package tsi1 import ( "errors" "fmt" "io/ioutil" "os" "path/filepath" "regexp" "runtime" "strconv" "sync" "sync/atomic" "unsafe" "github.com/cespare/xxhash" "github.com/influxdata/influxql" "github.com/influxdata/platform/models" "github.com/influxdata/platform/pkg/estimator" "github.com/influxdata/platform/pkg/estimator/hll" "github.com/influxdata/platform/pkg/slices" "github.com/influxdata/platform/tsdb" "go.uber.org/zap" ) // IndexName is the name of the index. const IndexName = tsdb.TSI1IndexName // DefaultSeriesIDSetCacheSize is the default number of series ID sets to cache. const DefaultSeriesIDSetCacheSize = 100 // ErrCompactionInterrupted is returned if compactions are disabled or // an index is closed while a compaction is occurring. var ErrCompactionInterrupted = errors.New("tsi1: compaction interrupted") func init() { if os.Getenv("INFLUXDB_EXP_TSI_PARTITIONS") != "" { i, err := strconv.Atoi(os.Getenv("INFLUXDB_EXP_TSI_PARTITIONS")) if err != nil { panic(err) } DefaultPartitionN = uint64(i) } // TODO(edd): To remove when feature finalised. var err error if os.Getenv("INFLUXDB_EXP_TSI_CACHING") != "" { EnableBitsetCache, err = strconv.ParseBool(os.Getenv("INFLUXDB_EXP_TSI_CACHING")) if err != nil { panic(err) } } } // DefaultPartitionN determines how many shards the index will be partitioned into. // // NOTE: Currently, this must not be change once a database is created. Further, // it must also be a power of 2. // var DefaultPartitionN uint64 = 8 // EnableBitsetCache determines if bitsets are cached. var EnableBitsetCache = true // An IndexOption is a functional option for changing the configuration of // an Index. type IndexOption func(i *Index) // WithPath sets the root path of the Index var WithPath = func(path string) IndexOption { return func(i *Index) { i.path = path } } // DisableCompactions disables compactions on the Index. var DisableCompactions = func() IndexOption { return func(i *Index) { i.disableCompactions = true } } // DisableFsync disables flushing and syncing of underlying files. Primarily this // impacts the LogFiles. This option can be set when working with the index in // an offline manner, for cases where a hard failure can be overcome by re-running the tooling. var DisableFsync = func() IndexOption { return func(i *Index) { i.disableFsync = true } } // WithLogFileBufferSize sets the size of the buffer used within LogFiles. // Typically appending an entry to a LogFile involves writing 11 or 12 bytes, so // depending on how many new series are being created within a batch, it may // be appropriate to set this. var WithLogFileBufferSize = func(sz int) IndexOption { return func(i *Index) { if sz > 1<<17 { // 128K sz = 1 << 17 } else if sz < 1<<12 { sz = 1 << 12 // 4K (runtime default) } i.logfileBufferSize = sz } } // Index represents a collection of layered index files and WAL. type Index struct { mu sync.RWMutex partitions []*Partition opened bool tagValueCache *TagValueSeriesIDCache // The following may be set when initializing an Index. path string // Root directory of the index partitions. disableCompactions bool // Initially disables compactions on the index. maxLogFileSize int64 // Maximum size of a LogFile before it's compacted. logfileBufferSize int // The size of the buffer used by the LogFile. disableFsync bool // Disables flushing buffers and fsyning files. Used when working with indexes offline. logger *zap.Logger // Index's logger. // The following must be set when initializing an Index. sfile *tsdb.SeriesFile // series lookup file database string // Name of database. // Cached sketches. mSketch, mTSketch estimator.Sketch // Measurement sketches sSketch, sTSketch estimator.Sketch // Series sketches // Index's version. version int // Number of partitions used by the index. PartitionN uint64 } func (i *Index) UniqueReferenceID() uintptr { return uintptr(unsafe.Pointer(i)) } // NewIndex returns a new instance of Index. func NewIndex(sfile *tsdb.SeriesFile, database string, c Config, options ...IndexOption) *Index { idx := &Index{ tagValueCache: NewTagValueSeriesIDCache(DefaultSeriesIDSetCacheSize), maxLogFileSize: int64(c.MaxIndexLogFileSize), logger: zap.NewNop(), version: Version, sfile: sfile, database: database, mSketch: hll.NewDefaultPlus(), mTSketch: hll.NewDefaultPlus(), sSketch: hll.NewDefaultPlus(), sTSketch: hll.NewDefaultPlus(), PartitionN: DefaultPartitionN, } for _, option := range options { option(idx) } return idx } // Bytes estimates the memory footprint of this Index, in bytes. func (i *Index) Bytes() int { var b int i.mu.RLock() b += 24 // mu RWMutex is 24 bytes b += int(unsafe.Sizeof(i.partitions)) for _, p := range i.partitions { b += int(unsafe.Sizeof(p)) + p.bytes() } b += int(unsafe.Sizeof(i.opened)) b += int(unsafe.Sizeof(i.path)) + len(i.path) b += int(unsafe.Sizeof(i.disableCompactions)) b += int(unsafe.Sizeof(i.maxLogFileSize)) b += int(unsafe.Sizeof(i.logger)) b += int(unsafe.Sizeof(i.sfile)) // Do not count SeriesFile because it belongs to the code that constructed this Index. b += int(unsafe.Sizeof(i.mSketch)) + i.mSketch.Bytes() b += int(unsafe.Sizeof(i.mTSketch)) + i.mTSketch.Bytes() b += int(unsafe.Sizeof(i.sSketch)) + i.sSketch.Bytes() b += int(unsafe.Sizeof(i.sTSketch)) + i.sTSketch.Bytes() b += int(unsafe.Sizeof(i.database)) + len(i.database) b += int(unsafe.Sizeof(i.version)) b += int(unsafe.Sizeof(i.PartitionN)) i.mu.RUnlock() return b } // Database returns the name of the database the index was initialized with. func (i *Index) Database() string { return i.database } // WithLogger sets the logger on the index after it's been created. // // It's not safe to call WithLogger after the index has been opened, or before // it has been closed. func (i *Index) WithLogger(l *zap.Logger) { i.logger = l.With(zap.String("index", "tsi")) } // Type returns the type of Index this is. func (i *Index) Type() string { return IndexName } // SeriesFile returns the series file attached to the index. func (i *Index) SeriesFile() *tsdb.SeriesFile { return i.sfile } // SeriesIDSet returns the set of series ids associated with series in this // index. Any series IDs for series no longer present in the index are filtered out. func (i *Index) SeriesIDSet() *tsdb.SeriesIDSet { seriesIDSet := tsdb.NewSeriesIDSet() others := make([]*tsdb.SeriesIDSet, 0, i.PartitionN) for _, p := range i.partitions { others = append(others, p.seriesIDSet) } seriesIDSet.Merge(others...) return seriesIDSet } // Open opens the index. func (i *Index) Open() error { i.mu.Lock() defer i.mu.Unlock() if i.opened { return errors.New("index already open") } // Ensure root exists. if err := os.MkdirAll(i.path, 0777); err != nil { return err } // Initialize index partitions. i.partitions = make([]*Partition, i.PartitionN) for j := 0; j < len(i.partitions); j++ { p := NewPartition(i.sfile, filepath.Join(i.path, fmt.Sprint(j))) p.MaxLogFileSize = i.maxLogFileSize p.nosync = i.disableFsync p.logbufferSize = i.logfileBufferSize p.logger = i.logger.With(zap.String("tsi1_partition", fmt.Sprint(j+1))) i.partitions[j] = p } // Open all the Partitions in parallel. partitionN := len(i.partitions) n := i.availableThreads() // Store results. errC := make(chan error, partitionN) // Run fn on each partition using a fixed number of goroutines. var pidx uint32 // Index of maximum Partition being worked on. for k := 0; k < n; k++ { go func(k int) { for { idx := int(atomic.AddUint32(&pidx, 1) - 1) // Get next partition to work on. if idx >= partitionN { return // No more work. } err := i.partitions[idx].Open() errC <- err } }(k) } // Check for error for i := 0; i < partitionN; i++ { if err := <-errC; err != nil { return err } } // Refresh cached sketches. if err := i.updateSeriesSketches(); err != nil { return err } else if err := i.updateMeasurementSketches(); err != nil { return err } // Mark opened. i.opened = true i.logger.Info(fmt.Sprintf("index opened with %d partitions", partitionN)) return nil } // Compact requests a compaction of partitions. func (i *Index) Compact() { i.mu.Lock() defer i.mu.Unlock() for _, p := range i.partitions { p.Compact() } } func (i *Index) EnableCompactions() { for _, p := range i.partitions { p.EnableCompactions() } } func (i *Index) DisableCompactions() { for _, p := range i.partitions { p.DisableCompactions() } } // Wait blocks until all outstanding compactions have completed. func (i *Index) Wait() { for _, p := range i.partitions { p.Wait() } } // Close closes the index. func (i *Index) Close() error { // Lock index and close partitions. i.mu.Lock() defer i.mu.Unlock() for _, p := range i.partitions { if err := p.Close(); err != nil { return err } } // Mark index as closed. i.opened = false return nil } // Path returns the path the index was opened with. func (i *Index) Path() string { return i.path } // PartitionAt returns the partition by index. func (i *Index) PartitionAt(index int) *Partition { return i.partitions[index] } // partition returns the appropriate Partition for a provided series key. func (i *Index) partition(key []byte) *Partition { return i.partitions[int(xxhash.Sum64(key)&(i.PartitionN-1))] } // partitionIdx returns the index of the partition that key belongs in. func (i *Index) partitionIdx(key []byte) int { return int(xxhash.Sum64(key) & (i.PartitionN - 1)) } // availableThreads returns the minimum of GOMAXPROCS and the number of // partitions in the Index. func (i *Index) availableThreads() int { n := runtime.GOMAXPROCS(0) if len(i.partitions) < n { return len(i.partitions) } return n } // updateMeasurementSketches rebuilds the cached measurement sketches. func (i *Index) updateMeasurementSketches() error { i.mSketch, i.mTSketch = hll.NewDefaultPlus(), hll.NewDefaultPlus() for j := 0; j < int(i.PartitionN); j++ { if s, t, err := i.partitions[j].MeasurementsSketches(); err != nil { return err } else if i.mSketch.Merge(s); err != nil { return err } else if i.mTSketch.Merge(t); err != nil { return err } } return nil } // updateSeriesSketches rebuilds the cached series sketches. func (i *Index) updateSeriesSketches() error { i.sSketch, i.sTSketch = hll.NewDefaultPlus(), hll.NewDefaultPlus() for j := 0; j < int(i.PartitionN); j++ { if s, t, err := i.partitions[j].SeriesSketches(); err != nil { return err } else if i.sSketch.Merge(s); err != nil { return err } else if i.sTSketch.Merge(t); err != nil { return err } } return nil } // SetFieldSet sets a shared field set from the engine. func (i *Index) SetFieldSet(fs *tsdb.MeasurementFieldSet) { for _, p := range i.partitions { p.SetFieldSet(fs) } } // FieldSet returns the assigned fieldset. func (i *Index) FieldSet() *tsdb.MeasurementFieldSet { if len(i.partitions) == 0 { return nil } return i.partitions[0].FieldSet() } // ForEachMeasurementName iterates over all measurement names in the index, // applying fn. It returns the first error encountered, if any. // // ForEachMeasurementName does not call fn on each partition concurrently so the // call may provide a non-goroutine safe fn. func (i *Index) ForEachMeasurementName(fn func(name []byte) error) error { itr, err := i.MeasurementIterator() if err != nil { return err } else if itr == nil { return nil } defer itr.Close() // Iterate over all measurements. for { e, err := itr.Next() if err != nil { return err } else if e == nil { break } if err := fn(e); err != nil { return err } } return nil } // MeasurementExists returns true if a measurement exists. func (i *Index) MeasurementExists(name []byte) (bool, error) { n := i.availableThreads() // Store errors var found uint32 // Use this to signal we found the measurement. errC := make(chan error, i.PartitionN) // Check each partition for the measurement concurrently. var pidx uint32 // Index of maximum Partition being worked on. for k := 0; k < n; k++ { go func() { for { idx := int(atomic.AddUint32(&pidx, 1) - 1) // Get next partition to check if idx >= len(i.partitions) { return // No more work. } // Check if the measurement has been found. If it has don't // need to check this partition and can just move on. if atomic.LoadUint32(&found) == 1 { errC <- nil continue } b, err := i.partitions[idx].MeasurementExists(name) if b { atomic.StoreUint32(&found, 1) } errC <- err } }() } // Check for error for i := 0; i < cap(errC); i++ { if err := <-errC; err != nil { return false, err } } // Check if we found the measurement. return atomic.LoadUint32(&found) == 1, nil } // MeasurementHasSeries returns true if a measurement has non-tombstoned series. func (i *Index) MeasurementHasSeries(name []byte) (bool, error) { for _, p := range i.partitions { if v, err := p.MeasurementHasSeries(name); err != nil { return false, err } else if v { return true, nil } } return false, nil } // fetchByteValues is a helper for gathering values from each partition in the index, // based on some criteria. // // fn is a function that works on partition idx and calls into some method on // the partition that returns some ordered values. func (i *Index) fetchByteValues(fn func(idx int) ([][]byte, error)) ([][]byte, error) { n := i.availableThreads() // Store results. names := make([][][]byte, i.PartitionN) errC := make(chan error, i.PartitionN) var pidx uint32 // Index of maximum Partition being worked on. for k := 0; k < n; k++ { go func() { for { idx := int(atomic.AddUint32(&pidx, 1) - 1) // Get next partition to work on. if idx >= len(i.partitions) { return // No more work. } pnames, err := fn(idx) // This is safe since there are no readers on names until all // the writers are done. names[idx] = pnames errC <- err } }() } // Check for error for i := 0; i < cap(errC); i++ { if err := <-errC; err != nil { return nil, err } } // It's now safe to read from names. return slices.MergeSortedBytes(names[:]...), nil } // MeasurementIterator returns an iterator over all measurements. func (i *Index) MeasurementIterator() (tsdb.MeasurementIterator, error) { itrs := make([]tsdb.MeasurementIterator, 0, len(i.partitions)) for _, p := range i.partitions { itr, err := p.MeasurementIterator() if err != nil { tsdb.MeasurementIterators(itrs).Close() return nil, err } else if itr != nil { itrs = append(itrs, itr) } } return tsdb.MergeMeasurementIterators(itrs...), nil } // MeasurementSeriesIDIterator returns an iterator over all series in a measurement. func (i *Index) MeasurementSeriesIDIterator(name []byte) (tsdb.SeriesIDIterator, error) { itrs := make([]tsdb.SeriesIDIterator, 0, len(i.partitions)) for _, p := range i.partitions { itr, err := p.MeasurementSeriesIDIterator(name) if err != nil { tsdb.SeriesIDIterators(itrs).Close() return nil, err } else if itr != nil { itrs = append(itrs, itr) } } return tsdb.MergeSeriesIDIterators(itrs...), nil } // MeasurementNamesByRegex returns measurement names for the provided regex. func (i *Index) MeasurementNamesByRegex(re *regexp.Regexp) ([][]byte, error) { return i.fetchByteValues(func(idx int) ([][]byte, error) { return i.partitions[idx].MeasurementNamesByRegex(re) }) } // DropMeasurement deletes a measurement from the index. It returns the first // error encountered, if any. func (i *Index) DropMeasurement(name []byte) error { n := i.availableThreads() // Store results. errC := make(chan error, i.PartitionN) var pidx uint32 // Index of maximum Partition being worked on. for k := 0; k < n; k++ { go func() { for { idx := int(atomic.AddUint32(&pidx, 1) - 1) // Get next partition to work on. if idx >= len(i.partitions) { return // No more work. } errC <- i.partitions[idx].DropMeasurement(name) } }() } // Check for error for i := 0; i < cap(errC); i++ { if err := <-errC; err != nil { return err } } // Update sketches. i.mTSketch.Add(name) if err := i.updateSeriesSketches(); err != nil { return err } return nil } // CreateSeriesListIfNotExists creates a list of series if they doesn't exist in bulk. func (i *Index) CreateSeriesListIfNotExists(collection *tsdb.SeriesCollection) error { // Create the series list on the series file first. This validates all of the types for // the collection. err := i.sfile.CreateSeriesListIfNotExists(collection) if err != nil { return err } // We need to move different series into collections for each partition // to process. pCollections := make([]tsdb.SeriesCollection, i.PartitionN) // Determine partition for series using each series key. for iter := collection.Iterator(); iter.Next(); { pCollection := &pCollections[i.partitionIdx(iter.Key())] pCollection.Names = append(pCollection.Names, iter.Name()) pCollection.Tags = append(pCollection.Tags, iter.Tags()) pCollection.SeriesIDs = append(pCollection.SeriesIDs, iter.SeriesID()) } // Process each subset of series on each partition. n := i.availableThreads() // Store errors. errC := make(chan error, i.PartitionN) var pidx uint32 // Index of maximum Partition being worked on. for k := 0; k < n; k++ { go func() { i.mu.RLock() partitionN := len(i.partitions) i.mu.RUnlock() for { idx := int(atomic.AddUint32(&pidx, 1) - 1) // Get next partition to work on. if idx >= partitionN { return // No more work. } i.mu.RLock() partition := i.partitions[idx] i.mu.RUnlock() ids, err := partition.createSeriesListIfNotExists(&pCollections[idx]) if len(ids) == 0 { errC <- err continue } // Some cached bitset results may need to be updated. i.tagValueCache.RLock() for j, id := range ids { if id.IsZero() { continue } name := pCollections[idx].Names[j] tags := pCollections[idx].Tags[j] if i.tagValueCache.measurementContainsSets(name) { for _, pair := range tags { // TODO(edd): It's not clear to me yet whether it will be better to take a lock // on every series id set, or whether to gather them all up under the cache rlock // and then take the cache lock and update them all at once (without invoking a lock // on each series id set). // // Taking the cache lock will block all queries, but is one lock. Taking each series set // lock might be many lock/unlocks but will only block a query that needs that particular set. // // Need to think on it, but I think taking a lock on each series id set is the way to go. // // One other option here is to take a lock on the series id set when we first encounter it // and then keep it locked until we're done with all the ids. // // Note: this will only add `id` to the set if it exists. i.tagValueCache.addToSet(name, pair.Key, pair.Value, id) // Takes a lock on the series id set } } } i.tagValueCache.RUnlock() errC <- err } }() } // Check for error for i := 0; i < cap(errC); i++ { if err := <-errC; err != nil { return err } } // Update sketches. for _, key := range collection.Keys { i.sSketch.Add(key) } for _, name := range collection.Names { i.mSketch.Add(name) } return nil } // CreateSeriesIfNotExists creates a series if it doesn't exist or is deleted. // TODO(edd): This should go. func (i *Index) CreateSeriesIfNotExists(key, name []byte, tags models.Tags, typ models.FieldType) error { collection := &tsdb.SeriesCollection{ Keys: [][]byte{key}, Names: [][]byte{name}, Tags: []models.Tags{tags}, Types: []models.FieldType{typ}, } err := i.sfile.CreateSeriesListIfNotExists(collection) if err != nil { return err } ids, err := i.partition(key).createSeriesListIfNotExists(collection) if err != nil { return err } i.sSketch.Add(key) i.mSketch.Add(name) if len(ids) == 0 || ids[0].IsZero() { return nil // No new series, nothing further to update. } // If there are cached sets for any of the tag pairs, they will need to be // updated with the series id. i.tagValueCache.RLock() if i.tagValueCache.measurementContainsSets(name) { for _, pair := range tags { // TODO(edd): It's not clear to me yet whether it will be better to take a lock // on every series id set, or whether to gather them all up under the cache rlock // and then take the cache lock and update them all at once (without invoking a lock // on each series id set). // // Taking the cache lock will block all queries, but is one lock. Taking each series set // lock might be many lock/unlocks but will only block a query that needs that particular set. // // Need to think on it, but I think taking a lock on each series id set is the way to go. // // Note this will only add `id` to the set if it exists. i.tagValueCache.addToSet(name, pair.Key, pair.Value, ids[0]) // Takes a lock on the series id set } } i.tagValueCache.RUnlock() return nil } // InitializeSeries is a no-op. This only applies to the in-memory index. func (i *Index) InitializeSeries(*tsdb.SeriesCollection) error { return nil } // DropSeries drops the provided series from the index. If cascade is true // and this is the last series to the measurement, the measurment will also be dropped. func (i *Index) DropSeries(seriesID tsdb.SeriesID, key []byte, cascade bool) error { // Remove from partition. if err := i.partition(key).DropSeries(seriesID); err != nil { return err } // Add sketch tombstone. i.sTSketch.Add(key) if !cascade { return nil } // Extract measurement name & tags. name, tags := models.ParseKeyBytes(key) // If there are cached sets for any of the tag pairs, they will need to be // updated with the series id. i.tagValueCache.RLock() if i.tagValueCache.measurementContainsSets(name) { for _, pair := range tags { i.tagValueCache.delete(name, pair.Key, pair.Value, seriesID) // Takes a lock on the series id set } } i.tagValueCache.RUnlock() // Check if that was the last series for the measurement in the entire index. if ok, err := i.MeasurementHasSeries(name); err != nil { return err } else if ok { return nil } // If no more series exist in the measurement then delete the measurement. if err := i.DropMeasurement(name); err != nil { return err } return nil } // DropSeriesGlobal is a no-op on the tsi1 index. func (i *Index) DropSeriesGlobal(key []byte) error { return nil } // DropMeasurementIfSeriesNotExist drops a measurement only if there are no more // series for the measurment. func (i *Index) DropMeasurementIfSeriesNotExist(name []byte) error { // Check if that was the last series for the measurement in the entire index. if ok, err := i.MeasurementHasSeries(name); err != nil { return err } else if ok { return nil } // If no more series exist in the measurement then delete the measurement. return i.DropMeasurement(name) } // MeasurementsSketches returns the two measurement sketches for the index. func (i *Index) MeasurementsSketches() (estimator.Sketch, estimator.Sketch, error) { return i.mSketch, i.mTSketch, nil } // SeriesSketches returns the two series sketches for the index. func (i *Index) SeriesSketches() (estimator.Sketch, estimator.Sketch, error) { return i.sSketch, i.sTSketch, nil } // SeriesN returns the series cardinality in the index. It is the sum of all // partition cardinalities. func (i *Index) SeriesN() int64 { var total int64 for _, p := range i.partitions { total += int64(p.seriesIDSet.Cardinality()) } return total } // HasTagKey returns true if tag key exists. It returns the first error // encountered if any. func (i *Index) HasTagKey(name, key []byte) (bool, error) { n := i.availableThreads() // Store errors var found uint32 // Use this to signal we found the tag key. errC := make(chan error, i.PartitionN) // Check each partition for the tag key concurrently. var pidx uint32 // Index of maximum Partition being worked on. for k := 0; k < n; k++ { go func() { for { idx := int(atomic.AddUint32(&pidx, 1) - 1) // Get next partition to check if idx >= len(i.partitions) { return // No more work. } // Check if the tag key has already been found. If it has, we // don't need to check this partition and can just move on. if atomic.LoadUint32(&found) == 1 { errC <- nil continue } b, err := i.partitions[idx].HasTagKey(name, key) if b { atomic.StoreUint32(&found, 1) } errC <- err } }() } // Check for error for i := 0; i < cap(errC); i++ { if err := <-errC; err != nil { return false, err } } // Check if we found the tag key. return atomic.LoadUint32(&found) == 1, nil } // HasTagValue returns true if tag value exists. func (i *Index) HasTagValue(name, key, value []byte) (bool, error) { n := i.availableThreads() // Store errors var found uint32 // Use this to signal we found the tag key. errC := make(chan error, i.PartitionN) // Check each partition for the tag key concurrently. var pidx uint32 // Index of maximum Partition being worked on. for k := 0; k < n; k++ { go func() { for { idx := int(atomic.AddUint32(&pidx, 1) - 1) // Get next partition to check if idx >= len(i.partitions) { return // No more work. } // Check if the tag key has already been found. If it has, we // don't need to check this partition and can just move on. if atomic.LoadUint32(&found) == 1 { errC <- nil continue } b, err := i.partitions[idx].HasTagValue(name, key, value) if b { atomic.StoreUint32(&found, 1) } errC <- err } }() } // Check for error for i := 0; i < cap(errC); i++ { if err := <-errC; err != nil { return false, err } } // Check if we found the tag key. return atomic.LoadUint32(&found) == 1, nil } // TagKeyIterator returns an iterator for all keys across a single measurement. func (i *Index) TagKeyIterator(name []byte) (tsdb.TagKeyIterator, error) { a := make([]tsdb.TagKeyIterator, 0, len(i.partitions)) for _, p := range i.partitions { itr := p.TagKeyIterator(name) if itr != nil { a = append(a, itr) } } return tsdb.MergeTagKeyIterators(a...), nil } // TagValueIterator returns an iterator for all values across a single key. func (i *Index) TagValueIterator(name, key []byte) (tsdb.TagValueIterator, error) { a := make([]tsdb.TagValueIterator, 0, len(i.partitions)) for _, p := range i.partitions { itr := p.TagValueIterator(name, key) if itr != nil { a = append(a, itr) } } return tsdb.MergeTagValueIterators(a...), nil } // TagKeySeriesIDIterator returns a series iterator for all values across a single key. func (i *Index) TagKeySeriesIDIterator(name, key []byte) (tsdb.SeriesIDIterator, error) { a := make([]tsdb.SeriesIDIterator, 0, len(i.partitions)) for _, p := range i.partitions { itr := p.TagKeySeriesIDIterator(name, key) if itr != nil { a = append(a, itr) } } return tsdb.MergeSeriesIDIterators(a...), nil } // TagValueSeriesIDIterator returns a series iterator for a single tag value. func (i *Index) TagValueSeriesIDIterator(name, key, value []byte) (tsdb.SeriesIDIterator, error) { // Check series ID set cache... if EnableBitsetCache { if ss := i.tagValueCache.Get(name, key, value); ss != nil { // Return a clone because the set is mutable. return tsdb.NewSeriesIDSetIterator(ss.Clone()), nil } } a := make([]tsdb.SeriesIDIterator, 0, len(i.partitions)) for _, p := range i.partitions { itr, err := p.TagValueSeriesIDIterator(name, key, value) if err != nil { return nil, err } else if itr != nil { a = append(a, itr) } } itr := tsdb.MergeSeriesIDIterators(a...) if !EnableBitsetCache { return itr, nil } // Check if the iterator contains only series id sets. Cache them... if ssitr, ok := itr.(tsdb.SeriesIDSetIterator); ok { ss := ssitr.SeriesIDSet() ss.SetCOW(true) // This is important to speed the clone up. i.tagValueCache.Put(name, key, value, ss) } return itr, nil } // MeasurementTagKeysByExpr extracts the tag keys wanted by the expression. func (i *Index) MeasurementTagKeysByExpr(name []byte, expr influxql.Expr) (map[string]struct{}, error) { n := i.availableThreads() // Store results. keys := make([]map[string]struct{}, i.PartitionN) errC := make(chan error, i.PartitionN) var pidx uint32 // Index of maximum Partition being worked on. for k := 0; k < n; k++ { go func() { for { idx := int(atomic.AddUint32(&pidx, 1) - 1) // Get next partition to work on. if idx >= len(i.partitions) { return // No more work. } // This is safe since there are no readers on keys until all // the writers are done. tagKeys, err := i.partitions[idx].MeasurementTagKeysByExpr(name, expr) keys[idx] = tagKeys errC <- err } }() } // Check for error for i := 0; i < cap(errC); i++ { if err := <-errC; err != nil { return nil, err } } // Merge into single map. result := keys[0] for k := 1; k < len(i.partitions); k++ { for k := range keys[k] { result[k] = struct{}{} } } return result, nil } // DiskSizeBytes returns the size of the index on disk. func (i *Index) DiskSizeBytes() int64 { fs, err := i.RetainFileSet() if err != nil { i.logger.Warn("Index is closing down") return 0 } defer fs.Release() var manifestSize int64 // Get MANIFEST sizes from each partition. for _, p := range i.partitions { manifestSize += p.manifestSize } return fs.Size() + manifestSize } // TagKeyCardinality always returns zero. // It is not possible to determine cardinality of tags across index files, and // thus it cannot be done across partitions. func (i *Index) TagKeyCardinality(name, key []byte) int { return 0 } // RetainFileSet returns the set of all files across all partitions. // This is only needed when all files need to be retained for an operation. func (i *Index) RetainFileSet() (*FileSet, error) { i.mu.RLock() defer i.mu.RUnlock() fs, _ := NewFileSet(nil, i.sfile, nil) for _, p := range i.partitions { pfs, err := p.RetainFileSet() if err != nil { fs.Close() return nil, err } fs.files = append(fs.files, pfs.files...) } return fs, nil } // SetFieldName is a no-op on this index. func (i *Index) SetFieldName(measurement []byte, name string) {} // Rebuild rebuilds an index. It's a no-op for this index. func (i *Index) Rebuild() {} // IsIndexDir returns true if directory contains at least one partition directory. func IsIndexDir(path string) (bool, error) { fis, err := ioutil.ReadDir(path) if err != nil { return false, err } for _, fi := range fis { if !fi.IsDir() { continue } else if ok, err := IsPartitionDir(filepath.Join(path, fi.Name())); err != nil { return false, err } else if ok { return true, nil } } return false, nil }