
|
}
|
|
|
|
if buf[i] == '.' {
|
|
// Can't have more than 1 decimal (e.g. 1.1.1 should fail)
|
|
if decimal {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
decimal = true
|
|
}
|
|
|
|
// `e` is valid for floats but not as the first char
|
|
if i > start && (buf[i] == 'e' || buf[i] == 'E') {
|
|
scientific = true
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// + and - are only valid at this point if they follow an e (scientific notation)
|
|
if (buf[i] == '+' || buf[i] == '-') && (buf[i-1] == 'e' || buf[i-1] == 'E') {
|
|
i++
|
|
continue
|
|
}
|
|
|
|
// NaN is an unsupported value
|
|
if i+2 < len(buf) && (buf[i] == 'N' || buf[i] == 'n') {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
|
|
if !isNumeric(buf[i]) {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
i++
|
|
}
|
|
|
|
if (isInt || isUnsigned) && (decimal || scientific) {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
|
|
numericDigits := i - start
|
|
if isInt {
|
|
numericDigits--
|
|
}
|
|
if decimal {
|
|
numericDigits--
|
|
}
|
|
if buf[start] == '-' {
|
|
numericDigits--
|
|
}
|
|
|
|
if numericDigits == 0 {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
|
|
// It's more common that numbers will be within min/max range for their type but we need to prevent
|
|
// out or range numbers from being parsed successfully. This uses some simple heuristics to decide
|
|
// if we should parse the number to the actual type. It does not do it all the time because it incurs
|
|
// extra allocations and we end up converting the type again when writing points to disk.
|
|
if isInt {
|
|
// Make sure the last char is an 'i' for integers (e.g. 9i10 is not valid)
|
|
if buf[i-1] != 'i' {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
// Parse the int to check bounds the number of digits could be larger than the max range
|
|
// We subtract 1 from the index to remove the `i` from our tests
|
|
if len(buf[start:i-1]) >= maxInt64Digits || len(buf[start:i-1]) >= minInt64Digits {
|
|
if _, err := parseIntBytes(buf[start:i-1], 10, 64); err != nil {
|
|
return i, fmt.Errorf("unable to parse integer %s: %s", buf[start:i-1], err)
|
|
}
|
|
}
|
|
} else if isUnsigned {
|
|
// Return an error if uint64 support has not been enabled.
|
|
if !enableUint64Support {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
// Make sure the last char is a 'u' for unsigned
|
|
if buf[i-1] != 'u' {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
// Make sure the first char is not a '-' for unsigned
|
|
if buf[start] == '-' {
|
|
return i, ErrInvalidNumber
|
|
}
|
|
// Parse the uint to check bounds the number of digits could be larger than the max range
|
|
// We subtract 1 from the index to remove the `u` from our tests
|
|
if len(buf[start:i-1]) >= maxUint64Digits {
|
|
if _, err := parseUintBytes(buf[start:i-1], 10, 64); err != nil {
|
|
return i, fmt.Errorf("unable to parse unsigned %s: %s", buf[start:i-1], err)
|
|
}
|
|
}
|
|
} else {
|
|
// Parse the float to check bounds if it's scientific or the number of digits could be larger than the max range
|
|
if scientific || len(buf[start:i]) >= maxFloat64Digits || len(buf[start:i]) >= minFloat64Digits {
|
|
if _, err := parseFloatBytes(buf[start:i], 10); err != nil {
|
|
return i, fmt.Errorf("invalid float")
|
|
}
|
|
}
|
|
}
|
|
|
|
return i, nil
|
|
}
|
|
|
|
// scanBoolean returns the end position within buf, start at i after
|
|
// scanning over buf for boolean. Valid values for a boolean are
|
|
// t, T, true, TRUE, f, F, false, FALSE. It returns an error if a invalid boolean
|
|
// is scanned.
|
|
func scanBoolean(buf []byte, i int) (int, []byte, error) {
|
|
start := i
|
|
|
|
if i < len(buf) && (buf[i] != 't' && buf[i] != 'f' && buf[i] != 'T' && buf[i] != 'F') {
|
|
return i, buf[start:i], fmt.Errorf("invalid boolean")
|
|
}
|
|
|
|
i++
|
|
for {
|
|
if i >= len(buf) {
|
|
break
|
|
}
|
|
|
|
if buf[i] == ',' || buf[i] == ' ' {
|
|
break
|
|
}
|
|
i++
|
|
}
|
|
|
|
// Single char bool (t, T, f, F) is ok
|
|
if i-start == 1 {
|
|
return i, buf[start:i], nil
|
|
}
|
|
|
|
// length must be 4 for true or TRUE
|
|
if (buf[start] == 't' || buf[start] == 'T') && i-start != 4 {
|
|
return i, buf[start:i], fmt.Errorf("invalid boolean")
|
|
}
|
|
|
|
// length must be 5 for false or FALSE
|
|
if (buf[start] == 'f' || buf[start] == 'F') && i-start != 5 {
|
|
return i, buf[start:i], fmt.Errorf("invalid boolean")
|
|
}
|
|
|
|
// Otherwise
|
|
valid := false
|
|
switch buf[start] {
|
|
case 't':
|
|
valid = bytes.Equal(buf[start:i], []byte("true"))
|
|
case 'f':
|
|
valid = bytes.Equal(buf[start:i], []byte("false"))
|
|
case 'T':
|
|
valid = bytes.Equal(buf[start:i], []byte("TRUE")) || bytes.Equal(buf[start:i], []byte("True"))
|
|
case 'F':
|
|
valid = bytes.Equal(buf[start:i], []byte("FALSE")) || bytes.Equal(buf[start:i], []byte("False"))
|
|
}
|
|
|
|
if !valid {
|
|
return i, buf[start:i], fmt.Errorf("invalid boolean")
|
|
}
|
|
|
|
return i, buf[start:i], nil
|
|
|
|
}
|
|
|
|
// skipWhitespace returns the end position within buf, starting at i after
|
|
// scanning over spaces in tags.
|
|
func skipWhitespace(buf []byte, i int) int {
|
|
for i < len(buf) {
|
|
if buf[i] != ' ' && buf[i] != '\t' && buf[i] != 0 {
|
|
break
|
|
}
|
|
i++
|
|
}
|
|
return i
|
|
}
|
|
|
|
// scanLine returns the end position in buf and the next line found within
|
|
// buf.
|
|
func scanLine(buf []byte, i int) (int, []byte) {
|
|
start := i
|
|
quoted := false
|
|
fields := false
|
|
|
|
// tracks how many '=' and commas we've seen
|
|
// this duplicates some of the functionality in scanFields
|
|
equals := 0
|
|
commas := 0
|
|
for {
|
|
// reached the end of buf?
|
|
if i >= len(buf) {
|
|
break
|
|
}
|
|
|
|
// skip past escaped characters
|
|
if buf[i] == '\\' && i+2 < len(buf) {
|
|
i += 2
|
|
continue
|
|
}
|
|
|
|
if buf[i] == ' ' {
|
|
fields = true
|
|
}
|
|
|
|
// If we see a double quote, makes sure it is not escaped
|
|
if fields {
|
|
if !quoted && buf[i] == '=' {
|
|
i++
|
|
equals++
|
|
continue
|
|
} else if !quoted && buf[i] == ',' {
|
|
i++
|
|
commas++
|
|
continue
|
|
} else if buf[i] == '"' && equals > commas {
|
|
i++
|
|
quoted = !quoted
|
|
continue
|
|
}
|
|
}
|
|
|
|
if buf[i] == '\n' && !quoted {
|
|
break
|
|
}
|
|
|
|
i++
|
|
}
|
|
|
|
return i, buf[start:i]
|
|
}
|
|
|
|
// scanTo returns the end position in buf and the next consecutive block
|
|
// of bytes, starting from i and ending with stop byte, where stop byte
|
|
// has not been escaped.
|
|
//
|
|
// If there are leading spaces, they are skipped.
|
|
func scanTo(buf []byte, i int, stop byte) (int, []byte) {
|
|
start := i
|
|
for {
|
|
// reached the end of buf?
|
|
if i >= len(buf) {
|
|
break
|
|
}
|
|
|
|
// Reached unescaped stop value?
|
|
if buf[i] == stop && (i == 0 || buf[i-1] != '\\') {
|
|
break
|
|
}
|
|
i++
|
|
}
|
|
|
|
return i, buf[start:i]
|
|
}
|
|
|
|
// scanTo returns the end position in buf and the next consecutive block
|
|
// of bytes, starting from i and ending with stop byte. If there are leading
|
|
// spaces, they are skipped.
|
|
func scanToSpaceOr(buf []byte, i int, stop byte) (int, []byte) {
|
|
start := i
|
|
if buf[i] == stop || buf[i] == ' ' {
|
|
return i, buf[start:i]
|
|
}
|
|
|
|
for {
|
|
i++
|
|
if buf[i-1] == '\\' {
|
|
continue
|
|
}
|
|
|
|
// reached the end of buf?
|
|
if i >= len(buf) {
|
|
return i, buf[start:i]
|
|
}
|
|
|
|
// reached end of block?
|
|
if buf[i] == stop || buf[i] == ' ' {
|
|
return i, buf[start:i]
|
|
}
|
|
}
|
|
}
|
|
|
|
func scanTagValue(buf []byte, i int) (int, []byte) {
|
|
start := i
|
|
for {
|
|
if i >= len(buf) {
|
|
break
|
|
}
|
|
|
|
if buf[i] == ',' && buf[i-1] != '\\' {
|
|
break
|
|
}
|
|
i++
|
|
}
|
|
if i > len(buf) {
|
|
return i, nil
|
|
}
|
|
return i, buf[start:i]
|
|
}
|
|
|
|
func scanFieldValue(buf []byte, i int) (int, []byte) {
|
|
start := i
|
|
quoted := false
|
|
for i < len(buf) {
|
|
// Only escape char for a field value is a double-quote and backslash
|
|
if buf[i] == '\\' && i+1 < len(buf) && (buf[i+1] == '"' || buf[i+1] == '\\') {
|
|
i += 2
|
|
continue
|
|
}
|
|
|
|
// Quoted value? (e.g. string)
|
|
if buf[i] == '"' {
|
|
i++
|
|
quoted = !quoted
|
|
continue
|
|
}
|
|
|
|
if buf[i] == ',' && !quoted {
|
|
break
|
|
}
|
|
i++
|
|
}
|
|
return i, buf[start:i]
|
|
}
|
|
|
|
func EscapeMeasurement(in []byte) []byte {
|
|
for _, c := range measurementEscapeCodes {
|
|
if bytes.IndexByte(in, c.k[0]) != -1 {
|
|
in = bytes.Replace(in, c.k[:], c.esc[:], -1)
|
|
}
|
|
}
|
|
return in
|
|
}
|
|
|
|
func unescapeMeasurement(in []byte) []byte {
|
|
if bytes.IndexByte(in, '\\') == -1 {
|
|
return in
|
|
}
|
|
|
|
for i := range measurementEscapeCodes {
|
|
c := &measurementEscapeCodes[i]
|
|
if bytes.IndexByte(in, c.k[0]) != -1 {
|
|
in = bytes.Replace(in, c.esc[:], c.k[:], -1)
|
|
}
|
|
}
|
|
return in
|
|
}
|
|
|
|
func escapeTag(in []byte) []byte {
|
|
for i := range tagEscapeCodes {
|
|
c := &tagEscapeCodes[i]
|
|
if bytes.IndexByte(in, c.k[0]) != -1 {
|
|
in = bytes.Replace(in, c.k[:], c.esc[:], -1)
|
|
}
|
|
}
|
|
return in
|
|
}
|
|
|
|
func unescapeTag(in []byte) []byte {
|
|
if bytes.IndexByte(in, '\\') == -1 {
|
|
return in
|
|
}
|
|
|
|
for i := range tagEscapeCodes {
|
|
c := &tagEscapeCodes[i]
|
|
if bytes.IndexByte(in, c.k[0]) != -1 {
|
|
in = bytes.Replace(in, c.esc[:], c.k[:], -1)
|
|
}
|
|
}
|
|
return in
|
|
}
|
|
|
|
// escapeStringFieldReplacer replaces double quotes and backslashes
|
|
// with the same character preceded by a backslash.
|
|
// As of Go 1.7 this benchmarked better in allocations and CPU time
|
|
// compared to iterating through a string byte-by-byte and appending to a new byte slice,
|
|
// calling strings.Replace twice, and better than (*Regex).ReplaceAllString.
|
|
var escapeStringFieldReplacer = strings.NewReplacer(`"`, `\"`, `\`, `\\`)
|
|
|
|
// EscapeStringField returns a copy of in with any double quotes or
|
|
// backslashes with escaped values.
|
|
func EscapeStringField(in string) string {
|
|
return escapeStringFieldReplacer.Replace(in)
|
|
}
|
|
|
|
// unescapeStringField returns a copy of in with any escaped double-quotes
|
|
// or backslashes unescaped.
|
|
func unescapeStringField(in string) string {
|
|
if strings.IndexByte(in, '\\') == -1 {
|
|
return in
|
|
}
|
|
|
|
var out []byte
|
|
i := 0
|
|
for {
|
|
if i >= len(in) {
|
|
break
|
|
}
|
|
// unescape backslashes
|
|
if in[i] == '\\' && i+1 < len(in) && in[i+1] == '\\' {
|
|
out = append(out, '\\')
|
|
i += 2
|
|
continue
|
|
}
|
|
// unescape double-quotes
|
|
if in[i] == '\\' && i+1 < len(in) && in[i+1] == '"' {
|
|
out = append(out, '"')
|
|
i += 2
|
|
continue
|
|
}
|
|
out = append(out, in[i])
|
|
i++
|
|
|
|
}
|
|
return string(out)
|
|
}
|
|
|
|
// NewPoint returns a new point with the given measurement name, tags, fields and timestamp. If
|
|
// an unsupported field value (NaN, or +/-Inf) or out of range time is passed, this function
|
|
// returns an error.
|
|
func NewPoint(name string, tags Tags, fields Fields, t time.Time) (Point, error) {
|
|
key, err := pointKey(name, tags, fields, t)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &point{
|
|
key: key,
|
|
time: t,
|
|
fields: fields.MarshalBinary(),
|
|
}, nil
|
|
}
|
|
|
|
// pointKey checks some basic requirements for valid points, and returns the
|
|
// key, along with an possible error.
|
|
func pointKey(measurement string, tags Tags, fields Fields, t time.Time) ([]byte, error) {
|
|
if len(fields) == 0 {
|
|
return nil, ErrPointMustHaveAField
|
|
}
|
|
|
|
if !t.IsZero() {
|
|
if err := CheckTime(t); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
for key, value := range fields {
|
|
switch value := value.(type) {
|
|
case float64:
|
|
// Ensure the caller validates and handles invalid field values
|
|
if math.IsInf(value, 0) {
|
|
return nil, fmt.Errorf("+/-Inf is an unsupported value for field %s", key)
|
|
}
|
|
if math.IsNaN(value) {
|
|
return nil, fmt.Errorf("NaN is an unsupported value for field %s", key)
|
|
}
|
|
case float32:
|
|
// Ensure the caller validates and handles invalid field values
|
|
if math.IsInf(float64(value), 0) {
|
|
return nil, fmt.Errorf("+/-Inf is an unsupported value for field %s", key)
|
|
}
|
|
if math.IsNaN(float64(value)) {
|
|
return nil, fmt.Errorf("NaN is an unsupported value for field %s", key)
|
|
}
|
|
}
|
|
if len(key) == 0 {
|
|
return nil, fmt.Errorf("all fields must have non-empty names")
|
|
}
|
|
}
|
|
|
|
key := MakeKey([]byte(measurement), tags)
|
|
for field := range fields {
|
|
sz := seriesKeySize(key, []byte(field))
|
|
if sz > MaxKeyLength {
|
|
return nil, fmt.Errorf("max key length exceeded: %v > %v", sz, MaxKeyLength)
|
|
}
|
|
}
|
|
|
|
return key, nil
|
|
}
|
|
|
|
func seriesKeySize(key, field []byte) int {
|
|
// 4 is the length of the tsm1.fieldKeySeparator constant. It's inlined here to avoid a circular
|
|
// dependency.
|
|
return len(key) + 4 + len(field)
|
|
}
|
|
|
|
// NewPointFromBytes returns a new Point from a marshalled Point.
|
|
func NewPointFromBytes(b []byte) (Point, error) {
|
|
p := &point{}
|
|
if err := p.UnmarshalBinary(b); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// This does some basic validation to ensure there are fields and they
|
|
// can be unmarshalled as well.
|
|
iter := p.FieldIterator()
|
|
var hasField bool
|
|
for iter.Next() {
|
|
if len(iter.FieldKey()) == 0 {
|
|
continue
|
|
}
|
|
hasField = true
|
|
switch iter.Type() {
|
|
case Float:
|
|
_, err := iter.FloatValue()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
|
|
}
|
|
case Integer:
|
|
_, err := iter.IntegerValue()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
|
|
}
|
|
case Unsigned:
|
|
_, err := iter.UnsignedValue()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
|
|
}
|
|
case String:
|
|
// Skip since this won't return an error
|
|
case Boolean:
|
|
_, err := iter.BooleanValue()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
|
|
}
|
|
}
|
|
}
|
|
|
|
if !hasField {
|
|
return nil, ErrPointMustHaveAField
|
|
}
|
|
|
|
return p, nil
|
|
}
|
|
|
|
// MustNewPoint returns a new point with the given measurement name, tags, fields and timestamp. If
|
|
// an unsupported field value (NaN) is passed, this function panics.
|
|
func MustNewPoint(name string, tags Tags, fields Fields, time time.Time) Point {
|
|
pt, err := NewPoint(name, tags, fields, time)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
return pt
|
|
}
|
|
|
|
// Key returns the key (measurement joined with tags) of the point.
|
|
func (p *point) Key() []byte {
|
|
return p.key
|
|
}
|
|
|
|
func (p *point) name() []byte {
|
|
_, name := scanTo(p.key, 0, ',')
|
|
return name
|
|
}
|
|
|
|
func (p *point) Name() []byte {
|
|
return escape.Unescape(p.name())
|
|
}
|
|
|
|
// SetName updates the measurement name for the point.
|
|
func (p *point) SetName(name string) {
|
|
p.cachedName = ""
|
|
p.key = MakeKey([]byte(name), p.Tags())
|
|
}
|
|
|
|
// Time return the timestamp for the point.
|
|
func (p *point) Time() time.Time {
|
|
return p.time
|
|
}
|
|
|
|
// SetTime updates the timestamp for the point.
|
|
func (p *point) SetTime(t time.Time) {
|
|
p.time = t
|
|
}
|
|
|
|
// Round will round the timestamp of the point to the given duration.
|
|
func (p *point) Round(d time.Duration) {
|
|
p.time = p.time.Round(d)
|
|
}
|
|
|
|
// Tags returns the tag set for the point.
|
|
func (p *point) Tags() Tags {
|
|
if p.cachedTags != nil {
|
|
return p.cachedTags
|
|
}
|
|
p.cachedTags = parseTags(p.key, nil)
|
|
return p.cachedTags
|
|
}
|
|
|
|
func (p *point) ForEachTag(fn func(k, v []byte) bool) {
|
|
walkTags(p.key, fn)
|
|
}
|
|
|
|
func (p *point) HasTag(tag []byte) bool {
|
|
if len(p.key) == 0 {
|
|
return false
|
|
}
|
|
|
|
var exists bool
|
|
walkTags(p.key, func(key, value []byte) bool {
|
|
if bytes.Equal(tag, key) {
|
|
exists = true
|
|
return false
|
|
}
|
|
return true
|
|
})
|
|
|
|
return exists
|
|
}
|
|
|
|
func walkTags(buf []byte, fn func(key, value []byte) bool) {
|
|
if len(buf) == 0 {
|
|
return
|
|
}
|
|
|
|
pos, name := scanTo(buf, 0, ',')
|
|
|
|
// it's an empty key, so there are no tags
|
|
if len(name) == 0 {
|
|
return
|
|
}
|
|
|
|
hasEscape := bytes.IndexByte(buf, '\\') != -1
|
|
i := pos + 1
|
|
var key, value []byte
|
|
for {
|
|
if i >= len(buf) {
|
|
break
|
|
}
|
|
i, key = scanTo(buf, i, '=')
|
|
i, value = scanTagValue(buf, i+1)
|
|
|
|
if len(value) == 0 {
|
|
continue
|
|
}
|
|
|
|
if hasEscape {
|
|
if !fn(unescapeTag(key), unescapeTag(value)) {
|
|
return
|
|
}
|
|
} else {
|
|
if !fn(key, value) {
|
|
return
|
|
}
|
|
}
|
|
|
|
i++
|
|
}
|
|
}
|
|
|
|
// walkFields walks each field key and value via fn. If fn returns false, the iteration
|
|
// is stopped. The values are the raw byte slices and not the converted types.
|
|
func walkFields(buf []byte, fn func(key, value []byte) bool) error {
|
|
var i int
|
|
var key, val []byte
|
|
for len(buf) > 0 {
|
|
i, key = scanTo(buf, 0, '=')
|
|
if i > len(buf)-2 {
|
|
return fmt.Errorf("invalid value: field-key=%s", key)
|
|
}
|
|
buf = buf[i+1:]
|
|
i, val = scanFieldValue(buf, 0)
|
|
buf = buf[i:]
|
|
if !fn(key, val) {
|
|
break
|
|
}
|
|
|
|
// slice off comma
|
|
if len(buf) > 0 {
|
|
buf = buf[1:]
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// parseTags parses buf into the provided destination tags, returning destination
|
|
// Tags, which may have a different length and capacity.
|
|
func parseTags(buf []byte, dst Tags) Tags {
|
|
if len(buf) == 0 {
|
|
return nil
|
|
}
|
|
|
|
n := bytes.Count(buf, []byte(","))
|
|
if cap(dst) < n {
|
|
dst = make(Tags, n)
|
|
} else {
|
|
dst = dst[:n]
|
|
}
|
|
|
|
// Ensure existing behaviour when point has no tags and nil slice passed in.
|
|
if dst == nil {
|
|
dst = Tags{}
|
|
}
|
|
|
|
// Series keys can contain escaped commas, therefore the number of commas
|
|
// in a series key only gives an estimation of the upper bound on the number
|
|
// of tags.
|
|
var i int
|
|
walkTags(buf, func(key, value []byte) bool {
|
|
dst[i].Key, dst[i].Value = key, value
|
|
i++
|
|
return true
|
|
})
|
|
return dst[:i]
|
|
}
|
|
|
|
// MakeKey creates a key for a set of tags.
|
|
func MakeKey(name []byte, tags Tags) []byte {
|
|
return AppendMakeKey(nil, name, tags)
|
|
}
|
|
|
|
// AppendMakeKey appends the key derived from name and tags to dst and returns the extended buffer.
|
|
func AppendMakeKey(dst []byte, name []byte, tags Tags) []byte {
|
|
// unescape the name and then re-escape it to avoid double escaping.
|
|
// The key should always be stored in escaped form.
|
|
dst = append(dst, EscapeMeasurement(unescapeMeasurement(name))...)
|
|
dst = tags.AppendHashKey(dst)
|
|
return dst
|
|
}
|
|
|
|
// SetTags replaces the tags for the point.
|
|
func (p *point) SetTags(tags Tags) {
|
|
p.key = MakeKey(p.Name(), tags)
|
|
p.cachedTags = tags
|
|
}
|
|
|
|
// AddTag adds or replaces a tag value for a point.
|
|
func (p *point) AddTag(key, value string) {
|
|
tags := p.Tags()
|
|
tags = append(tags, Tag{Key: []byte(key), Value: []byte(value)})
|
|
sort.Sort(tags)
|
|
p.cachedTags = tags
|
|
p.key = MakeKey(p.Name(), tags)
|
|
}
|
|
|
|
// Fields returns the fields for the point.
|
|
func (p *point) Fields() (Fields, error) {
|
|
if p.cachedFields != nil {
|
|
return p.cachedFields, nil
|
|
}
|
|
cf, err := p.unmarshalBinary()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
p.cachedFields = cf
|
|
return p.cachedFields, nil
|
|
}
|
|
|
|
// SetPrecision will round a time to the specified precision.
|
|
func (p *point) SetPrecision(precision string) {
|
|
switch precision {
|
|
case "n":
|
|
case "u":
|
|
p.SetTime(p.Time().Truncate(time.Microsecond))
|
|
case "ms":
|
|
p.SetTime(p.Time().Truncate(time.Millisecond))
|
|
case "s":
|
|
p.SetTime(p.Time().Truncate(time.Second))
|
|
case "m":
|
|
p.SetTime(p.Time().Truncate(time.Minute))
|
|
case "h":
|
|
p.SetTime(p.Time().Truncate(time.Hour))
|
|
}
|
|
}
|
|
|
|
// String returns the string representation of the point.
|
|
func (p *point) String() string {
|
|
if p.Time().IsZero() {
|
|
return string(p.Key()) + " " + string(p.fields)
|
|
}
|
|
return string(p.Key()) + " " + string(p.fields) + " " + strconv.FormatInt(p.UnixNano(), 10)
|
|
}
|
|
|
|
// AppendString appends the string representation of the point to buf.
|
|
func (p *point) AppendString(buf []byte) []byte {
|
|
buf = append(buf, p.key...)
|
|
buf = append(buf, ' ')
|
|
buf = append(buf, p.fields...)
|
|
|
|
if !p.time.IsZero() {
|
|
buf = append(buf, ' ')
|
|
buf = strconv.AppendInt(buf, p.UnixNano(), 10)
|
|
}
|
|
|
|
return buf
|
|
}
|
|
|
|
// StringSize returns the length of the string that would be returned by String().
|
|
func (p *point) StringSize() int {
|
|
size := len(p.key) + len(p.fields) + 1
|
|
|
|
if !p.time.IsZero() {
|
|
digits := 1 // even "0" has one digit
|
|
t := p.UnixNano()
|
|
if t < 0 {
|
|
// account for negative sign, then negate
|
|
digits++
|
|
t = -t
|
|
}
|
|
for t > 9 { // already accounted for one digit
|
|
digits++
|
|
t /= 10
|
|
}
|
|
size += digits + 1 // digits and a space
|
|
}
|
|
|
|
return size
|
|
}
|
|
|
|
// MarshalBinary returns a binary representation of the point.
|
|
func (p *point) MarshalBinary() ([]byte, error) {
|
|
if len(p.fields) == 0 {
|
|
return nil, ErrPointMustHaveAField
|
|
}
|
|
|
|
tb, err := p.time.MarshalBinary()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
b := make([]byte, 8+len(p.key)+len(p.fields)+len(tb))
|
|
i := 0
|
|
|
|
binary.BigEndian.PutUint32(b[i:], uint32(len(p.key)))
|
|
i += 4
|
|
|
|
i += copy(b[i:], p.key)
|
|
|
|
binary.BigEndian.PutUint32(b[i:i+4], uint32(len(p.fields)))
|
|
i += 4
|
|
|
|
i += copy(b[i:], p.fields)
|
|
|
|
copy(b[i:], tb)
|
|
return b, nil
|
|
}
|
|
|
|
// UnmarshalBinary decodes a binary representation of the point into a point struct.
|
|
func (p *point) UnmarshalBinary(b []byte) error {
|
|
var n int
|
|
|
|
// Read key length.
|
|
if len(b) < 4 {
|
|
return io.ErrShortBuffer
|
|
}
|
|
n, b = int(binary.BigEndian.Uint32(b[:4])), b[4:]
|
|
|
|
// Read key.
|
|
if len(b) < n {
|
|
return io.ErrShortBuffer
|
|
}
|
|
p.key, b = b[:n], b[n:]
|
|
|
|
// Read fields length.
|
|
if len(b) < 4 {
|
|
return io.ErrShortBuffer
|
|
}
|
|
n, b = int(binary.BigEndian.Uint32(b[:4])), b[4:]
|
|
|
|
// Read fields.
|
|
if len(b) < n {
|
|
return io.ErrShortBuffer
|
|
}
|
|
p.fields, b = b[:n], b[n:]
|
|
|
|
// Read timestamp.
|
|
return p.time.UnmarshalBinary(b)
|
|
}
|
|
|
|
// PrecisionString returns a string representation of the point. If there
|
|
// is a timestamp associated with the point then it will be specified in the
|
|
// given unit.
|
|
func (p *point) PrecisionString(precision string) string {
|
|
if p.Time().IsZero() {
|
|
return fmt.Sprintf("%s %s", p.Key(), string(p.fields))
|
|
}
|
|
return fmt.Sprintf("%s %s %d", p.Key(), string(p.fields),
|
|
p.UnixNano()/GetPrecisionMultiplier(precision))
|
|
}
|
|
|
|
// RoundedString returns a string representation of the point. If there
|
|
// is a timestamp associated with the point, then it will be rounded to the
|
|
// given duration.
|
|
func (p *point) RoundedString(d time.Duration) string {
|
|
if p.Time().IsZero() {
|
|
return fmt.Sprintf("%s %s", p.Key(), string(p.fields))
|
|
}
|
|
return fmt.Sprintf("%s %s %d", p.Key(), string(p.fields),
|
|
p.time.Round(d).UnixNano())
|
|
}
|
|
|
|
func (p *point) unmarshalBinary() (Fields, error) {
|
|
iter := p.FieldIterator()
|
|
fields := make(Fields, 8)
|
|
for iter.Next() {
|
|
if len(iter.FieldKey()) == 0 {
|
|
continue
|
|
}
|
|
switch iter.Type() {
|
|
case Float:
|
|
v, err := iter.FloatValue()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
|
|
}
|
|
fields[string(iter.FieldKey())] = v
|
|
case Integer:
|
|
v, err := iter.IntegerValue()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
|
|
}
|
|
fields[string(iter.FieldKey())] = v
|
|
case Unsigned:
|
|
v, err := iter.UnsignedValue()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
|
|
}
|
|
fields[string(iter.FieldKey())] = v
|
|
case String:
|
|
fields[string(iter.FieldKey())] = iter.StringValue()
|
|
case Boolean:
|
|
v, err := iter.BooleanValue()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to unmarshal field %s: %s", string(iter.FieldKey()), err)
|
|
}
|
|
fields[string(iter.FieldKey())] = v
|
|
}
|
|
}
|
|
return fields, nil
|
|
}
|
|
|
|
// HashID returns a non-cryptographic checksum of the point's key.
|
|
func (p *point) HashID() uint64 {
|
|
h := NewInlineFNV64a()
|
|
h.Write(p.key)
|
|
sum := h.Sum64()
|
|
return sum
|
|
}
|
|
|
|
// UnixNano returns the timestamp of the point as nanoseconds since Unix epoch.
|
|
func (p *point) UnixNano() int64 {
|
|
return p.Time().UnixNano()
|
|
}
|
|
|
|
// Split will attempt to return multiple points with the same timestamp whose
|
|
// string representations are no longer than size. Points with a single field or
|
|
// a point without a timestamp may exceed the requested size.
|
|
func (p *point) Split(size int) []Point {
|
|
if p.time.IsZero() || p.StringSize() <= size {
|
|
return []Point{p}
|
|
}
|
|
|
|
// key string, timestamp string, spaces
|
|
size -= len(p.key) + len(strconv.FormatInt(p.time.UnixNano(), 10)) + 2
|
|
|
|
var points []Point
|
|
var start, cur int
|
|
|
|
for cur < len(p.fields) {
|
|
end, _ := scanTo(p.fields, cur, '=')
|
|
end, _ = scanFieldValue(p.fields, end+1)
|
|
|
|
if cur > start && end-start > size {
|
|
points = append(points, &point{
|
|
key: p.key,
|
|
time: p.time,
|
|
fields: p.fields[start : cur-1],
|
|
})
|
|
start = cur
|
|
}
|
|
|
|
cur = end + 1
|
|
}
|
|
|
|
points = append(points, &point{
|
|
key: p.key,
|
|
time: p.time,
|
|
fields: p.fields[start:],
|
|
})
|
|
|
|
return points
|
|
}
|
|
|
|
// Tag represents a single key/value tag pair.
|
|
type Tag struct {
|
|
Key []byte
|
|
Value []byte
|
|
}
|
|
|
|
// NewTag returns a new Tag.
|
|
func NewTag(key, value []byte) Tag {
|
|
return Tag{
|
|
Key: key,
|
|
Value: value,
|
|
}
|
|
}
|
|
|
|
// Size returns the size of the key and value.
|
|
func (t Tag) Size() int { return len(t.Key) + len(t.Value) }
|
|
|
|
// Clone returns a shallow copy of Tag.
|
|
//
|
|
// Tags associated with a Point created by ParsePointsWithPrecision will hold references to the byte slice that was parsed.
|
|
// Use Clone to create a Tag with new byte slices that do not refer to the argument to ParsePointsWithPrecision.
|
|
func (t Tag) Clone() Tag {
|
|
other := Tag{
|
|
Key: make([]byte, len(t.Key)),
|
|
Value: make([]byte, len(t.Value)),
|
|
}
|
|
|
|
copy(other.Key, t.Key)
|
|
copy(other.Value, t.Value)
|
|
|
|
return other
|
|
}
|
|
|
|
// String returns the string reprsentation of the tag.
|
|
func (t *Tag) String() string {
|
|
var buf bytes.Buffer
|
|
buf.WriteByte('{')
|
|
buf.WriteString(string(t.Key))
|
|
buf.WriteByte(' ')
|
|
buf.WriteString(string(t.Value))
|
|
buf.WriteByte('}')
|
|
return buf.String()
|
|
}
|
|
|
|
// Tags represents a sorted list of tags.
|
|
type Tags []Tag
|
|
|
|
// NewTags returns a new Tags from a map.
|
|
func NewTags(m map[string]string) Tags {
|
|
if len(m) == 0 {
|
|
return nil
|
|
}
|
|
a := make(Tags, 0, len(m))
|
|
for k, v := range m {
|
|
a = append(a, NewTag([]byte(k), []byte(v)))
|
|
}
|
|
sort.Sort(a)
|
|
return a
|
|
}
|
|
|
|
// Keys returns the list of keys for a tag set.
|
|
func (a Tags) Keys() []string {
|
|
if len(a) == 0 {
|
|
return nil
|
|
}
|
|
keys := make([]string, len(a))
|
|
for i, tag := range a {
|
|
keys[i] = string(tag.Key)
|
|
}
|
|
return keys
|
|
}
|
|
|
|
// Values returns the list of values for a tag set.
|
|
func (a Tags) Values() []string {
|
|
if len(a) == 0 {
|
|
return nil
|
|
}
|
|
values := make([]string, len(a))
|
|
for i, tag := range a {
|
|
values[i] = string(tag.Value)
|
|
}
|
|
return values
|
|
}
|
|
|
|
// String returns the string representation of the tags.
|
|
func (a Tags) String() string {
|
|
var buf bytes.Buffer
|
|
buf.WriteByte('[')
|
|
for i := range a {
|
|
buf.WriteString(a[i].String())
|
|
if i < len(a)-1 {
|
|
buf.WriteByte(' ')
|
|
}
|
|
}
|
|
buf.WriteByte(']')
|
|
return buf.String()
|
|
}
|
|
|
|
// Size returns the number of bytes needed to store all tags. Note, this is
|
|
// the number of bytes needed to store all keys and values and does not account
|
|
// for data structures or delimiters for example.
|
|
func (a Tags) Size() int {
|
|
var total int
|
|
for i := range a {
|
|
total += a[i].Size()
|
|
}
|
|
return total
|
|
}
|
|
|
|
// Clone returns a copy of the slice where the elements are a result of calling `Clone` on the original elements
|
|
//
|
|
// Tags associated with a Point created by ParsePointsWithPrecision will hold references to the byte slice that was parsed.
|
|
// Use Clone to create Tags with new byte slices that do not refer to the argument to ParsePointsWithPrecision.
|
|
func (a Tags) Clone() Tags {
|
|
if len(a) == 0 {
|
|
return nil
|
|
}
|
|
|
|
others := make(Tags, len(a))
|
|
for i := range a {
|
|
others[i] = a[i].Clone()
|
|
}
|
|
|
|
return others
|
|
}
|
|
|
|
func (a Tags) Len() int { return len(a) }
|
|
func (a Tags) Less(i, j int) bool { return bytes.Compare(a[i].Key, a[j].Key) == -1 }
|
|
func (a Tags) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
|
|
|
|
// Equal returns true if a equals other.
|
|
func (a Tags) Equal(other Tags) bool {
|
|
if len(a) != len(other) {
|
|
return false
|
|
}
|
|
for i := range a {
|
|
if !bytes.Equal(a[i].Key, other[i].Key) || !bytes.Equal(a[i].Value, other[i].Value) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// CompareTags returns -1 if a < b, 1 if a > b, and 0 if a == b.
|
|
func CompareTags(a, b Tags) int {
|
|
// Compare each key & value until a mismatch.
|
|
for i := 0; i < len(a) && i < len(b); i++ {
|
|
if cmp := bytes.Compare(a[i].Key, b[i].Key); cmp != 0 {
|
|
return cmp
|
|
}
|
|
if cmp := bytes.Compare(a[i].Value, b[i].Value); cmp != 0 {
|
|
return cmp
|
|
}
|
|
}
|
|
|
|
// If all tags are equal up to this point then return shorter tagset.
|
|
if len(a) < len(b) {
|
|
return -1
|
|
} else if len(a) > len(b) {
|
|
return 1
|
|
}
|
|
|
|
// All tags are equal.
|
|
return 0
|
|
}
|
|
|
|
// Get returns the value for a key.
|
|
func (a Tags) Get(key []byte) []byte {
|
|
// OPTIMIZE: Use sort.Search if tagset is large.
|
|
|
|
for _, t := range a {
|
|
if bytes.Equal(t.Key, key) {
|
|
return t.Value
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// GetString returns the string value for a string key.
|
|
func (a Tags) GetString(key string) string {
|
|
return string(a.Get([]byte(key)))
|
|
}
|
|
|
|
// Set sets the value for a key.
|
|
func (a *Tags) Set(key, value []byte) {
|
|
for i, t := range *a {
|
|
if bytes.Equal(t.Key, key) {
|
|
(*a)[i].Value = value
|
|
return
|
|
}
|
|
}
|
|
*a = append(*a, Tag{Key: key, Value: value})
|
|
sort.Sort(*a)
|
|
}
|
|
|
|
// SetString sets the string value for a string key.
|
|
func (a *Tags) SetString(key, value string) {
|
|
a.Set([]byte(key), []byte(value))
|
|
}
|
|
|
|
// Delete removes a tag by key.
|
|
func (a *Tags) Delete(key []byte) {
|
|
for i, t := range *a {
|
|
if bytes.Equal(t.Key, key) {
|
|
copy((*a)[i:], (*a)[i+1:])
|
|
(*a)[len(*a)-1] = Tag{}
|
|
*a = (*a)[:len(*a)-1]
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// Map returns a map representation of the tags.
|
|
func (a Tags) Map() map[string]string {
|
|
m := make(map[string]string, len(a))
|
|
for _, t := range a {
|
|
m[string(t.Key)] = string(t.Value)
|
|
}
|
|
return m
|
|
}
|
|
|
|
// Merge merges the tags combining the two. If both define a tag with the
|
|
// same key, the merged value overwrites the old value.
|
|
// A new map is returned.
|
|
func (a Tags) Merge(other map[string]string) Tags {
|
|
merged := make(map[string]string, len(a)+len(other))
|
|
for _, t := range a {
|
|
merged[string(t.Key)] = string(t.Value)
|
|
}
|
|
for k, v := range other {
|
|
merged[k] = v
|
|
}
|
|
return NewTags(merged)
|
|
}
|
|
|
|
// HashKey hashes all of a tag's keys.
|
|
func (a Tags) HashKey() []byte {
|
|
return a.AppendHashKey(nil)
|
|
}
|
|
|
|
func (a Tags) needsEscape() bool {
|
|
for i := range a {
|
|
t := &a[i]
|
|
for j := range tagEscapeCodes {
|
|
c := &tagEscapeCodes[j]
|
|
if bytes.IndexByte(t.Key, c.k[0]) != -1 || bytes.IndexByte(t.Value, c.k[0]) != -1 {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// AppendHashKey appends the result of hashing all of a tag's keys and values to dst and returns the extended buffer.
|
|
func (a Tags) AppendHashKey(dst []byte) []byte {
|
|
// Empty maps marshal to empty bytes.
|
|
if len(a) == 0 {
|
|
return dst
|
|
}
|
|
|
|
// Type invariant: Tags are sorted
|
|
|
|
sz := 0
|
|
var escaped Tags
|
|
if a.needsEscape() {
|
|
var tmp [20]Tag
|
|
if len(a) < len(tmp) {
|
|
escaped = tmp[:len(a)]
|
|
} else {
|
|
escaped = make(Tags, len(a))
|
|
}
|
|
|
|
for i := range a {
|
|
t := &a[i]
|
|
nt := &escaped[i]
|
|
nt.Key = escapeTag(t.Key)
|
|
nt.Value = escapeTag(t.Value)
|
|
sz += len(nt.Key) + len(nt.Value)
|
|
}
|
|
} else {
|
|
sz = a.Size()
|
|
escaped = a
|
|
}
|
|
|
|
sz += len(escaped) + (len(escaped) * 2) // separators
|
|
|
|
// Generate marshaled bytes.
|
|
if cap(dst)-len(dst) < sz {
|
|
nd := make([]byte, len(dst), len(dst)+sz)
|
|
copy(nd, dst)
|
|
dst = nd
|
|
}
|
|
buf := dst[len(dst) : len(dst)+sz]
|
|
idx := 0
|
|
for i := range escaped {
|
|
k := &escaped[i]
|
|
if len(k.Value) == 0 {
|
|
continue
|
|
}
|
|
buf[idx] = ','
|
|
idx++
|
|
copy(buf[idx:], k.Key)
|
|
idx += len(k.Key)
|
|
buf[idx] = '='
|
|
idx++
|
|
copy(buf[idx:], k.Value)
|
|
idx += len(k.Value)
|
|
}
|
|
return dst[:len(dst)+idx]
|
|
}
|
|
|
|
// CopyTags returns a shallow copy of tags.
|
|
func CopyTags(a Tags) Tags {
|
|
other := make(Tags, len(a))
|
|
copy(other, a)
|
|
return other
|
|
}
|
|
|
|
// DeepCopyTags returns a deep copy of tags.
|
|
func DeepCopyTags(a Tags) Tags {
|
|
// Calculate size of keys/values in bytes.
|
|
var n int
|
|
for _, t := range a {
|
|
n += len(t.Key) + len(t.Value)
|
|
}
|
|
|
|
// Build single allocation for all key/values.
|
|
buf := make([]byte, n)
|
|
|
|
// Copy tags to new set.
|
|
other := make(Tags, len(a))
|
|
for i, t := range a {
|
|
copy(buf, t.Key)
|
|
other[i].Key, buf = buf[:len(t.Key)], buf[len(t.Key):]
|
|
|
|
copy(buf, t.Value)
|
|
other[i].Value, buf = buf[:len(t.Value)], buf[len(t.Value):]
|
|
}
|
|
|
|
return other
|
|
}
|
|
|
|
// Fields represents a mapping between a Point's field names and their
|
|
// values.
|
|
type Fields map[string]interface{}
|
|
|
|
// FieldIterator retuns a FieldIterator that can be used to traverse the
|
|
// fields of a point without constructing the in-memory map.
|
|
func (p *point) FieldIterator() FieldIterator {
|
|
p.Reset()
|
|
return p
|
|
}
|
|
|
|
type fieldIterator struct {
|
|
start, end int
|
|
key, keybuf []byte
|
|
valueBuf []byte
|
|
fieldType FieldType
|
|
}
|
|
|
|
// Next indicates whether there any fields remaining.
|
|
func (p *point) Next() bool {
|
|
p.it.start = p.it.end
|
|
if p.it.start >= len(p.fields) {
|
|
return false
|
|
}
|
|
|
|
p.it.end, p.it.key = scanTo(p.fields, p.it.start, '=')
|
|
if escape.IsEscaped(p.it.key) {
|
|
p.it.keybuf = escape.AppendUnescaped(p.it.keybuf[:0], p.it.key)
|
|
p.it.key = p.it.keybuf
|
|
}
|
|
|
|
p.it.end, p.it.valueBuf = scanFieldValue(p.fields, p.it.end+1)
|
|
p.it.end++
|
|
|
|
if len(p.it.valueBuf) == 0 {
|
|
p.it.fieldType = Empty
|
|
return true
|
|
}
|
|
|
|
c := p.it.valueBuf[0]
|
|
|
|
if c == '"' {
|
|
p.it.fieldType = String
|
|
return true
|
|
}
|
|
|
|
if strings.IndexByte(`0123456789-.nNiIu`, c) >= 0 {
|
|
if p.it.valueBuf[len(p.it.valueBuf)-1] == 'i' {
|
|
p.it.fieldType = Integer
|
|
p.it.valueBuf = p.it.valueBuf[:len(p.it.valueBuf)-1]
|
|
} else if p.it.valueBuf[len(p.it.valueBuf)-1] == 'u' {
|
|
p.it.fieldType = Unsigned
|
|
p.it.valueBuf = p.it.valueBuf[:len(p.it.valueBuf)-1]
|
|
} else {
|
|
p.it.fieldType = Float
|
|
}
|
|
return true
|
|
}
|
|
|
|
// to keep the same behavior that currently exists, default to boolean
|
|
p.it.fieldType = Boolean
|
|
return true
|
|
}
|
|
|
|
// FieldKey returns the key of the current field.
|
|
func (p *point) FieldKey() []byte {
|
|
return p.it.key
|
|
}
|
|
|
|
// Type returns the FieldType of the current field.
|
|
func (p *point) Type() FieldType {
|
|
return p.it.fieldType
|
|
}
|
|
|
|
// StringValue returns the string value of the current field.
|
|
func (p *point) StringValue() string {
|
|
return unescapeStringField(string(p.it.valueBuf[1 : len(p.it.valueBuf)-1]))
|
|
}
|
|
|
|
// IntegerValue returns the integer value of the current field.
|
|
func (p *point) IntegerValue() (int64, error) {
|
|
n, err := parseIntBytes(p.it.valueBuf, 10, 64)
|
|
if err != nil {
|
|
return 0, fmt.Errorf("unable to parse integer value %q: %v", p.it.valueBuf, err)
|
|
}
|
|
return n, nil
|
|
}
|
|
|
|
// UnsignedValue returns the unsigned value of the current field.
|
|
func (p *point) UnsignedValue() (uint64, error) {
|
|
n, err := parseUintBytes(p.it.valueBuf, 10, 64)
|
|
if err != nil {
|
|
return 0, fmt.Errorf("unable to parse unsigned value %q: %v", p.it.valueBuf, err)
|
|
}
|
|
return n, nil
|
|
}
|
|
|
|
// BooleanValue returns the boolean value of the current field.
|
|
func (p *point) BooleanValue() (bool, error) {
|
|
b, err := parseBoolBytes(p.it.valueBuf)
|
|
if err != nil {
|
|
return false, fmt.Errorf("unable to parse bool value %q: %v", p.it.valueBuf, err)
|
|
}
|
|
return b, nil
|
|
}
|
|
|
|
// FloatValue returns the float value of the current field.
|
|
func (p *point) FloatValue() (float64, error) {
|
|
f, err := parseFloatBytes(p.it.valueBuf, 64)
|
|
if err != nil {
|
|
return 0, fmt.Errorf("unable to parse floating point value %q: %v", p.it.valueBuf, err)
|
|
}
|
|
return f, nil
|
|
}
|
|
|
|
// Reset resets the iterator to its initial state.
|
|
func (p *point) Reset() {
|
|
p.it.fieldType = Empty
|
|
p.it.key = nil
|
|
p.it.valueBuf = nil
|
|
p.it.start = 0
|
|
p.it.end = 0
|
|
}
|
|
|
|
// MarshalBinary encodes all the fields to their proper type and returns the binary
|
|
// represenation
|
|
// NOTE: uint64 is specifically not supported due to potential overflow when we decode
|
|
// again later to an int64
|
|
// NOTE2: uint is accepted, and may be 64 bits, and is for some reason accepted...
|
|
func (p Fields) MarshalBinary() []byte {
|
|
var b []byte
|
|
keys := make([]string, 0, len(p))
|
|
|
|
for k := range p {
|
|
keys = append(keys, k)
|
|
}
|
|
|
|
// Not really necessary, can probably be removed.
|
|
sort.Strings(keys)
|
|
|
|
for i, k := range keys {
|
|
if i > 0 {
|
|
b = append(b, ',')
|
|
}
|
|
b = appendField(b, k, p[k])
|
|
}
|
|
|
|
return b
|
|
}
|
|
|
|
func appendField(b []byte, k string, v interface{}) []byte {
|
|
b = append(b, []byte(escape.String(k))...)
|
|
b = append(b, '=')
|
|
|
|
// check popular types first
|
|
switch v := v.(type) {
|
|
case float64:
|
|
b = strconv.AppendFloat(b, v, 'f', -1, 64)
|
|
case int64:
|
|
b = strconv.AppendInt(b, v, 10)
|
|
b = append(b, 'i')
|
|
case string:
|
|
b = append(b, '"')
|
|
b = append(b, []byte(EscapeStringField(v))...)
|
|
b = append(b, '"')
|
|
case bool:
|
|
b = strconv.AppendBool(b, v)
|
|
case int32:
|
|
b = strconv.AppendInt(b, int64(v), 10)
|
|
b = append(b, 'i')
|
|
case int16:
|
|
b = strconv.AppendInt(b, int64(v), 10)
|
|
b = append(b, 'i')
|
|
case int8:
|
|
b = strconv.AppendInt(b, int64(v), 10)
|
|
b = append(b, 'i')
|
|
case int:
|
|
b = strconv.AppendInt(b, int64(v), 10)
|
|
b = append(b, 'i')
|
|
case uint64:
|
|
b = strconv.AppendUint(b, v, 10)
|
|
b = append(b, 'u')
|
|
case uint32:
|
|
b = strconv.AppendInt(b, int64(v), 10)
|
|
b = append(b, 'i')
|
|
case uint16:
|
|
b = strconv.AppendInt(b, int64(v), 10)
|
|
b = append(b, 'i')
|
|
case uint8:
|
|
b = strconv.AppendInt(b, int64(v), 10)
|
|
b = append(b, 'i')
|
|
case uint:
|
|
// TODO: 'uint' should be converted to writing as an unsigned integer,
|
|
// but we cannot since that would break backwards compatibility.
|
|
b = strconv.AppendInt(b, int64(v), 10)
|
|
b = append(b, 'i')
|
|
case float32:
|
|
b = strconv.AppendFloat(b, float64(v), 'f', -1, 32)
|
|
case []byte:
|
|
b = append(b, v...)
|
|
case nil:
|
|
// skip
|
|
default:
|
|
// Can't determine the type, so convert to string
|
|
b = append(b, '"')
|
|
b = append(b, []byte(EscapeStringField(fmt.Sprintf("%v", v)))...)
|
|
b = append(b, '"')
|
|
|
|
}
|
|
|
|
return b
|
|
}
|
|
|
|
// ValidKeyToken returns true if the token used for measurement, tag key, or tag
|
|
// value is a valid unicode string and only contains printable, non-replacement characters.
|
|
func ValidKeyToken(s string) bool {
|
|
if !utf8.ValidString(s) {
|
|
return false
|
|
}
|
|
for _, r := range s {
|
|
if !unicode.IsPrint(r) || r == unicode.ReplacementChar {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// ValidKeyTokens returns true if the measurement name and all tags are valid.
|
|
func ValidKeyTokens(name string, tags Tags) bool {
|
|
if !ValidKeyToken(name) {
|
|
return false
|
|
}
|
|
for _, tag := range tags {
|
|
if !ValidKeyToken(string(tag.Key)) || !ValidKeyToken(string(tag.Value)) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|