package tsdb import ( "encoding/binary" "fmt" "math" "sort" "time" "github.com/boltdb/bolt" "github.com/influxdb/influxdb/influxql" "github.com/influxdb/influxdb/meta" ) // tx represents a transaction that spans multiple shard data stores. // This transaction will open and close all data stores atomically. type tx struct { now time.Time // used by DecodeFields and FieldIDs. Only used in a raw query, which won't let you select from more than one measurement measurement *Measurement meta metaStore store localStore } type metaStore interface { RetentionPolicy(database, name string) (rpi *meta.RetentionPolicyInfo, err error) } type localStore interface { Measurement(database, name string) *Measurement ValidateAggregateFieldsInStatement(shardID uint64, measurementName string, stmt *influxql.SelectStatement) error Shard(shardID uint64) *Shard } // newTx return a new initialized Tx. func newTx(meta metaStore, store localStore) *tx { return &tx{ meta: meta, store: store, now: time.Now(), } } // SetNow sets the current time for the transaction. func (tx *tx) SetNow(now time.Time) { tx.now = now } // CreateMappers will create a set of mappers that need to be run to execute the map phase of a MapReduceJob. func (tx *tx) CreateMapReduceJobs(stmt *influxql.SelectStatement, tagKeys []string) ([]*influxql.MapReduceJob, error) { jobs := []*influxql.MapReduceJob{} for _, src := range stmt.Sources { mm, ok := src.(*influxql.Measurement) if !ok { return nil, fmt.Errorf("invalid source type: %#v", src) } // get the index and the retention policy rp, err := tx.meta.RetentionPolicy(mm.Database, mm.RetentionPolicy) if err != nil { return nil, err } m := tx.store.Measurement(mm.Database, mm.Name) if m == nil { return nil, ErrMeasurementNotFound(influxql.QuoteIdent([]string{mm.Database, "", mm.Name}...)) } tx.measurement = m // Validate the fields and tags asked for exist and keep track of which are in the select vs the where var selectFields []string var whereFields []string var selectTags []string for _, n := range stmt.NamesInSelect() { if m.HasField(n) { selectFields = append(selectFields, n) continue } if !m.HasTagKey(n) { return nil, fmt.Errorf("unknown field or tag name in select clause: %s", n) } selectTags = append(selectTags, n) tagKeys = append(tagKeys, n) } for _, n := range stmt.NamesInWhere() { if n == "time" { continue } if m.HasField(n) { whereFields = append(whereFields, n) continue } if !m.HasTagKey(n) { return nil, fmt.Errorf("unknown field or tag name in where clause: %s", n) } } if len(selectFields) == 0 && len(stmt.FunctionCalls()) == 0 { return nil, fmt.Errorf("select statement must include at least one field or function call") } // Validate that group by is not a field for _, d := range stmt.Dimensions { switch e := d.Expr.(type) { case *influxql.VarRef: if !m.HasTagKey(e.Val) { return nil, fmt.Errorf("can not use field in group by clause: %s", e.Val) } } } // Grab time range from statement. tmin, tmax := influxql.TimeRange(stmt.Condition) if tmax.IsZero() { tmax = tx.now } if tmin.IsZero() { tmin = time.Unix(0, 0) } // Find shard groups within time range. var shardGroups []*meta.ShardGroupInfo for _, group := range rp.ShardGroups { if group.Overlaps(tmin, tmax) { g := group shardGroups = append(shardGroups, &g) } } if len(shardGroups) == 0 { return nil, nil } // get the group by interval, if there is one var interval int64 if d, err := stmt.GroupByInterval(); err != nil { return nil, err } else { interval = d.Nanoseconds() } // get the sorted unique tag sets for this query. tagSets, err := m.TagSets(stmt, tagKeys) if err != nil { return nil, err } for _, t := range tagSets { // make a job for each tagset job := &influxql.MapReduceJob{ MeasurementName: m.Name, TagSet: t, TMin: tmin.UnixNano(), TMax: tmax.UnixNano(), } // make a mapper for each shard that must be hit. We may need to hit multiple shards within a shard group var mappers []influxql.Mapper // create mappers for each shard we need to hit for _, sg := range shardGroups { // TODO: implement distributed queries if len(sg.Shards) != 1 { return nil, fmt.Errorf("distributed queries aren't supported yet. You have a replication policy with RF < # of servers in cluster") } shard := tx.store.Shard(sg.Shards[0].ID) if shard == nil { // the store returned nil which means we haven't written any data into this shard yet, so ignore it continue } // get the codec for this measuremnt. If this is nil it just means this measurement was // never written into this shard, so we can skip it and continue. codec := shard.FieldCodec(m.Name) if codec == nil { continue } var mapper influxql.Mapper mapper = &LocalMapper{ seriesKeys: t.SeriesKeys, shard: shard, db: shard.DB(), job: job, decoder: codec, filters: t.Filters, whereFields: whereFields, selectFields: selectFields, selectTags: selectTags, tmin: tmin.UnixNano(), tmax: tmax.UnixNano(), interval: interval, // multiple mappers may need to be merged together to get the results // for a raw query. So each mapper will have to read at least the // limit plus the offset in data points to ensure we've hit our mark limit: uint64(stmt.Limit) + uint64(stmt.Offset), } mappers = append(mappers, mapper) } job.Mappers = mappers jobs = append(jobs, job) } } // always return them in sorted order so the results from running the jobs are returned in a deterministic order sort.Sort(influxql.MapReduceJobs(jobs)) return jobs, nil } // LocalMapper implements the influxql.Mapper interface for running map tasks over a shard that is local to this server type LocalMapper struct { cursorsEmpty bool // boolean that lets us know if the cursors are empty decoder *FieldCodec // decoder for the raw data bytes filters []influxql.Expr // filters for each series cursors []*shardCursor // bolt cursors for each series id seriesKeys []string // seriesKeys to be read from this shard shard *Shard // original shard db *bolt.DB // bolt store for the shard accessed by this mapper txn *bolt.Tx // read transactions by shard id job *influxql.MapReduceJob // the MRJob this mapper belongs to mapFunc influxql.MapFunc // the map func fieldID uint8 // the field ID associated with the mapFunc curently being run fieldName string // the field name associated with the mapFunc currently being run keyBuffer []int64 // the current timestamp key for each cursor valueBuffer [][]byte // the current value for each cursor tmin int64 // the min of the current group by interval being iterated over tmax int64 // the max of the current group by interval being iterated over additionalNames []string // additional field or tag names that might be requested from the map function whereFields []string // field names that occur in the where clause selectFields []string // field names that occur in the select clause selectTags []string // tag keys that occur in the select clause isRaw bool // if the query is a non-aggregate query interval int64 // the group by interval of the query, if any limit uint64 // used for raw queries for LIMIT perIntervalLimit int // used for raw queries to determine how far into a chunk we are chunkSize int // used for raw queries to determine how much data to read before flushing to client } // Open opens the LocalMapper. func (l *LocalMapper) Open() error { // Obtain shard lock to copy in-cache points. l.shard.mu.Lock() defer l.shard.mu.Unlock() // Open the data store txn, err := l.db.Begin(false) if err != nil { return err } l.txn = txn // create a bolt cursor for each unique series id l.cursors = make([]*shardCursor, len(l.seriesKeys)) for i, key := range l.seriesKeys { // Retrieve key bucket. b := l.txn.Bucket([]byte(key)) // Ignore if there is no bucket or points in the cache. partitionID := WALPartition([]byte(key)) if b == nil && len(l.shard.cache[partitionID][key]) == 0 { continue } // Retrieve a copy of the in-cache points for the key. cache := make([][]byte, len(l.shard.cache[partitionID][key])) copy(cache, l.shard.cache[partitionID][key]) // Build a cursor that merges the bucket and cache together. cur := &shardCursor{cache: cache} if b != nil { cur.cursor = b.Cursor() } l.cursors[i] = cur } return nil } // Close closes the LocalMapper. func (l *LocalMapper) Close() { if l.txn != nil { _ = l.txn.Rollback() } } // Begin will set up the mapper to run the map function for a given aggregate call starting at the passed in time func (l *LocalMapper) Begin(c *influxql.Call, startingTime int64, chunkSize int) error { // set up the buffers. These ensure that we return data in time order mapFunc, err := influxql.InitializeMapFunc(c) if err != nil { return err } l.mapFunc = mapFunc l.keyBuffer = make([]int64, len(l.cursors)) l.valueBuffer = make([][]byte, len(l.cursors)) l.chunkSize = chunkSize l.tmin = startingTime var isCountDistinct bool // determine if this is a raw data query with a single field, multiple fields, or an aggregate var fieldName string if c == nil { // its a raw data query l.isRaw = true if len(l.selectFields) == 1 { fieldName = l.selectFields[0] } // if they haven't set a limit, just set it to the max int size if l.limit == 0 { l.limit = math.MaxUint64 } } else { // Check for calls like `derivative(mean(value), 1d)` var nested *influxql.Call = c if fn, ok := c.Args[0].(*influxql.Call); ok { nested = fn } switch lit := nested.Args[0].(type) { case *influxql.VarRef: fieldName = lit.Val case *influxql.Distinct: if c.Name != "count" { return fmt.Errorf("aggregate call didn't contain a field %s", c.String()) } isCountDistinct = true fieldName = lit.Val default: return fmt.Errorf("aggregate call didn't contain a field %s", c.String()) } isCountDistinct = isCountDistinct || (c.Name == "count" && nested.Name == "distinct") } // set up the field info if a specific field was set for this mapper if fieldName != "" { fid, err := l.decoder.FieldIDByName(fieldName) if err != nil { switch { case c != nil && c.Name == "distinct": return fmt.Errorf(`%s isn't a field on measurement %s; to query the unique values for a tag use SHOW TAG VALUES FROM %[2]s WITH KEY = "%[1]s`, fieldName, l.job.MeasurementName) case isCountDistinct: return fmt.Errorf("%s isn't a field on measurement %s; count(distinct) on tags isn't yet supported", fieldName, l.job.MeasurementName) } } l.fieldID = fid l.fieldName = fieldName } // seek the bolt cursors and fill the buffers for i, c := range l.cursors { // this series may have never been written in this shard group (time range) so the cursor would be nil if c == nil { l.keyBuffer[i] = 0 l.valueBuffer[i] = nil continue } k, v := c.Seek(u64tob(uint64(l.job.TMin))) if k == nil { l.keyBuffer[i] = 0 l.valueBuffer[i] = nil continue } l.cursorsEmpty = false t := int64(btou64(k)) l.keyBuffer[i] = t l.valueBuffer[i] = v } return nil } // NextInterval will get the time ordered next interval of the given interval size from the mapper. This is a // forward only operation from the start time passed into Begin. Will return nil when there is no more data to be read. // If this is a raw query, interval should be the max time to hit in the query func (l *LocalMapper) NextInterval() (interface{}, error) { if l.cursorsEmpty || l.tmin > l.job.TMax { return nil, nil } // after we call to the mapper, this will be the tmin for the next interval. nextMin := l.tmin + l.interval // Set the upper bound of the interval. if l.isRaw { l.perIntervalLimit = l.chunkSize } else if l.interval > 0 { // Set tmax to ensure that the interval lands on the boundary of the interval if l.tmin%l.interval != 0 { // the first interval in a query with a group by may be smaller than the others. This happens when they have a // where time > clause that is in the middle of the bucket that the group by time creates. That will be the // case on the first interval when the tmin % the interval isn't equal to zero nextMin = l.tmin/l.interval*l.interval + l.interval } l.tmax = nextMin - 1 } // Execute the map function. This local mapper acts as the iterator val := l.mapFunc(l) // see if all the cursors are empty l.cursorsEmpty = true for _, k := range l.keyBuffer { if k != 0 { l.cursorsEmpty = false break } } // Move the interval forward if it's not a raw query. For raw queries we use the limit to advance intervals. if !l.isRaw { l.tmin = nextMin } return val, nil } // Next returns the next matching timestamped value for the LocalMapper. func (l *LocalMapper) Next() (seriesKey string, timestamp int64, value interface{}) { for { // if it's a raw query and we've hit the limit of the number of points to read in // for either this chunk or for the absolute query, bail if l.isRaw && (l.limit == 0 || l.perIntervalLimit == 0) { return "", int64(0), nil } // find the minimum timestamp min := -1 minKey := int64(math.MaxInt64) for i, k := range l.keyBuffer { if k != 0 && k <= l.tmax && k < minKey && k >= l.tmin { min = i minKey = k } } // return if there is no more data in this group by interval if min == -1 { return "", 0, nil } // set the current timestamp and seriesID timestamp = l.keyBuffer[min] seriesKey = l.seriesKeys[min] // decode either the value, or values we need. Also filter if necessary var value interface{} var err error if l.isRaw && len(l.selectFields) > 1 { if fieldsWithNames, err := l.decoder.DecodeFieldsWithNames(l.valueBuffer[min]); err == nil { value = fieldsWithNames // if there's a where clause, make sure we don't need to filter this value if l.filters[min] != nil { if !matchesWhere(l.filters[min], fieldsWithNames) { value = nil } } } } else { value, err = l.decoder.DecodeByID(l.fieldID, l.valueBuffer[min]) // if there's a where clase, see if we need to filter if l.filters[min] != nil { // see if the where is only on this field or on one or more other fields. if the latter, we'll have to decode everything if len(l.whereFields) == 1 && l.whereFields[0] == l.fieldName { if !matchesWhere(l.filters[min], map[string]interface{}{l.fieldName: value}) { value = nil } } else { // decode everything fieldsWithNames, err := l.decoder.DecodeFieldsWithNames(l.valueBuffer[min]) if err != nil || !matchesWhere(l.filters[min], fieldsWithNames) { value = nil } } } } // advance the cursor nextKey, nextVal := l.cursors[min].Next() if nextKey == nil { l.keyBuffer[min] = 0 } else { l.keyBuffer[min] = int64(btou64(nextKey)) } l.valueBuffer[min] = nextVal // if the value didn't match our filter or if we didn't find the field keep iterating if err != nil || value == nil { continue } // if it's a raw query, we always limit the amount we read in if l.isRaw { l.limit-- l.perIntervalLimit-- } return seriesKey, timestamp, value } } // IsEmpty returns true if either all cursors are nil or all cursors are past the passed in max time func (l *LocalMapper) IsEmpty(tmax int64) bool { if l.cursorsEmpty || l.limit == 0 { return true } // look at the next time for each cursor for _, t := range l.keyBuffer { // if the time is less than the max, we haven't emptied this mapper yet if t != 0 && t <= tmax { return false } } return true } // matchesFilter returns true if the value matches the where clause func matchesWhere(f influxql.Expr, fields map[string]interface{}) bool { if ok, _ := influxql.Eval(f, fields).(bool); !ok { return false } return true } // btou64 converts an 8-byte slice into an uint64. func btou64(b []byte) uint64 { return binary.BigEndian.Uint64(b) }