package tsdb // All aggregate and query functions are defined in this file along with any intermediate data objects they need to process. // Query functions are represented as two discreet functions: Map and Reduce. These roughly follow the MapReduce // paradigm popularized by Google and Hadoop. // // When adding an aggregate function, define a mapper, a reducer, and add them in the switch statement in the MapreduceFuncs function import ( "encoding/json" "fmt" "math" "math/rand" "sort" "github.com/influxdb/influxdb/influxql" ) // iterator represents a forward-only iterator over a set of points. // These are used by the mapFunctions in this file type iterator interface { Next() (time int64, value interface{}) Tags() map[string]string TMin() int64 } // mapFunc represents a function used for mapping over a sequential series of data. // The iterator represents a single group by interval type mapFunc func(iterator) interface{} // reduceFunc represents a function used for reducing mapper output. type reduceFunc func([]interface{}) interface{} // UnmarshalFunc represents a function that can take bytes from a mapper from remote // server and marshal it into an interface the reducer can use type unmarshalFunc func([]byte) (interface{}, error) // initializemapFunc takes an aggregate call from the query and returns the mapFunc func initializeMapFunc(c *influxql.Call) (mapFunc, error) { // see if it's a query for raw data if c == nil { return MapRawQuery, nil } // Retrieve map function by name. switch c.Name { case "count": if _, ok := c.Args[0].(*influxql.Distinct); ok { return MapCountDistinct, nil } if c, ok := c.Args[0].(*influxql.Call); ok { if c.Name == "distinct" { return MapCountDistinct, nil } } return MapCount, nil case "distinct": return MapDistinct, nil case "sum": return MapSum, nil case "mean": return MapMean, nil case "median": return MapStddev, nil case "min": return MapMin, nil case "max": return MapMax, nil case "spread": return MapSpread, nil case "stddev": return MapStddev, nil case "first": return MapFirst, nil case "last": return MapLast, nil case "top": return func(itr iterator) interface{} { return MapTop(itr, c) }, nil case "percentile": return MapEcho, nil case "derivative", "non_negative_derivative": // If the arg is another aggregate e.g. derivative(mean(value)), then // use the map func for that nested aggregate if fn, ok := c.Args[0].(*influxql.Call); ok { return initializeMapFunc(fn) } return MapRawQuery, nil default: return nil, fmt.Errorf("function not found: %q", c.Name) } } // InitializereduceFunc takes an aggregate call from the query and returns the reduceFunc func initializeReduceFunc(c *influxql.Call) (reduceFunc, error) { // Retrieve reduce function by name. switch c.Name { case "count": if _, ok := c.Args[0].(*influxql.Distinct); ok { return ReduceCountDistinct, nil } if c, ok := c.Args[0].(*influxql.Call); ok { if c.Name == "distinct" { return ReduceCountDistinct, nil } } return ReduceSum, nil case "distinct": return ReduceDistinct, nil case "sum": return ReduceSum, nil case "mean": return ReduceMean, nil case "median": return ReduceMedian, nil case "min": return ReduceMin, nil case "max": return ReduceMax, nil case "spread": return ReduceSpread, nil case "stddev": return ReduceStddev, nil case "first": return ReduceFirst, nil case "last": return ReduceLast, nil case "top": return func(values []interface{}) interface{} { return ReduceTop(values, c) }, nil case "percentile": return func(values []interface{}) interface{} { return ReducePercentile(values, c) }, nil case "derivative", "non_negative_derivative": // If the arg is another aggregate e.g. derivative(mean(value)), then // use the map func for that nested aggregate if fn, ok := c.Args[0].(*influxql.Call); ok { return initializeReduceFunc(fn) } return nil, fmt.Errorf("expected function argument to %s", c.Name) default: return nil, fmt.Errorf("function not found: %q", c.Name) } } func initializeUnmarshaller(c *influxql.Call) (unmarshalFunc, error) { // if c is nil it's a raw data query if c == nil { return func(b []byte) (interface{}, error) { a := make([]*rawQueryMapOutput, 0) err := json.Unmarshal(b, &a) return a, err }, nil } // Retrieve marshal function by name switch c.Name { case "mean": return func(b []byte) (interface{}, error) { var o meanMapOutput err := json.Unmarshal(b, &o) return &o, err }, nil case "spread": return func(b []byte) (interface{}, error) { var o spreadMapOutput err := json.Unmarshal(b, &o) return &o, err }, nil case "distinct": return func(b []byte) (interface{}, error) { var val interfaceValues err := json.Unmarshal(b, &val) return val, err }, nil case "first": return func(b []byte) (interface{}, error) { var o firstLastMapOutput err := json.Unmarshal(b, &o) return &o, err }, nil case "last": return func(b []byte) (interface{}, error) { var o firstLastMapOutput err := json.Unmarshal(b, &o) return &o, err }, nil case "stddev": return func(b []byte) (interface{}, error) { val := make([]float64, 0) err := json.Unmarshal(b, &val) return val, err }, nil case "median": return func(b []byte) (interface{}, error) { a := make([]float64, 0) err := json.Unmarshal(b, &a) return a, err }, nil default: return func(b []byte) (interface{}, error) { var val interface{} err := json.Unmarshal(b, &val) return val, err }, nil } } // MapCount computes the number of values in an iterator. func MapCount(itr iterator) interface{} { n := float64(0) for k, _ := itr.Next(); k != -1; k, _ = itr.Next() { n++ } if n > 0 { return n } return nil } type interfaceValues []interface{} func (d interfaceValues) Len() int { return len(d) } func (d interfaceValues) Swap(i, j int) { d[i], d[j] = d[j], d[i] } func (d interfaceValues) Less(i, j int) bool { // Sort by type if types match // Sort by float64/int64 first as that is the most likely match { d1, ok1 := d[i].(float64) d2, ok2 := d[j].(float64) if ok1 && ok2 { return d1 < d2 } } { d1, ok1 := d[i].(int64) d2, ok2 := d[j].(int64) if ok1 && ok2 { return d1 < d2 } } // Sort by every numeric type left { d1, ok1 := d[i].(float32) d2, ok2 := d[j].(float32) if ok1 && ok2 { return d1 < d2 } } { d1, ok1 := d[i].(uint64) d2, ok2 := d[j].(uint64) if ok1 && ok2 { return d1 < d2 } } { d1, ok1 := d[i].(uint32) d2, ok2 := d[j].(uint32) if ok1 && ok2 { return d1 < d2 } } { d1, ok1 := d[i].(uint16) d2, ok2 := d[j].(uint16) if ok1 && ok2 { return d1 < d2 } } { d1, ok1 := d[i].(uint8) d2, ok2 := d[j].(uint8) if ok1 && ok2 { return d1 < d2 } } { d1, ok1 := d[i].(int32) d2, ok2 := d[j].(int32) if ok1 && ok2 { return d1 < d2 } } { d1, ok1 := d[i].(int16) d2, ok2 := d[j].(int16) if ok1 && ok2 { return d1 < d2 } } { d1, ok1 := d[i].(int8) d2, ok2 := d[j].(int8) if ok1 && ok2 { return d1 < d2 } } { d1, ok1 := d[i].(bool) d2, ok2 := d[j].(bool) if ok1 && ok2 { return d1 == false && d2 == true } } { d1, ok1 := d[i].(string) d2, ok2 := d[j].(string) if ok1 && ok2 { return d1 < d2 } } // Types did not match, need to sort based on arbitrary weighting of type const ( intWeight = iota floatWeight boolWeight stringWeight ) infer := func(val interface{}) (int, float64) { switch v := val.(type) { case uint64: return intWeight, float64(v) case uint32: return intWeight, float64(v) case uint16: return intWeight, float64(v) case uint8: return intWeight, float64(v) case int64: return intWeight, float64(v) case int32: return intWeight, float64(v) case int16: return intWeight, float64(v) case int8: return intWeight, float64(v) case float64: return floatWeight, float64(v) case float32: return floatWeight, float64(v) case bool: return boolWeight, 0 case string: return stringWeight, 0 } panic("interfaceValues.Less - unreachable code") } w1, n1 := infer(d[i]) w2, n2 := infer(d[j]) // If we had "numeric" data, use that for comparison if n1 != n2 && (w1 == intWeight && w2 == floatWeight) || (w1 == floatWeight && w2 == intWeight) { return n1 < n2 } return w1 < w2 } // MapDistinct computes the unique values in an iterator. func MapDistinct(itr iterator) interface{} { var index = make(map[interface{}]struct{}) for time, value := itr.Next(); time != -1; time, value = itr.Next() { index[value] = struct{}{} } if len(index) == 0 { return nil } results := make(interfaceValues, len(index)) var i int for value, _ := range index { results[i] = value i++ } return results } // ReduceDistinct finds the unique values for each key. func ReduceDistinct(values []interface{}) interface{} { var index = make(map[interface{}]struct{}) // index distinct values from each mapper for _, v := range values { if v == nil { continue } d, ok := v.(interfaceValues) if !ok { msg := fmt.Sprintf("expected distinctValues, got: %T", v) panic(msg) } for _, distinctValue := range d { index[distinctValue] = struct{}{} } } // convert map keys to an array results := make(interfaceValues, len(index)) var i int for k, _ := range index { results[i] = k i++ } if len(results) > 0 { sort.Sort(results) return results } return nil } // MapCountDistinct computes the unique count of values in an iterator. func MapCountDistinct(itr iterator) interface{} { var index = make(map[interface{}]struct{}) for time, value := itr.Next(); time != -1; time, value = itr.Next() { index[value] = struct{}{} } if len(index) == 0 { return nil } return index } // ReduceCountDistinct finds the unique counts of values. func ReduceCountDistinct(values []interface{}) interface{} { var index = make(map[interface{}]struct{}) // index distinct values from each mapper for _, v := range values { if v == nil { continue } d, ok := v.(map[interface{}]struct{}) if !ok { msg := fmt.Sprintf("expected map[interface{}]struct{}, got: %T", v) panic(msg) } for distinctCountValue, _ := range d { index[distinctCountValue] = struct{}{} } } return len(index) } type NumberType int8 const ( Float64Type NumberType = iota Int64Type ) // MapSum computes the summation of values in an iterator. func MapSum(itr iterator) interface{} { n := float64(0) count := 0 var resultType NumberType for k, v := itr.Next(); k != -1; k, v = itr.Next() { count++ switch n1 := v.(type) { case float64: n += n1 case int64: n += float64(n1) resultType = Int64Type } } if count > 0 { switch resultType { case Float64Type: return n case Int64Type: return int64(n) } } return nil } // ReduceSum computes the sum of values for each key. func ReduceSum(values []interface{}) interface{} { var n float64 count := 0 var resultType NumberType for _, v := range values { if v == nil { continue } count++ switch n1 := v.(type) { case float64: n += n1 case int64: n += float64(n1) resultType = Int64Type } } if count > 0 { switch resultType { case Float64Type: return n case Int64Type: return int64(n) } } return nil } // MapMean computes the count and sum of values in an iterator to be combined by the reducer. func MapMean(itr iterator) interface{} { out := &meanMapOutput{} for k, v := itr.Next(); k != -1; k, v = itr.Next() { out.Count++ switch n1 := v.(type) { case float64: out.Mean += (n1 - out.Mean) / float64(out.Count) case int64: out.Mean += (float64(n1) - out.Mean) / float64(out.Count) out.ResultType = Int64Type } } if out.Count > 0 { return out } return nil } type meanMapOutput struct { Count int Mean float64 ResultType NumberType } // ReduceMean computes the mean of values for each key. func ReduceMean(values []interface{}) interface{} { out := &meanMapOutput{} var countSum int for _, v := range values { if v == nil { continue } val := v.(*meanMapOutput) countSum = out.Count + val.Count out.Mean = val.Mean*(float64(val.Count)/float64(countSum)) + out.Mean*(float64(out.Count)/float64(countSum)) out.Count = countSum } if out.Count > 0 { return out.Mean } return nil } // ReduceMedian computes the median of values func ReduceMedian(values []interface{}) interface{} { var data []float64 // Collect all the data points for _, value := range values { if value == nil { continue } data = append(data, value.([]float64)...) } length := len(data) if length < 2 { if length == 0 { return nil } return data[0] } middle := length / 2 var sortedRange []float64 if length%2 == 0 { sortedRange = getSortedRange(data, middle-1, 2) var low, high = sortedRange[0], sortedRange[1] return low + (high-low)/2 } sortedRange = getSortedRange(data, middle, 1) return sortedRange[0] } // getSortedRange returns a sorted subset of data. By using discardLowerRange and discardUpperRange to get the target // subset (unsorted) and then just sorting that subset, the work can be reduced from O(N lg N), where N is len(data), to // O(N + count lg count) for the average case // - O(N) to discard the unwanted items // - O(count lg count) to sort the count number of extracted items // This can be useful for: // - finding the median: getSortedRange(data, middle, 1) // - finding the top N: getSortedRange(data, len(data) - N, N) // - finding the bottom N: getSortedRange(data, 0, N) func getSortedRange(data []float64, start int, count int) []float64 { out := discardLowerRange(data, start) k := len(out) - count if k > 0 { out = discardUpperRange(out, k) } sort.Float64s(out) return out } // discardLowerRange discards the lower k elements of the sorted data set without sorting all the data. Sorting all of // the data would take O(NlgN), where N is len(data), but partitioning to find the kth largest number is O(N) in the // average case. The remaining N-k unsorted elements are returned - no kind of ordering is guaranteed on these elements. func discardLowerRange(data []float64, k int) []float64 { out := make([]float64, len(data)-k) i := 0 // discard values lower than the desired range for k > 0 { lows, pivotValue, highs := partition(data) lowLength := len(lows) if lowLength > k { // keep all the highs and the pivot out[i] = pivotValue i++ copy(out[i:], highs) i += len(highs) // iterate over the lows again data = lows } else { // discard all the lows data = highs k -= lowLength if k == 0 { // if discarded enough lows, keep the pivot out[i] = pivotValue i++ } else { // able to discard the pivot too k-- } } } copy(out[i:], data) return out } // discardUpperRange discards the upper k elements of the sorted data set without sorting all the data. Sorting all of // the data would take O(NlgN), where N is len(data), but partitioning to find the kth largest number is O(N) in the // average case. The remaining N-k unsorted elements are returned - no kind of ordering is guaranteed on these elements. func discardUpperRange(data []float64, k int) []float64 { out := make([]float64, len(data)-k) i := 0 // discard values higher than the desired range for k > 0 { lows, pivotValue, highs := partition(data) highLength := len(highs) if highLength > k { // keep all the lows and the pivot out[i] = pivotValue i++ copy(out[i:], lows) i += len(lows) // iterate over the highs again data = highs } else { // discard all the highs data = lows k -= highLength if k == 0 { // if discarded enough highs, keep the pivot out[i] = pivotValue i++ } else { // able to discard the pivot too k-- } } } copy(out[i:], data) return out } // partition takes a list of data, chooses a random pivot index and returns a list of elements lower than the // pivotValue, the pivotValue, and a list of elements higher than the pivotValue. partition mutates data. func partition(data []float64) (lows []float64, pivotValue float64, highs []float64) { length := len(data) // there are better (more complex) ways to calculate pivotIndex (e.g. median of 3, median of 3 medians) if this // proves to be inadequate. pivotIndex := rand.Int() % length pivotValue = data[pivotIndex] low, high := 1, length-1 // put the pivot in the first position data[pivotIndex], data[0] = data[0], data[pivotIndex] // partition the data around the pivot for low <= high { for low <= high && data[low] <= pivotValue { low++ } for high >= low && data[high] >= pivotValue { high-- } if low < high { data[low], data[high] = data[high], data[low] } } return data[1:low], pivotValue, data[high+1:] } type minMaxMapOut struct { Val float64 Type NumberType } // MapMin collects the values to pass to the reducer func MapMin(itr iterator) interface{} { min := &minMaxMapOut{} pointsYielded := false var val float64 for k, v := itr.Next(); k != -1; k, v = itr.Next() { switch n := v.(type) { case float64: val = n case int64: val = float64(n) min.Type = Int64Type } // Initialize min if !pointsYielded { min.Val = val pointsYielded = true } min.Val = math.Min(min.Val, val) } if pointsYielded { return min } return nil } // ReduceMin computes the min of value. func ReduceMin(values []interface{}) interface{} { min := &minMaxMapOut{} pointsYielded := false for _, value := range values { if value == nil { continue } v, ok := value.(*minMaxMapOut) if !ok { continue } // Initialize min if !pointsYielded { min.Val = v.Val min.Type = v.Type pointsYielded = true } min.Val = math.Min(min.Val, v.Val) } if pointsYielded { switch min.Type { case Float64Type: return min.Val case Int64Type: return int64(min.Val) } } return nil } // MapMax collects the values to pass to the reducer func MapMax(itr iterator) interface{} { max := &minMaxMapOut{} pointsYielded := false var val float64 for k, v := itr.Next(); k != -1; k, v = itr.Next() { switch n := v.(type) { case float64: val = n case int64: val = float64(n) max.Type = Int64Type } // Initialize max if !pointsYielded { max.Val = val pointsYielded = true } max.Val = math.Max(max.Val, val) } if pointsYielded { return max } return nil } // ReduceMax computes the max of value. func ReduceMax(values []interface{}) interface{} { max := &minMaxMapOut{} pointsYielded := false for _, value := range values { if value == nil { continue } v, ok := value.(*minMaxMapOut) if !ok { continue } // Initialize max if !pointsYielded { max.Val = v.Val max.Type = v.Type pointsYielded = true } max.Val = math.Max(max.Val, v.Val) } if pointsYielded { switch max.Type { case Float64Type: return max.Val case Int64Type: return int64(max.Val) } } return nil } type spreadMapOutput struct { Min, Max float64 Type NumberType } // MapSpread collects the values to pass to the reducer func MapSpread(itr iterator) interface{} { out := &spreadMapOutput{} pointsYielded := false var val float64 for k, v := itr.Next(); k != -1; k, v = itr.Next() { switch n := v.(type) { case float64: val = n case int64: val = float64(n) out.Type = Int64Type } // Initialize if !pointsYielded { out.Max = val out.Min = val pointsYielded = true } out.Max = math.Max(out.Max, val) out.Min = math.Min(out.Min, val) } if pointsYielded { return out } return nil } // ReduceSpread computes the spread of values. func ReduceSpread(values []interface{}) interface{} { result := &spreadMapOutput{} pointsYielded := false for _, v := range values { if v == nil { continue } val := v.(*spreadMapOutput) // Initialize if !pointsYielded { result.Max = val.Max result.Min = val.Min result.Type = val.Type pointsYielded = true } result.Max = math.Max(result.Max, val.Max) result.Min = math.Min(result.Min, val.Min) } if pointsYielded { switch result.Type { case Float64Type: return result.Max - result.Min case Int64Type: return int64(result.Max - result.Min) } } return nil } // MapStddev collects the values to pass to the reducer func MapStddev(itr iterator) interface{} { var values []float64 for k, v := itr.Next(); k != -1; k, v = itr.Next() { switch n := v.(type) { case float64: values = append(values, n) case int64: values = append(values, float64(n)) } } return values } // ReduceStddev computes the stddev of values. func ReduceStddev(values []interface{}) interface{} { var data []float64 // Collect all the data points for _, value := range values { if value == nil { continue } data = append(data, value.([]float64)...) } // If no data or we only have one point, it's nil or undefined if len(data) < 2 { return nil } // Get the mean var mean float64 var count int for _, v := range data { count++ mean += (v - mean) / float64(count) } // Get the variance var variance float64 for _, v := range data { dif := v - mean sq := math.Pow(dif, 2) variance += sq } variance = variance / float64(count-1) stddev := math.Sqrt(variance) return stddev } type firstLastMapOutput struct { Time int64 Val interface{} } // MapFirst collects the values to pass to the reducer // This function assumes time ordered input func MapFirst(itr iterator) interface{} { k, v := itr.Next() if k == -1 { return nil } nextk, nextv := itr.Next() for nextk == k { if greaterThan(nextv, v) { v = nextv } nextk, nextv = itr.Next() } return &firstLastMapOutput{k, v} } // ReduceFirst computes the first of value. func ReduceFirst(values []interface{}) interface{} { out := &firstLastMapOutput{} pointsYielded := false for _, v := range values { if v == nil { continue } val := v.(*firstLastMapOutput) // Initialize first if !pointsYielded { out.Time = val.Time out.Val = val.Val pointsYielded = true } if val.Time < out.Time { out.Time = val.Time out.Val = val.Val } else if val.Time == out.Time && greaterThan(val.Val, out.Val) { out.Val = val.Val } } if pointsYielded { return out.Val } return nil } // MapLast collects the values to pass to the reducer func MapLast(itr iterator) interface{} { out := &firstLastMapOutput{} pointsYielded := false for k, v := itr.Next(); k != -1; k, v = itr.Next() { // Initialize last if !pointsYielded { out.Time = k out.Val = v pointsYielded = true } if k > out.Time { out.Time = k out.Val = v } else if k == out.Time && greaterThan(v, out.Val) { out.Val = v } } if pointsYielded { return out } return nil } // ReduceLast computes the last of value. func ReduceLast(values []interface{}) interface{} { out := &firstLastMapOutput{} pointsYielded := false for _, v := range values { if v == nil { continue } val := v.(*firstLastMapOutput) // Initialize last if !pointsYielded { out.Time = val.Time out.Val = val.Val pointsYielded = true } if val.Time > out.Time { out.Time = val.Time out.Val = val.Val } else if val.Time == out.Time && greaterThan(val.Val, out.Val) { out.Val = val.Val } } if pointsYielded { return out.Val } return nil } type positionOut struct { points PositionPoints callArgs []string // ordered args in the call } func (p *positionOut) lessKey(i, j int) bool { t1, t2 := p.points[i].Tags, p.points[j].Tags for _, k := range p.callArgs { if t1[k] != t2[k] { return t1[k] < t2[k] } } return false } func (p *positionOut) less(i, j int, sortFloat func(d1, d2 float64) bool, sortInt64 func(d1, d2 int64) bool, sortUint64 func(d1, d2 uint64) bool) bool { // Sort by float64/int64 first as that is the most likely match { d1, ok1 := p.points[i].Value.(float64) d2, ok2 := p.points[j].Value.(float64) if ok1 && ok2 { return sortFloat(d1, d2) } } { d1, ok1 := p.points[i].Value.(int64) d2, ok2 := p.points[j].Value.(int64) if ok1 && ok2 { return sortInt64(d1, d2) } } // Sort by every numeric type left { d1, ok1 := p.points[i].Value.(float32) d2, ok2 := p.points[j].Value.(float32) if ok1 && ok2 { return sortFloat(float64(d1), float64(d2)) } } { d1, ok1 := p.points[i].Value.(uint64) d2, ok2 := p.points[j].Value.(uint64) if ok1 && ok2 { return sortUint64(d1, d2) } } { d1, ok1 := p.points[i].Value.(uint32) d2, ok2 := p.points[j].Value.(uint32) if ok1 && ok2 { return sortUint64(uint64(d1), uint64(d2)) } } { d1, ok1 := p.points[i].Value.(uint16) d2, ok2 := p.points[j].Value.(uint16) if ok1 && ok2 { return sortUint64(uint64(d1), uint64(d2)) } } { d1, ok1 := p.points[i].Value.(uint8) d2, ok2 := p.points[j].Value.(uint8) if ok1 && ok2 { return sortUint64(uint64(d1), uint64(d2)) } } { d1, ok1 := p.points[i].Value.(int32) d2, ok2 := p.points[j].Value.(int32) if ok1 && ok2 { return sortInt64(int64(d1), int64(d2)) } } { d1, ok1 := p.points[i].Value.(int16) d2, ok2 := p.points[j].Value.(int16) if ok1 && ok2 { return sortInt64(int64(d1), int64(d2)) } } { d1, ok1 := p.points[i].Value.(int8) d2, ok2 := p.points[j].Value.(int8) if ok1 && ok2 { return sortInt64(int64(d1), int64(d2)) } } { d1, ok1 := p.points[i].Value.(bool) d2, ok2 := p.points[j].Value.(bool) if ok1 && ok2 { return d1 == true && d2 == false } } { d1, ok1 := p.points[i].Value.(string) d2, ok2 := p.points[j].Value.(string) if ok1 && ok2 { return d1 < d2 } } // Types did not match, need to sort based on arbitrary weighting of type const ( intWeight = iota floatWeight boolWeight stringWeight ) infer := func(val interface{}) (int, float64) { switch v := val.(type) { case uint64: return intWeight, float64(v) case uint32: return intWeight, float64(v) case uint16: return intWeight, float64(v) case uint8: return intWeight, float64(v) case int64: return intWeight, float64(v) case int32: return intWeight, float64(v) case int16: return intWeight, float64(v) case int8: return intWeight, float64(v) case float64: return floatWeight, float64(v) case float32: return floatWeight, float64(v) case bool: return boolWeight, 0 case string: return stringWeight, 0 } panic("interfaceValues.Less - unreachable code") } w1, n1 := infer(p.points[i].Value) w2, n2 := infer(p.points[j].Value) // If we had "numeric" data, use that for comparison if (w1 == floatWeight || w1 == intWeight) && (w2 == floatWeight || w2 == intWeight) { return sortFloat(n1, n2) } return w1 < w2 } type PositionPoints []PositionPoint type PositionPoint struct { Time int64 Value interface{} Tags map[string]string } type topMapOut struct { positionOut } func (t topMapOut) Len() int { return len(t.points) } func (t topMapOut) Swap(i, j int) { t.points[i], t.points[j] = t.points[j], t.points[i] } func (t topMapOut) Less(i, j int) bool { sortFloat := func(d1, d2 float64) bool { if d1 != d2 { return d1 > d2 } k1, k2 := t.points[i].Time, t.points[j].Time if k1 != k2 { return k1 < k2 } return t.lessKey(i, j) } sortInt64 := func(d1, d2 int64) bool { if d1 != d2 { return d1 > d2 } k1, k2 := t.points[i].Time, t.points[j].Time if k1 != k2 { return k1 < k2 } return t.lessKey(i, j) } sortUint64 := func(d1, d2 uint64) bool { if d1 != d2 { return d1 > d2 } k1, k2 := t.points[i].Time, t.points[j].Time if k1 != k2 { return k1 < k2 } return t.lessKey(i, j) } return t.less(i, j, sortFloat, sortInt64, sortUint64) } type topReduceOut struct { positionOut } func (t topReduceOut) Len() int { return len(t.points) } func (t topReduceOut) Swap(i, j int) { t.points[i], t.points[j] = t.points[j], t.points[i] } func (t topReduceOut) Less(i, j int) bool { // Now sort by time first, not value sortFloat := func(d1, d2 float64) bool { k1, k2 := t.points[i].Time, t.points[j].Time if k1 != k2 { return k1 < k2 } if d1 != d2 { return d1 > d2 } return t.lessKey(i, j) } sortInt64 := func(d1, d2 int64) bool { k1, k2 := t.points[i].Time, t.points[j].Time if k1 != k2 { return k1 < k2 } if d1 != d2 { return d1 > d2 } return t.lessKey(i, j) } sortUint64 := func(d1, d2 uint64) bool { k1, k2 := t.points[i].Time, t.points[j].Time if k1 != k2 { return k1 < k2 } if d1 != d2 { return d1 > d2 } return t.lessKey(i, j) } return t.less(i, j, sortFloat, sortInt64, sortUint64) } // callArgs will get any additional field/tag names that may be needed to sort with // it is important to maintain the order of these that they were asked for in the call // for sorting purposes func topCallArgs(c *influxql.Call) []string { var names []string for _, v := range c.Args[1 : len(c.Args)-1] { if f, ok := v.(*influxql.VarRef); ok { names = append(names, f.Val) } } return names } // MapTop emits the top data points for each group by interval func MapTop(itr iterator, c *influxql.Call) interface{} { // Capture the limit if it was specified in the call lit, _ := c.Args[len(c.Args)-1].(*influxql.NumberLiteral) limit := int64(lit.Val) // Simple case where only value and limit are specified. if len(c.Args) == 2 { out := positionOut{callArgs: topCallArgs(c)} for k, v := itr.Next(); k != -1; k, v = itr.Next() { t := k if bt := itr.TMin(); bt > -1 { t = bt } out.points = append(out.points, PositionPoint{t, v, itr.Tags()}) } // If we have more than we asked for, only send back the top values if int64(len(out.points)) > limit { sort.Sort(topMapOut{out}) out.points = out.points[:limit] } if len(out.points) > 0 { return out.points } return nil } // They specified tags in the call to get unique sets, so we need to map them as we accumulate them outMap := make(map[string]positionOut) mapKey := func(args []string, fields map[string]interface{}, keys map[string]string) string { key := "" for _, a := range args { if v, ok := fields[a]; ok { key += a + ":" + fmt.Sprintf("%v", v) + "," continue } if v, ok := keys[a]; ok { key += a + ":" + v + "," continue } } return key } for k, v := itr.Next(); k != -1; k, v = itr.Next() { t := k if bt := itr.TMin(); bt > -1 { t = bt } callArgs := c.Fields() tags := itr.Tags() // TODO in the future we need to send in fields as well // this will allow a user to query on both fields and tags // fields will take the priority over tags if there is a name collision key := mapKey(callArgs, nil, tags) if out, ok := outMap[key]; ok { out.points = append(out.points, PositionPoint{t, v, itr.Tags()}) outMap[key] = out } else { out = positionOut{callArgs: topCallArgs(c)} out.points = append(out.points, PositionPoint{t, v, itr.Tags()}) outMap[key] = out } } // Sort all the maps for k, v := range outMap { sort.Sort(topMapOut{v}) outMap[k] = v } slice := func(needed int64, m map[string]positionOut) PositionPoints { points := PositionPoints{} var collected int64 for k, v := range m { if len(v.points) > 0 { points = append(points, v.points[0]) v.points = v.points[1:] m[k] = v collected++ } } o := positionOut{callArgs: topCallArgs(c), points: points} sort.Sort(topMapOut{o}) points = o.points // If we got more than we needed, sort them and return the top if collected > needed { points = o.points[:needed] } return points } points := PositionPoints{} var collected int64 for collected < limit { p := slice(limit-collected, outMap) if len(p) == 0 { break } points = append(points, p...) collected += int64(len(p)) } if len(points) > 0 { return points } return nil } // ReduceTop computes the top values for each key. func ReduceTop(values []interface{}, c *influxql.Call) interface{} { lit, _ := c.Args[len(c.Args)-1].(*influxql.NumberLiteral) limit := int64(lit.Val) out := positionOut{callArgs: topCallArgs(c)} for _, v := range values { if v == nil { continue } o, _ := v.(PositionPoints) out.points = append(out.points, o...) } // Get the top of the top values sort.Sort(topMapOut{out}) // If we have more than we asked for, only send back the top values if int64(len(out.points)) > limit { out.points = out.points[:limit] } // now we need to resort the tops by time sort.Sort(topReduceOut{out}) if len(out.points) > 0 { return out.points } return nil } // MapEcho emits the data points for each group by interval func MapEcho(itr iterator) interface{} { var values []interface{} for k, v := itr.Next(); k != -1; k, v = itr.Next() { values = append(values, v) } return values } // ReducePercentile computes the percentile of values for each key. func ReducePercentile(values []interface{}, c *influxql.Call) interface{} { // Checks that this arg exists and is a valid type are done in the parsing validation // and have test coverage there lit, _ := c.Args[1].(*influxql.NumberLiteral) percentile := lit.Val var allValues []float64 for _, v := range values { if v == nil { continue } vals := v.([]interface{}) for _, v := range vals { switch v.(type) { case int64: allValues = append(allValues, float64(v.(int64))) case float64: allValues = append(allValues, v.(float64)) } } } sort.Float64s(allValues) length := len(allValues) index := int(math.Floor(float64(length)*percentile/100.0+0.5)) - 1 if index < 0 || index >= len(allValues) { return nil } return allValues[index] } // IsNumeric returns whether a given aggregate can only be run on numeric fields. func IsNumeric(c *influxql.Call) bool { switch c.Name { case "count", "first", "last", "distinct": return false default: return true } } // MapRawQuery is for queries without aggregates func MapRawQuery(itr iterator) interface{} { var values []*rawQueryMapOutput for k, v := itr.Next(); k != -1; k, v = itr.Next() { val := &rawQueryMapOutput{k, v} values = append(values, val) } return values } type rawQueryMapOutput struct { Time int64 Values interface{} } func (r *rawQueryMapOutput) String() string { return fmt.Sprintf("{%#v %#v}", r.Time, r.Values) } type rawOutputs []*rawQueryMapOutput func (a rawOutputs) Len() int { return len(a) } func (a rawOutputs) Less(i, j int) bool { return a[i].Time < a[j].Time } func (a rawOutputs) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func greaterThan(a, b interface{}) bool { switch t := a.(type) { case int64: return t > b.(int64) case float64: return t > b.(float64) case string: return t > b.(string) case bool: return t == true } return false }