package tsdb import ( "bytes" "encoding/binary" "errors" "fmt" "os" "path/filepath" "runtime" "sort" "sync" "github.com/cespare/xxhash" "github.com/influxdata/influxdb/v2/models" "github.com/influxdata/influxdb/v2/pkg/binaryutil" "github.com/influxdata/influxdb/v2/pkg/limiter" "go.uber.org/zap" "golang.org/x/sync/errgroup" ) var ( ErrSeriesFileClosed = errors.New("tsdb: series file closed") ErrInvalidSeriesPartitionID = errors.New("tsdb: invalid series partition id") ) // SeriesIDSize is the size in bytes of a series key ID. const SeriesIDSize = 8 const ( // SeriesFilePartitionN is the number of partitions a series file is split into. SeriesFilePartitionN = 8 ) // SeriesFile represents the section of the index that holds series data. type SeriesFile struct { path string partitions []*SeriesPartition maxSnapshotConcurrency int refs sync.RWMutex // RWMutex to track references to the SeriesFile that are in use. Logger *zap.Logger } // NewSeriesFile returns a new instance of SeriesFile. func NewSeriesFile(path string) *SeriesFile { maxSnapshotConcurrency := runtime.GOMAXPROCS(0) if maxSnapshotConcurrency < 1 { maxSnapshotConcurrency = 1 } return &SeriesFile{ path: path, maxSnapshotConcurrency: maxSnapshotConcurrency, Logger: zap.NewNop(), } } func (f *SeriesFile) WithMaxCompactionConcurrency(maxCompactionConcurrency int) { if maxCompactionConcurrency < 1 { maxCompactionConcurrency = runtime.GOMAXPROCS(0) if maxCompactionConcurrency < 1 { maxCompactionConcurrency = 1 } } f.maxSnapshotConcurrency = maxCompactionConcurrency } // Open memory maps the data file at the file's path. func (f *SeriesFile) Open() error { // Wait for all references to be released and prevent new ones from being acquired. f.refs.Lock() defer f.refs.Unlock() // Create path if it doesn't exist. if err := os.MkdirAll(filepath.Join(f.path), 0777); err != nil { return err } // Limit concurrent series file compactions compactionLimiter := limiter.NewFixed(f.maxSnapshotConcurrency) // Open partitions. f.partitions = make([]*SeriesPartition, 0, SeriesFilePartitionN) for i := 0; i < SeriesFilePartitionN; i++ { p := NewSeriesPartition(i, f.SeriesPartitionPath(i), compactionLimiter) p.Logger = f.Logger.With(zap.Int("partition", p.ID())) if err := p.Open(); err != nil { f.Logger.Error("Unable to open series file", zap.String("path", f.path), zap.Int("partition", p.ID()), zap.Error(err)) f.close() return err } f.partitions = append(f.partitions, p) } return nil } func (f *SeriesFile) close() (err error) { for _, p := range f.partitions { if e := p.Close(); e != nil && err == nil { err = e } } return err } // Close unmaps the data file. func (f *SeriesFile) Close() (err error) { f.refs.Lock() defer f.refs.Unlock() return f.close() } // Path returns the path to the file. func (f *SeriesFile) Path() string { return f.path } // SeriesPartitionPath returns the path to a given partition. func (f *SeriesFile) SeriesPartitionPath(i int) string { return filepath.Join(f.path, fmt.Sprintf("%02x", i)) } // Partitions returns all partitions. func (f *SeriesFile) Partitions() []*SeriesPartition { return f.partitions } // Retain adds a reference count to the file. It returns a release func. func (f *SeriesFile) Retain() func() { if f != nil { f.refs.RLock() // Return the RUnlock func as the release func to be called when done. return f.refs.RUnlock } return nop } // EnableCompactions allows compactions to run. func (f *SeriesFile) EnableCompactions() { for _, p := range f.partitions { p.EnableCompactions() } } // DisableCompactions prevents new compactions from running. func (f *SeriesFile) DisableCompactions() { for _, p := range f.partitions { p.DisableCompactions() } } // Wait waits for all Retains to be released. func (f *SeriesFile) Wait() { f.refs.Lock() defer f.refs.Unlock() } // FileSize returns the size of all partitions, in bytes. func (f *SeriesFile) FileSize() (n int64, err error) { for _, p := range f.partitions { v, err := p.FileSize() n += v if err != nil { return n, err } } return n, err } // CreateSeriesListIfNotExists creates a list of series in bulk if they don't exist. // The returned ids slice returns IDs for every name+tags, creating new series IDs as needed. func (f *SeriesFile) CreateSeriesListIfNotExists(names [][]byte, tagsSlice []models.Tags) ([]uint64, error) { keys := GenerateSeriesKeys(names, tagsSlice) keyPartitionIDs := f.SeriesKeysPartitionIDs(keys) ids := make([]uint64, len(keys)) var g errgroup.Group for i := range f.partitions { p := f.partitions[i] g.Go(func() error { return p.CreateSeriesListIfNotExists(keys, keyPartitionIDs, ids) }) } if err := g.Wait(); err != nil { return nil, err } return ids, nil } // DeleteSeriesID flags a series as permanently deleted. // If the series is reintroduced later then it must create a new id. func (f *SeriesFile) DeleteSeriesID(id uint64) error { p := f.SeriesIDPartition(id) if p == nil { return ErrInvalidSeriesPartitionID } return p.DeleteSeriesID(id) } // IsDeleted returns true if the ID has been deleted before. func (f *SeriesFile) IsDeleted(id uint64) bool { p := f.SeriesIDPartition(id) if p == nil { return false } return p.IsDeleted(id) } // SeriesKey returns the series key for a given id. func (f *SeriesFile) SeriesKey(id uint64) []byte { if id == 0 { return nil } p := f.SeriesIDPartition(id) if p == nil { return nil } return p.SeriesKey(id) } // SeriesKeys returns a list of series keys from a list of ids. func (f *SeriesFile) SeriesKeys(ids []uint64) [][]byte { keys := make([][]byte, len(ids)) for i := range ids { keys[i] = f.SeriesKey(ids[i]) } return keys } // Series returns the parsed series name and tags for an offset. func (f *SeriesFile) Series(id uint64) ([]byte, models.Tags) { key := f.SeriesKey(id) if key == nil { return nil, nil } return ParseSeriesKey(key) } // SeriesID return the series id for the series. func (f *SeriesFile) SeriesID(name []byte, tags models.Tags, buf []byte) uint64 { key := AppendSeriesKey(buf[:0], name, tags) keyPartition := f.SeriesKeyPartition(key) if keyPartition == nil { return 0 } return keyPartition.FindIDBySeriesKey(key) } // HasSeries return true if the series exists. func (f *SeriesFile) HasSeries(name []byte, tags models.Tags, buf []byte) bool { return f.SeriesID(name, tags, buf) > 0 } // SeriesCount returns the number of series. func (f *SeriesFile) SeriesCount() uint64 { var n uint64 for _, p := range f.partitions { n += p.SeriesCount() } return n } // SeriesIDIterator returns an iterator over all the series. func (f *SeriesFile) SeriesIDIterator() SeriesIDIterator { var ids []uint64 for _, p := range f.partitions { ids = p.AppendSeriesIDs(ids) } sort.Sort(uint64Slice(ids)) return NewSeriesIDSliceIterator(ids) } func (f *SeriesFile) SeriesIDPartitionID(id uint64) int { return int((id - 1) % SeriesFilePartitionN) } func (f *SeriesFile) SeriesIDPartition(id uint64) *SeriesPartition { partitionID := f.SeriesIDPartitionID(id) if partitionID >= len(f.partitions) { return nil } return f.partitions[partitionID] } func (f *SeriesFile) SeriesKeysPartitionIDs(keys [][]byte) []int { partitionIDs := make([]int, len(keys)) for i := range keys { partitionIDs[i] = f.SeriesKeyPartitionID(keys[i]) } return partitionIDs } func (f *SeriesFile) SeriesKeyPartitionID(key []byte) int { return int(xxhash.Sum64(key) % SeriesFilePartitionN) } func (f *SeriesFile) SeriesKeyPartition(key []byte) *SeriesPartition { partitionID := f.SeriesKeyPartitionID(key) if partitionID >= len(f.partitions) { return nil } return f.partitions[partitionID] } // AppendSeriesKey serializes name and tags to a byte slice. // The total length is prepended as a uvarint. func AppendSeriesKey(dst []byte, name []byte, tags models.Tags) []byte { buf := make([]byte, binary.MaxVarintLen64) origLen := len(dst) // The tag count is variable encoded, so we need to know ahead of time what // the size of the tag count value will be. tcBuf := make([]byte, binary.MaxVarintLen64) tcSz := binary.PutUvarint(tcBuf, uint64(len(tags))) // Size of name/tags. Does not include total length. size := 0 + // 2 + // size of measurement len(name) + // measurement tcSz + // size of number of tags (4 * len(tags)) + // length of each tag key and value tags.Size() // size of tag keys/values // Variable encode length. totalSz := binary.PutUvarint(buf, uint64(size)) // If caller doesn't provide a buffer then pre-allocate an exact one. if dst == nil { dst = make([]byte, 0, size+totalSz) } // Append total length. dst = append(dst, buf[:totalSz]...) // Append name. binary.BigEndian.PutUint16(buf, uint16(len(name))) dst = append(dst, buf[:2]...) dst = append(dst, name...) // Append tag count. dst = append(dst, tcBuf[:tcSz]...) // Append tags. for _, tag := range tags { binary.BigEndian.PutUint16(buf, uint16(len(tag.Key))) dst = append(dst, buf[:2]...) dst = append(dst, tag.Key...) binary.BigEndian.PutUint16(buf, uint16(len(tag.Value))) dst = append(dst, buf[:2]...) dst = append(dst, tag.Value...) } // Verify that the total length equals the encoded byte count. if got, exp := len(dst)-origLen, size+totalSz; got != exp { panic(fmt.Sprintf("series key encoding does not match calculated total length: actual=%d, exp=%d, key=%x", got, exp, dst)) } return dst } // ReadSeriesKey returns the series key from the beginning of the buffer. func ReadSeriesKey(data []byte) (key, remainder []byte) { sz, n := binary.Uvarint(data) return data[:int(sz)+n], data[int(sz)+n:] } func ReadSeriesKeyLen(data []byte) (sz int, remainder []byte) { sz64, i := binary.Uvarint(data) return int(sz64), data[i:] } func ReadSeriesKeyMeasurement(data []byte) (name, remainder []byte) { n, data := binary.BigEndian.Uint16(data), data[2:] return data[:n], data[n:] } func ReadSeriesKeyTagN(data []byte) (n int, remainder []byte) { n64, i := binary.Uvarint(data) return int(n64), data[i:] } func ReadSeriesKeyTag(data []byte) (key, value, remainder []byte) { n, data := binary.BigEndian.Uint16(data), data[2:] key, data = data[:n], data[n:] n, data = binary.BigEndian.Uint16(data), data[2:] value, data = data[:n], data[n:] return key, value, data } // ParseSeriesKey extracts the name & tags from a series key. func ParseSeriesKey(data []byte) (name []byte, tags models.Tags) { return parseSeriesKey(data, nil) } // ParseSeriesKeyInto extracts the name and tags for data, parsing the tags into // dstTags, which is then returned. // // The returned dstTags may have a different length and capacity. func ParseSeriesKeyInto(data []byte, dstTags models.Tags) ([]byte, models.Tags) { return parseSeriesKey(data, dstTags) } // parseSeriesKey extracts the name and tags from data, attempting to re-use the // provided tags value rather than allocating. The returned tags may have a // different length and capacity to those provided. func parseSeriesKey(data []byte, dst models.Tags) ([]byte, models.Tags) { var name []byte _, data = ReadSeriesKeyLen(data) name, data = ReadSeriesKeyMeasurement(data) tagN, data := ReadSeriesKeyTagN(data) dst = dst[:cap(dst)] // Grow dst to use full capacity if got, want := len(dst), tagN; got < want { dst = append(dst, make(models.Tags, want-got)...) } else if got > want { dst = dst[:want] } dst = dst[:tagN] for i := 0; i < tagN; i++ { var key, value []byte key, value, data = ReadSeriesKeyTag(data) dst[i].Key, dst[i].Value = key, value } return name, dst } func CompareSeriesKeys(a, b []byte) int { // Handle 'nil' keys. if len(a) == 0 && len(b) == 0 { return 0 } else if len(a) == 0 { return -1 } else if len(b) == 0 { return 1 } // Read total size. _, a = ReadSeriesKeyLen(a) _, b = ReadSeriesKeyLen(b) // Read names. name0, a := ReadSeriesKeyMeasurement(a) name1, b := ReadSeriesKeyMeasurement(b) // Compare names, return if not equal. if cmp := bytes.Compare(name0, name1); cmp != 0 { return cmp } // Read tag counts. tagN0, a := ReadSeriesKeyTagN(a) tagN1, b := ReadSeriesKeyTagN(b) // Compare each tag in order. for i := 0; ; i++ { // Check for EOF. if i == tagN0 && i == tagN1 { return 0 } else if i == tagN0 { return -1 } else if i == tagN1 { return 1 } // Read keys. var key0, key1, value0, value1 []byte key0, value0, a = ReadSeriesKeyTag(a) key1, value1, b = ReadSeriesKeyTag(b) // Compare keys & values. if cmp := bytes.Compare(key0, key1); cmp != 0 { return cmp } else if cmp := bytes.Compare(value0, value1); cmp != 0 { return cmp } } } // GenerateSeriesKeys generates series keys for a list of names & tags using // a single large memory block. func GenerateSeriesKeys(names [][]byte, tagsSlice []models.Tags) [][]byte { buf := make([]byte, 0, SeriesKeysSize(names, tagsSlice)) keys := make([][]byte, len(names)) for i := range names { offset := len(buf) buf = AppendSeriesKey(buf, names[i], tagsSlice[i]) keys[i] = buf[offset:] } return keys } // SeriesKeysSize returns the number of bytes required to encode a list of name/tags. func SeriesKeysSize(names [][]byte, tagsSlice []models.Tags) int { var n int for i := range names { n += SeriesKeySize(names[i], tagsSlice[i]) } return n } // SeriesKeySize returns the number of bytes required to encode a series key. func SeriesKeySize(name []byte, tags models.Tags) int { var n int n += 2 + len(name) n += binaryutil.UvarintSize(uint64(len(tags))) for _, tag := range tags { n += 2 + len(tag.Key) n += 2 + len(tag.Value) } n += binaryutil.UvarintSize(uint64(n)) return n } type seriesKeys [][]byte func (a seriesKeys) Len() int { return len(a) } func (a seriesKeys) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a seriesKeys) Less(i, j int) bool { return CompareSeriesKeys(a[i], a[j]) == -1 } type uint64Slice []uint64 func (a uint64Slice) Len() int { return len(a) } func (a uint64Slice) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a uint64Slice) Less(i, j int) bool { return a[i] < a[j] } func nop() {}