influxdb/tsdb/engine/tsm1/cache.go

808 lines
21 KiB
Go

package tsm1
import (
"fmt"
"math"
"os"
"sync"
"sync/atomic"
"time"
"github.com/influxdata/influxdb/v2/models"
"github.com/influxdata/influxdb/v2/tsdb"
"github.com/influxdata/influxql"
"github.com/prometheus/client_golang/prometheus"
"go.uber.org/zap"
)
// ringShards specifies the number of partitions that the hash ring used to
// store the entry mappings contains. It must be a power of 2. From empirical
// testing, a value above the number of cores on the machine does not provide
// any additional benefit. For now we'll set it to the number of cores on the
// largest box we could imagine running influx.
const ringShards = 16
var (
// ErrSnapshotInProgress is returned if a snapshot is attempted while one is already running.
ErrSnapshotInProgress = fmt.Errorf("snapshot in progress")
)
// ErrCacheMemorySizeLimitExceeded returns an error indicating an operation
// could not be completed due to exceeding the cache-max-memory-size setting.
func ErrCacheMemorySizeLimitExceeded(n, limit uint64) error {
return fmt.Errorf("cache-max-memory-size exceeded: (%d/%d)", n, limit)
}
// entry is a set of values and some metadata.
type entry struct {
mu sync.RWMutex
values Values // All stored values.
// The type of values stored. Read only so doesn't need to be protected by
// mu.
vtype byte
}
// newEntryValues returns a new instance of entry with the given values. If the
// values are not valid, an error is returned.
func newEntryValues(values []Value) (*entry, error) {
e := &entry{}
e.values = make(Values, 0, len(values))
e.values = append(e.values, values...)
// No values, don't check types and ordering
if len(values) == 0 {
return e, nil
}
et := valueType(values[0])
for _, v := range values {
// Make sure all the values are the same type
if et != valueType(v) {
return nil, tsdb.ErrFieldTypeConflict
}
}
// Set the type of values stored.
e.vtype = et
return e, nil
}
// add adds the given values to the entry.
func (e *entry) add(values []Value) error {
if len(values) == 0 {
return nil // Nothing to do.
}
// Are any of the new values the wrong type?
if e.vtype != 0 {
for _, v := range values {
if e.vtype != valueType(v) {
return tsdb.ErrFieldTypeConflict
}
}
}
// entry currently has no values, so add the new ones and we're done.
e.mu.Lock()
if len(e.values) == 0 {
e.values = values
e.vtype = valueType(values[0])
e.mu.Unlock()
return nil
}
// Append the new values to the existing ones...
e.values = append(e.values, values...)
e.mu.Unlock()
return nil
}
// deduplicate sorts and orders the entry's values. If values are already deduped and sorted,
// the function does no work and simply returns.
func (e *entry) deduplicate() {
e.mu.Lock()
defer e.mu.Unlock()
if len(e.values) <= 1 {
return
}
e.values = e.values.Deduplicate()
}
// count returns the number of values in this entry.
func (e *entry) count() int {
e.mu.RLock()
n := len(e.values)
e.mu.RUnlock()
return n
}
// filter removes all values with timestamps between min and max inclusive.
func (e *entry) filter(min, max int64) {
e.mu.Lock()
if len(e.values) > 1 {
e.values = e.values.Deduplicate()
}
e.values = e.values.Exclude(min, max)
e.mu.Unlock()
}
// size returns the size of this entry in bytes.
func (e *entry) size() int {
e.mu.RLock()
sz := e.values.Size()
e.mu.RUnlock()
return sz
}
// InfluxQLType returns for the entry the data type of its values.
func (e *entry) InfluxQLType() (influxql.DataType, error) {
e.mu.RLock()
defer e.mu.RUnlock()
return e.values.InfluxQLType()
}
// storer is the interface that descibes a cache's store.
type storer interface {
entry(key []byte) *entry // Get an entry by its key.
write(key string, values Values) (bool, error) // Write an entry to the store.
remove(key []byte) // Remove an entry from the store.
keys(sorted bool) [][]byte // Return an optionally sorted slice of entry keys.
apply(f func([]byte, *entry) error) error // Apply f to all entries in the store in parallel.
applySerial(f func([]byte, *entry) error) error // Apply f to all entries in serial.
reset() // Reset the store to an initial unused state.
split(n int) []storer // Split splits the store into n stores
count() int // Count returns the number of keys in the store
}
// Cache maintains an in-memory store of Values for a set of keys.
type Cache struct {
// Due to a bug in atomic size needs to be the first word in the struct, as
// that's the only place where you're guaranteed to be 64-bit aligned on a
// 32 bit system. See: https://golang.org/pkg/sync/atomic/#pkg-note-BUG
size uint64
snapshotSize uint64
mu sync.RWMutex
store storer
maxSize uint64
// snapshots are the cache objects that are currently being written to tsm files
// they're kept in memory while flushing so they can be queried along with the cache.
// they are read only and should never be modified
snapshot *Cache
snapshotting bool
// This number is the number of pending or failed WriteSnaphot attempts since the last successful one.
snapshotAttempts int
stats *cacheMetrics
lastWriteTime time.Time
// A one time synchronization used to initial the cache with a store. Since the store can allocate a
// large amount memory across shards, we lazily create it.
initialize atomic.Value
initializedCount uint32
}
// NewCache returns an instance of a cache which will use a maximum of maxSize bytes of memory.
// Only used for engine caches, never for snapshots.
// Note tags are for metrics only, so if metrics are not desired tags do not have to be set.
func NewCache(maxSize uint64, tags tsdb.EngineTags) *Cache {
c := &Cache{
maxSize: maxSize,
store: emptyStore{},
stats: newCacheMetrics(tags),
}
c.stats.LastSnapshot.SetToCurrentTime()
c.initialize.Store(&sync.Once{})
return c
}
var globalCacheMetrics = newAllCacheMetrics()
const cacheSubsystem = "cache"
type allCacheMetrics struct {
MemBytes *prometheus.GaugeVec
DiskBytes *prometheus.GaugeVec
LastSnapshot *prometheus.GaugeVec
Writes *prometheus.CounterVec
WriteErr *prometheus.CounterVec
WriteDropped *prometheus.CounterVec
}
type cacheMetrics struct {
MemBytes prometheus.Gauge
DiskBytes prometheus.Gauge
LastSnapshot prometheus.Gauge
Writes prometheus.Counter
WriteErr prometheus.Counter
WriteDropped prometheus.Counter
}
func newAllCacheMetrics() *allCacheMetrics {
labels := tsdb.EngineLabelNames()
return &allCacheMetrics{
MemBytes: prometheus.NewGaugeVec(prometheus.GaugeOpts{
Namespace: storageNamespace,
Subsystem: cacheSubsystem,
Name: "inuse_bytes",
Help: "Gauge of current memory consumption of cache",
}, labels),
DiskBytes: prometheus.NewGaugeVec(prometheus.GaugeOpts{
Namespace: storageNamespace,
Subsystem: cacheSubsystem,
Name: "disk_bytes",
Help: "Gauge of size of most recent snapshot",
}, labels),
LastSnapshot: prometheus.NewGaugeVec(prometheus.GaugeOpts{
Namespace: storageNamespace,
Subsystem: cacheSubsystem,
Name: "latest_snapshot",
Help: "Unix time of most recent snapshot",
}, labels),
Writes: prometheus.NewCounterVec(prometheus.CounterOpts{
Namespace: storageNamespace,
Subsystem: cacheSubsystem,
Name: "writes_total",
Help: "Counter of all writes to cache",
}, labels),
WriteErr: prometheus.NewCounterVec(prometheus.CounterOpts{
Namespace: storageNamespace,
Subsystem: cacheSubsystem,
Name: "writes_err",
Help: "Counter of failed writes to cache",
}, labels),
WriteDropped: prometheus.NewCounterVec(prometheus.CounterOpts{
Namespace: storageNamespace,
Subsystem: cacheSubsystem,
Name: "writes_dropped",
Help: "Counter of writes to cache with some dropped points",
}, labels),
}
}
func CacheCollectors() []prometheus.Collector {
return []prometheus.Collector{
globalCacheMetrics.MemBytes,
globalCacheMetrics.DiskBytes,
globalCacheMetrics.LastSnapshot,
globalCacheMetrics.Writes,
globalCacheMetrics.WriteErr,
globalCacheMetrics.WriteDropped,
}
}
func newCacheMetrics(tags tsdb.EngineTags) *cacheMetrics {
labels := tags.GetLabels()
return &cacheMetrics{
MemBytes: globalCacheMetrics.MemBytes.With(labels),
DiskBytes: globalCacheMetrics.DiskBytes.With(labels),
LastSnapshot: globalCacheMetrics.LastSnapshot.With(labels),
Writes: globalCacheMetrics.Writes.With(labels),
WriteErr: globalCacheMetrics.WriteErr.With(labels),
WriteDropped: globalCacheMetrics.WriteDropped.With(labels),
}
}
// init initializes the cache and allocates the underlying store. Once initialized,
// the store re-used until Freed.
func (c *Cache) init() {
if !atomic.CompareAndSwapUint32(&c.initializedCount, 0, 1) {
return
}
c.mu.Lock()
c.store, _ = newring(ringShards)
c.mu.Unlock()
}
// Free releases the underlying store and memory held by the Cache.
func (c *Cache) Free() {
if !atomic.CompareAndSwapUint32(&c.initializedCount, 1, 0) {
return
}
c.mu.Lock()
c.store = emptyStore{}
c.mu.Unlock()
}
// WriteMulti writes the map of keys and associated values to the cache. This
// function is goroutine-safe. It returns an error if the cache will exceeded
// its max size by adding the new values. The write attempts to write as many
// values as possible. If one key fails, the others can still succeed and an
// error will be returned.
func (c *Cache) WriteMulti(values map[string][]Value) error {
c.init()
c.stats.Writes.Inc()
var addedSize uint64
for _, v := range values {
addedSize += uint64(Values(v).Size())
}
// Enough room in the cache?
limit := c.maxSize // maxSize is safe for reading without a lock.
n := c.Size() + addedSize
if limit > 0 && n > limit {
c.stats.WriteErr.Inc()
return ErrCacheMemorySizeLimitExceeded(n, limit)
}
var werr error
c.mu.RLock()
store := c.store
c.mu.RUnlock()
// We'll optimistically set size here, and then decrement it for write errors.
c.increaseSize(addedSize)
for k, v := range values {
newKey, err := store.write(k, v)
if err != nil {
// The write failed, hold onto the error and adjust the size delta.
werr = err
addedSize -= uint64(Values(v).Size())
c.decreaseSize(uint64(Values(v).Size()))
}
if newKey {
addedSize += uint64(len(k))
c.increaseSize(uint64(len(k)))
}
}
// Some points in the batch were dropped. An error is returned so
// error stat is incremented as well.
if werr != nil {
c.stats.WriteDropped.Inc()
c.stats.WriteErr.Inc()
}
// Update the memory size stat
c.stats.MemBytes.Set(float64(c.Size()))
c.mu.Lock()
c.lastWriteTime = time.Now()
c.mu.Unlock()
return werr
}
// Snapshot takes a snapshot of the current cache, adds it to the slice of caches that
// are being flushed, and resets the current cache with new values.
func (c *Cache) Snapshot() (*Cache, error) {
c.init()
c.mu.Lock()
defer c.mu.Unlock()
if c.snapshotting {
return nil, ErrSnapshotInProgress
}
c.snapshotting = true
c.snapshotAttempts++ // increment the number of times we tried to do this
// If no snapshot exists, create a new one, otherwise update the existing snapshot
if c.snapshot == nil {
store, err := newring(ringShards)
if err != nil {
return nil, err
}
c.snapshot = &Cache{
store: store,
}
}
// Did a prior snapshot exist that failed? If so, return the existing
// snapshot to retry.
if c.snapshot.Size() > 0 {
return c.snapshot, nil
}
c.snapshot.store, c.store = c.store, c.snapshot.store
snapshotSize := c.Size()
// Save the size of the snapshot on the snapshot cache
atomic.StoreUint64(&c.snapshot.size, snapshotSize)
// Save the size of the snapshot on the live cache
atomic.StoreUint64(&c.snapshotSize, snapshotSize)
// Reset the cache's store.
c.store.reset()
atomic.StoreUint64(&c.size, 0)
c.stats.LastSnapshot.SetToCurrentTime()
return c.snapshot, nil
}
// Deduplicate sorts the snapshot before returning it. The compactor and any queries
// coming in while it writes will need the values sorted.
func (c *Cache) Deduplicate() {
c.mu.RLock()
store := c.store
c.mu.RUnlock()
// Apply a function that simply calls deduplicate on each entry in the ring.
// apply cannot return an error in this invocation.
_ = store.apply(func(_ []byte, e *entry) error { e.deduplicate(); return nil })
}
// ClearSnapshot removes the snapshot cache from the list of flushing caches and
// adjusts the size.
func (c *Cache) ClearSnapshot(success bool) {
c.init()
c.mu.RLock()
snapStore := c.snapshot.store
c.mu.RUnlock()
// reset the snapshot store outside of the write lock
if success {
snapStore.reset()
}
c.mu.Lock()
defer c.mu.Unlock()
c.snapshotting = false
if success {
c.snapshotAttempts = 0
// Reset the snapshot to a fresh Cache.
c.snapshot = &Cache{
store: c.snapshot.store,
}
c.stats.DiskBytes.Set(float64(atomic.LoadUint64(&c.snapshotSize)))
atomic.StoreUint64(&c.snapshotSize, 0)
}
c.stats.MemBytes.Set(float64(c.Size()))
}
// Size returns the number of point-calcuated bytes the cache currently uses.
func (c *Cache) Size() uint64 {
return atomic.LoadUint64(&c.size) + atomic.LoadUint64(&c.snapshotSize)
}
// increaseSize increases size by delta.
func (c *Cache) increaseSize(delta uint64) {
atomic.AddUint64(&c.size, delta)
}
// decreaseSize decreases size by delta.
func (c *Cache) decreaseSize(delta uint64) {
// Per sync/atomic docs, bit-flip delta minus one to perform subtraction within AddUint64.
atomic.AddUint64(&c.size, ^(delta - 1))
}
// MaxSize returns the maximum number of bytes the cache may consume.
func (c *Cache) MaxSize() uint64 {
return c.maxSize
}
func (c *Cache) Count() int {
c.mu.RLock()
n := c.store.count()
c.mu.RUnlock()
return n
}
// Keys returns a sorted slice of all keys under management by the cache.
func (c *Cache) Keys() [][]byte {
c.mu.RLock()
store := c.store
c.mu.RUnlock()
return store.keys(true)
}
func (c *Cache) Split(n int) []*Cache {
if n == 1 {
return []*Cache{c}
}
caches := make([]*Cache, n)
storers := c.store.split(n)
for i := 0; i < n; i++ {
caches[i] = &Cache{
store: storers[i],
}
}
return caches
}
// Type returns the series type for a key.
func (c *Cache) Type(key []byte) (models.FieldType, error) {
c.mu.RLock()
e := c.store.entry(key)
if e == nil && c.snapshot != nil {
e = c.snapshot.store.entry(key)
}
c.mu.RUnlock()
if e != nil {
typ, err := e.InfluxQLType()
if err != nil {
return models.Empty, tsdb.ErrUnknownFieldType
}
switch typ {
case influxql.Float:
return models.Float, nil
case influxql.Integer:
return models.Integer, nil
case influxql.Unsigned:
return models.Unsigned, nil
case influxql.Boolean:
return models.Boolean, nil
case influxql.String:
return models.String, nil
}
}
return models.Empty, tsdb.ErrUnknownFieldType
}
// Values returns a copy of all values, deduped and sorted, for the given key.
func (c *Cache) Values(key []byte) Values {
var snapshotEntries *entry
c.mu.RLock()
e := c.store.entry(key)
if c.snapshot != nil {
snapshotEntries = c.snapshot.store.entry(key)
}
c.mu.RUnlock()
if e == nil {
if snapshotEntries == nil {
// No values in hot cache or snapshots.
return nil
}
} else {
e.deduplicate()
}
// Build the sequence of entries that will be returned, in the correct order.
// Calculate the required size of the destination buffer.
var entries []*entry
sz := 0
if snapshotEntries != nil {
snapshotEntries.deduplicate() // guarantee we are deduplicated
entries = append(entries, snapshotEntries)
sz += snapshotEntries.count()
}
if e != nil {
entries = append(entries, e)
sz += e.count()
}
// Any entries? If not, return.
if sz == 0 {
return nil
}
// Create the buffer, and copy all hot values and snapshots. Individual
// entries are sorted at this point, so now the code has to check if the
// resultant buffer will be sorted from start to finish.
values := make(Values, sz)
n := 0
for _, e := range entries {
e.mu.RLock()
n += copy(values[n:], e.values)
e.mu.RUnlock()
}
values = values[:n]
values = values.Deduplicate()
return values
}
// Delete removes all values for the given keys from the cache.
func (c *Cache) Delete(keys [][]byte) {
c.DeleteRange(keys, math.MinInt64, math.MaxInt64)
}
// DeleteRange removes the values for all keys containing points
// with timestamps between between min and max from the cache.
//
// TODO(edd): Lock usage could possibly be optimised if necessary.
func (c *Cache) DeleteRange(keys [][]byte, min, max int64) {
c.init()
c.mu.Lock()
defer c.mu.Unlock()
for _, k := range keys {
// Make sure key exist in the cache, skip if it does not
e := c.store.entry(k)
if e == nil {
continue
}
origSize := uint64(e.size())
if min == math.MinInt64 && max == math.MaxInt64 {
c.decreaseSize(origSize + uint64(len(k)))
c.store.remove(k)
continue
}
e.filter(min, max)
if e.count() == 0 {
c.store.remove(k)
c.decreaseSize(origSize + uint64(len(k)))
continue
}
c.decreaseSize(origSize - uint64(e.size()))
}
c.stats.MemBytes.Set(float64(c.Size()))
}
// SetMaxSize updates the memory limit of the cache.
func (c *Cache) SetMaxSize(size uint64) {
c.mu.Lock()
c.maxSize = size
c.mu.Unlock()
}
// values returns the values for the key. It assumes the data is already sorted.
// It doesn't lock the cache but it does read-lock the entry if there is one for the key.
// values should only be used in compact.go in the CacheKeyIterator.
func (c *Cache) values(key []byte) Values {
e := c.store.entry(key)
if e == nil {
return nil
}
e.mu.RLock()
v := e.values
e.mu.RUnlock()
return v
}
// ApplyEntryFn applies the function f to each entry in the Cache.
// ApplyEntryFn calls f on each entry in turn, within the same goroutine.
// It is safe for use by multiple goroutines.
func (c *Cache) ApplyEntryFn(f func(key []byte, entry *entry) error) error {
c.mu.RLock()
store := c.store
c.mu.RUnlock()
return store.applySerial(f)
}
// CacheLoader processes a set of WAL segment files, and loads a cache with the data
// contained within those files. Processing of the supplied files take place in the
// order they exist in the files slice.
type CacheLoader struct {
files []string
Logger *zap.Logger
}
// NewCacheLoader returns a new instance of a CacheLoader.
func NewCacheLoader(files []string) *CacheLoader {
return &CacheLoader{
files: files,
Logger: zap.NewNop(),
}
}
// Load returns a cache loaded with the data contained within the segment files.
// If, during reading of a segment file, corruption is encountered, that segment
// file is truncated up to and including the last valid byte, and processing
// continues with the next segment file.
func (cl *CacheLoader) Load(cache *Cache) error {
var r *WALSegmentReader
for _, fn := range cl.files {
if err := func() error {
f, err := os.OpenFile(fn, os.O_CREATE|os.O_RDWR, 0666)
if err != nil {
return err
}
defer f.Close()
// Log some information about the segments.
stat, err := os.Stat(f.Name())
if err != nil {
return err
}
cl.Logger.Info("Reading file", zap.String("path", f.Name()), zap.Int64("size", stat.Size()))
// Nothing to read, skip it
if stat.Size() == 0 {
return nil
}
if r == nil {
r = NewWALSegmentReader(f)
defer r.Close()
} else {
r.Reset(f)
}
for r.Next() {
entry, err := r.Read()
if err != nil {
n := r.Count()
cl.Logger.Info("File corrupt", zap.Error(err), zap.String("path", f.Name()), zap.Int64("pos", n))
if err := f.Truncate(n); err != nil {
return err
}
break
}
switch t := entry.(type) {
case *WriteWALEntry:
if err := cache.WriteMulti(t.Values); err != nil {
return err
}
case *DeleteRangeWALEntry:
cache.DeleteRange(t.Keys, t.Min, t.Max)
case *DeleteWALEntry:
cache.Delete(t.Keys)
}
}
return r.Close()
}(); err != nil {
return err
}
}
return nil
}
// WithLogger sets the logger on the CacheLoader.
func (cl *CacheLoader) WithLogger(log *zap.Logger) {
cl.Logger = log.With(zap.String("service", "cacheloader"))
}
func (c *Cache) LastWriteTime() time.Time {
c.mu.RLock()
defer c.mu.RUnlock()
return c.lastWriteTime
}
const (
valueTypeUndefined = 0
valueTypeFloat64 = 1
valueTypeInteger = 2
valueTypeString = 3
valueTypeBoolean = 4
valueTypeUnsigned = 5
)
func valueType(v Value) byte {
switch v.(type) {
case FloatValue:
return valueTypeFloat64
case IntegerValue:
return valueTypeInteger
case StringValue:
return valueTypeString
case BooleanValue:
return valueTypeBoolean
case UnsignedValue:
return valueTypeUnsigned
default:
return valueTypeUndefined
}
}
type emptyStore struct{}
func (e emptyStore) entry(key []byte) *entry { return nil }
func (e emptyStore) write(key string, values Values) (bool, error) { return false, nil }
func (e emptyStore) remove(key []byte) {}
func (e emptyStore) keys(sorted bool) [][]byte { return nil }
func (e emptyStore) apply(f func([]byte, *entry) error) error { return nil }
func (e emptyStore) applySerial(f func([]byte, *entry) error) error { return nil }
func (e emptyStore) reset() {}
func (e emptyStore) split(n int) []storer { return nil }
func (e emptyStore) count() int { return 0 }