package tsdb // import "github.com/influxdata/influxdb/tsdb" import ( "bytes" "errors" "fmt" "io" "io/ioutil" "os" "path/filepath" "runtime" "sort" "strconv" "strings" "sync" "time" "github.com/influxdata/influxdb/logger" "github.com/influxdata/influxdb/models" "github.com/influxdata/influxdb/pkg/estimator" "github.com/influxdata/influxdb/pkg/estimator/hll" "github.com/influxdata/influxdb/pkg/limiter" "github.com/influxdata/influxdb/query" "github.com/influxdata/influxql" "go.uber.org/zap" ) var ( // ErrShardNotFound is returned when trying to get a non existing shard. ErrShardNotFound = fmt.Errorf("shard not found") // ErrStoreClosed is returned when trying to use a closed Store. ErrStoreClosed = fmt.Errorf("store is closed") ) // Statistics gathered by the store. const ( statDatabaseSeries = "numSeries" // number of series in a database statDatabaseMeasurements = "numMeasurements" // number of measurements in a database ) // SeriesFileDirectory is the name of the directory containing series files for // a database. const SeriesFileDirectory = "_series" // Store manages shards and indexes for databases. type Store struct { mu sync.RWMutex shards map[uint64]*Shard databases map[string]struct{} sfiles map[string]*SeriesFile SeriesFileMaxSize int64 // Determines size of series file mmap. Can be altered in tests. path string // shared per-database indexes, only if using "inmem". indexes map[string]interface{} // Maintains a set of shards that are in the process of deletion. // This prevents new shards from being created while old ones are being deleted. pendingShardDeletes map[uint64]struct{} EngineOptions EngineOptions baseLogger *zap.Logger Logger *zap.Logger closing chan struct{} wg sync.WaitGroup opened bool } // NewStore returns a new store with the given path and a default configuration. // The returned store must be initialized by calling Open before using it. func NewStore(path string) *Store { logger := zap.NewNop() return &Store{ databases: make(map[string]struct{}), path: path, sfiles: make(map[string]*SeriesFile), indexes: make(map[string]interface{}), pendingShardDeletes: make(map[uint64]struct{}), EngineOptions: NewEngineOptions(), Logger: logger, baseLogger: logger, } } // WithLogger sets the logger for the store. func (s *Store) WithLogger(log *zap.Logger) { s.baseLogger = log s.Logger = log.With(zap.String("service", "store")) for _, sh := range s.shards { sh.WithLogger(s.baseLogger) } } // Statistics returns statistics for period monitoring. func (s *Store) Statistics(tags map[string]string) []models.Statistic { s.mu.RLock() shards := s.shardsSlice() s.mu.RUnlock() // Add all the series and measurements cardinality estimations. databases := s.Databases() statistics := make([]models.Statistic, 0, len(databases)) for _, database := range databases { sc, err := s.SeriesCardinality(database) if err != nil { s.Logger.Info("Cannot retrieve series cardinality", zap.Error(err)) continue } mc, err := s.MeasurementsCardinality(database) if err != nil { s.Logger.Info("Cannot retrieve measurement cardinality", zap.Error(err)) continue } statistics = append(statistics, models.Statistic{ Name: "database", Tags: models.StatisticTags{"database": database}.Merge(tags), Values: map[string]interface{}{ statDatabaseSeries: sc, statDatabaseMeasurements: mc, }, }) } // Gather allĀ statistics for all shards. for _, shard := range shards { statistics = append(statistics, shard.Statistics(tags)...) } return statistics } // Path returns the store's root path. func (s *Store) Path() string { return s.path } // Open initializes the store, creating all necessary directories, loading all // shards as well as initializing periodic maintenance of them. func (s *Store) Open() error { s.mu.Lock() defer s.mu.Unlock() if s.opened { // Already open return nil } s.closing = make(chan struct{}) s.shards = map[uint64]*Shard{} s.Logger.Info("Using data dir", zap.String("path", s.Path())) // Create directory. if err := os.MkdirAll(s.path, 0777); err != nil { return err } if err := s.loadShards(); err != nil { return err } s.opened = true s.wg.Add(1) if !s.EngineOptions.MonitorDisabled { go s.monitorShards() } return nil } func (s *Store) loadShards() error { // res holds the result from opening each shard in a goroutine type res struct { s *Shard err error } // Setup a shared limiter for compactions lim := s.EngineOptions.Config.MaxConcurrentCompactions if lim == 0 { lim = runtime.GOMAXPROCS(0) / 2 // Default to 50% of cores for compactions // On systems with more cores, cap at 4 to reduce disk utilization if lim > 4 { lim = 4 } if lim < 1 { lim = 1 } } // Don't allow more compactions to run than cores. if lim > runtime.GOMAXPROCS(0) { lim = runtime.GOMAXPROCS(0) } s.EngineOptions.CompactionLimiter = limiter.NewFixed(lim) // Env var to disable throughput limiter. This will be moved to a config option in 1.5. if os.Getenv("INFLUXDB_DATA_COMPACTION_THROUGHPUT") == "" { s.EngineOptions.CompactionThroughputLimiter = limiter.NewRate(48*1024*1024, 48*1024*1024) } else { s.Logger.Info("Compaction throughput limit disabled") } log, logEnd := logger.NewOperation(s.Logger, "Open store", "tsdb_open") defer logEnd() t := limiter.NewFixed(runtime.GOMAXPROCS(0)) resC := make(chan *res) var n int // Determine how many shards we need to open by checking the store path. dbDirs, err := ioutil.ReadDir(s.path) if err != nil { return err } for _, db := range dbDirs { dbPath := filepath.Join(s.path, db.Name()) if !db.IsDir() { log.Info("Skipping database dir", zap.String("name", db.Name()), zap.String("reason", "not a directory")) continue } if s.EngineOptions.DatabaseFilter != nil && !s.EngineOptions.DatabaseFilter(db.Name()) { log.Info("Skipping database dir", logger.Database(db.Name()), zap.String("reason", "failed database filter")) continue } // Load series file. sfile, err := s.openSeriesFile(db.Name()) if err != nil { return err } // Retrieve database index. idx, err := s.createIndexIfNotExists(db.Name()) if err != nil { return err } // Load each retention policy within the database directory. rpDirs, err := ioutil.ReadDir(dbPath) if err != nil { return err } for _, rp := range rpDirs { rpPath := filepath.Join(s.path, db.Name(), rp.Name()) if !rp.IsDir() { log.Info("Skipping retention policy dir", zap.String("name", rp.Name()), zap.String("reason", "not a directory")) continue } // The .series directory is not a retention policy. if rp.Name() == SeriesFileDirectory { continue } if s.EngineOptions.RetentionPolicyFilter != nil && !s.EngineOptions.RetentionPolicyFilter(db.Name(), rp.Name()) { log.Info("Skipping retention policy dir", logger.RetentionPolicy(rp.Name()), zap.String("reason", "failed retention policy filter")) continue } shardDirs, err := ioutil.ReadDir(rpPath) if err != nil { return err } for _, sh := range shardDirs { n++ go func(db, rp, sh string) { t.Take() defer t.Release() start := time.Now() path := filepath.Join(s.path, db, rp, sh) walPath := filepath.Join(s.EngineOptions.Config.WALDir, db, rp, sh) // Shard file names are numeric shardIDs shardID, err := strconv.ParseUint(sh, 10, 64) if err != nil { log.Info("invalid shard ID found at path", zap.String("path", path)) resC <- &res{err: fmt.Errorf("%s is not a valid ID. Skipping shard.", sh)} return } if s.EngineOptions.ShardFilter != nil && !s.EngineOptions.ShardFilter(db, rp, shardID) { log.Info("skipping shard", zap.String("path", path), logger.Shard(shardID)) resC <- &res{} return } // Copy options and assign shared index. opt := s.EngineOptions opt.InmemIndex = idx // Provide an implementation of the ShardIDSets opt.SeriesIDSets = shardSet{store: s, db: db} // Existing shards should continue to use inmem index. if _, err := os.Stat(filepath.Join(path, "index")); os.IsNotExist(err) { opt.IndexVersion = "inmem" } // Open engine. shard := NewShard(shardID, path, walPath, sfile, opt) // Disable compactions, writes and queries until all shards are loaded shard.EnableOnOpen = false shard.WithLogger(s.baseLogger) err = shard.Open() if err != nil { log.Info("Failed to open shard", logger.Shard(shardID), zap.Error(err)) resC <- &res{err: fmt.Errorf("Failed to open shard: %d: %s", shardID, err)} return } resC <- &res{s: shard} log.Info("Opened shard", zap.String("index_version", shard.IndexType()), zap.String("path", path), zap.Duration("duration", time.Since(start))) }(db.Name(), rp.Name(), sh.Name()) } } } // Gather results of opening shards concurrently, keeping track of how // many databases we are managing. for i := 0; i < n; i++ { res := <-resC if res.s == nil || res.err != nil { continue } s.shards[res.s.id] = res.s s.databases[res.s.database] = struct{}{} } close(resC) // Enable all shards for _, sh := range s.shards { sh.SetEnabled(true) if sh.IsIdle() { if err := sh.Free(); err != nil { return err } } } return nil } // Close closes the store and all associated shards. After calling Close accessing // shards through the Store will result in ErrStoreClosed being returned. func (s *Store) Close() error { s.mu.Lock() if s.opened { close(s.closing) } s.mu.Unlock() s.wg.Wait() // No other goroutines accessing the store, so no need for a Lock. // Close all the shards in parallel. if err := s.walkShards(s.shardsSlice(), func(sh *Shard) error { return sh.Close() }); err != nil { return err } s.mu.Lock() for _, sfile := range s.sfiles { // Close out the series files. if err := sfile.Close(); err != nil { s.mu.Unlock() return err } } s.databases = make(map[string]struct{}) s.sfiles = map[string]*SeriesFile{} s.indexes = make(map[string]interface{}) s.pendingShardDeletes = make(map[uint64]struct{}) s.shards = nil s.opened = false // Store may now be opened again. s.mu.Unlock() return nil } // openSeriesFile either returns or creates a series file for the provided // database. It must be called under a full lock. func (s *Store) openSeriesFile(database string) (*SeriesFile, error) { if sfile := s.sfiles[database]; sfile != nil { return sfile, nil } sfile := NewSeriesFile(filepath.Join(s.path, database, SeriesFileDirectory)) sfile.Logger = s.baseLogger if err := sfile.Open(); err != nil { return nil, err } s.sfiles[database] = sfile return sfile, nil } func (s *Store) seriesFile(database string) *SeriesFile { s.mu.RLock() defer s.mu.RUnlock() return s.sfiles[database] } // createIndexIfNotExists returns a shared index for a database, if the inmem // index is being used. If the TSI index is being used, then this method is // basically a no-op. func (s *Store) createIndexIfNotExists(name string) (interface{}, error) { if idx := s.indexes[name]; idx != nil { return idx, nil } sfile, err := s.openSeriesFile(name) if err != nil { return nil, err } idx, err := NewInmemIndex(name, sfile) if err != nil { return nil, err } s.indexes[name] = idx return idx, nil } // Shard returns a shard by id. func (s *Store) Shard(id uint64) *Shard { s.mu.RLock() defer s.mu.RUnlock() sh, ok := s.shards[id] if !ok { return nil } return sh } // Shards returns a list of shards by id. func (s *Store) Shards(ids []uint64) []*Shard { s.mu.RLock() defer s.mu.RUnlock() a := make([]*Shard, 0, len(ids)) for _, id := range ids { sh, ok := s.shards[id] if !ok { continue } a = append(a, sh) } return a } // ShardGroup returns a ShardGroup with a list of shards by id. func (s *Store) ShardGroup(ids []uint64) ShardGroup { return Shards(s.Shards(ids)) } // ShardN returns the number of shards in the store. func (s *Store) ShardN() int { s.mu.RLock() defer s.mu.RUnlock() return len(s.shards) } // ShardDigest returns a digest of the shard with the specified ID. func (s *Store) ShardDigest(id uint64) (io.ReadCloser, int64, error) { sh := s.Shard(id) if sh == nil { return nil, 0, ErrShardNotFound } return sh.Digest() } // CreateShard creates a shard with the given id and retention policy on a database. func (s *Store) CreateShard(database, retentionPolicy string, shardID uint64, enabled bool) error { s.mu.Lock() defer s.mu.Unlock() select { case <-s.closing: return ErrStoreClosed default: } // Shard already exists. if _, ok := s.shards[shardID]; ok { return nil } // Shard may be undergoing a pending deletion. While the shard can be // recreated, it must wait for the pending delete to finish. if _, ok := s.pendingShardDeletes[shardID]; ok { return fmt.Errorf("shard %d is pending deletion and cannot be created again until finished", shardID) } // Create the db and retention policy directories if they don't exist. if err := os.MkdirAll(filepath.Join(s.path, database, retentionPolicy), 0700); err != nil { return err } // Create the WAL directory. walPath := filepath.Join(s.EngineOptions.Config.WALDir, database, retentionPolicy, fmt.Sprintf("%d", shardID)) if err := os.MkdirAll(walPath, 0700); err != nil { return err } // Retrieve database series file. sfile, err := s.openSeriesFile(database) if err != nil { return err } // Retrieve shared index, if needed. idx, err := s.createIndexIfNotExists(database) if err != nil { return err } // Copy index options and pass in shared index. opt := s.EngineOptions opt.InmemIndex = idx opt.SeriesIDSets = shardSet{store: s, db: database} path := filepath.Join(s.path, database, retentionPolicy, strconv.FormatUint(shardID, 10)) shard := NewShard(shardID, path, walPath, sfile, opt) shard.WithLogger(s.baseLogger) shard.EnableOnOpen = enabled if err := shard.Open(); err != nil { return err } s.shards[shardID] = shard s.databases[database] = struct{}{} // Ensure we are tracking any new db. return nil } // CreateShardSnapShot will create a hard link to the underlying shard and return a path. // The caller is responsible for cleaning up (removing) the file path returned. func (s *Store) CreateShardSnapshot(id uint64) (string, error) { sh := s.Shard(id) if sh == nil { return "", ErrShardNotFound } return sh.CreateSnapshot() } // SetShardEnabled enables or disables a shard for read and writes. func (s *Store) SetShardEnabled(shardID uint64, enabled bool) error { sh := s.Shard(shardID) if sh == nil { return ErrShardNotFound } sh.SetEnabled(enabled) return nil } // DeleteShard removes a shard from disk. func (s *Store) DeleteShard(shardID uint64) error { sh := s.Shard(shardID) if sh == nil { return nil } // Remove the shard from Store so it's not returned to callers requesting // shards. Also mark that this shard is currently being deleted in a separate // map so that we do not have to retain the global store lock while deleting // files. s.mu.Lock() if _, ok := s.pendingShardDeletes[shardID]; ok { // We are already being deleted? This is possible if delete shard // was called twice in sequence before the shard could be removed from // the mapping. // This is not an error because deleting a shard twice is not an error. s.mu.Unlock() return nil } delete(s.shards, shardID) s.pendingShardDeletes[shardID] = struct{}{} s.mu.Unlock() // Ensure the pending deletion flag is cleared on exit. defer func() { s.mu.Lock() defer s.mu.Unlock() delete(s.pendingShardDeletes, shardID) }() // Get the shard's local bitset of series IDs. index, err := sh.Index() if err != nil { return err } var ss *SeriesIDSet if i, ok := index.(interface { SeriesIDSet() *SeriesIDSet }); ok { ss = i.SeriesIDSet() } db := sh.Database() if err := sh.Close(); err != nil { return err } // Determine if the shard contained any series that are not present in any // other shards in the database. shards := s.filterShards(byDatabase(db)) s.walkShards(shards, func(sh *Shard) error { index, err := sh.Index() if err != nil { return err } if i, ok := index.(interface { SeriesIDSet() *SeriesIDSet }); ok { ss.Diff(i.SeriesIDSet()) } else { return fmt.Errorf("unable to get series id set for index in shard at %s", sh.Path()) } return nil }) // Remove any remaining series in the set from the series file, as they don't // exist in any of the database's remaining shards. if ss.Cardinality() > 0 { sfile := s.seriesFile(db) if sfile != nil { ss.ForEach(func(id uint64) { sfile.DeleteSeriesID(id) }) } } // Remove the on-disk shard data. if err := os.RemoveAll(sh.path); err != nil { return err } return os.RemoveAll(sh.walPath) } // DeleteDatabase will close all shards associated with a database and remove the directory and files from disk. func (s *Store) DeleteDatabase(name string) error { s.mu.RLock() if _, ok := s.databases[name]; !ok { s.mu.RUnlock() // no files locally, so nothing to do return nil } shards := s.filterShards(func(sh *Shard) bool { return sh.database == name }) s.mu.RUnlock() if err := s.walkShards(shards, func(sh *Shard) error { if sh.database != name { return nil } return sh.Close() }); err != nil { return err } dbPath := filepath.Clean(filepath.Join(s.path, name)) s.mu.Lock() defer s.mu.Unlock() sfile := s.sfiles[name] delete(s.sfiles, name) // Close series file. if sfile != nil { if err := sfile.Close(); err != nil { return err } } // extra sanity check to make sure that even if someone named their database "../.." // that we don't delete everything because of it, they'll just have extra files forever if filepath.Clean(s.path) != filepath.Dir(dbPath) { return fmt.Errorf("invalid database directory location for database '%s': %s", name, dbPath) } if err := os.RemoveAll(dbPath); err != nil { return err } if err := os.RemoveAll(filepath.Join(s.EngineOptions.Config.WALDir, name)); err != nil { return err } for _, sh := range shards { delete(s.shards, sh.id) } // Remove database from store list of databases delete(s.databases, name) // Remove shared index for database if using inmem index. delete(s.indexes, name) return nil } // DeleteRetentionPolicy will close all shards associated with the // provided retention policy, remove the retention policy directories on // both the DB and WAL, and remove all shard files from disk. func (s *Store) DeleteRetentionPolicy(database, name string) error { s.mu.RLock() if _, ok := s.databases[database]; !ok { s.mu.RUnlock() // unknown database, nothing to do return nil } shards := s.filterShards(func(sh *Shard) bool { return sh.database == database && sh.retentionPolicy == name }) s.mu.RUnlock() // Close and delete all shards under the retention policy on the // database. if err := s.walkShards(shards, func(sh *Shard) error { if sh.database != database || sh.retentionPolicy != name { return nil } return sh.Close() }); err != nil { return err } // Remove the retention policy folder. rpPath := filepath.Clean(filepath.Join(s.path, database, name)) // ensure Store's path is the grandparent of the retention policy if filepath.Clean(s.path) != filepath.Dir(filepath.Dir(rpPath)) { return fmt.Errorf("invalid path for database '%s', retention policy '%s': %s", database, name, rpPath) } // Remove the retention policy folder. if err := os.RemoveAll(filepath.Join(s.path, database, name)); err != nil { return err } // Remove the retention policy folder from the the WAL. if err := os.RemoveAll(filepath.Join(s.EngineOptions.Config.WALDir, database, name)); err != nil { return err } s.mu.Lock() for _, sh := range shards { delete(s.shards, sh.id) } s.mu.Unlock() return nil } // DeleteMeasurement removes a measurement and all associated series from a database. func (s *Store) DeleteMeasurement(database, name string) error { s.mu.RLock() shards := s.filterShards(byDatabase(database)) s.mu.RUnlock() // Limit to 1 delete for each shard since expanding the measurement into the list // of series keys can be very memory intensive if run concurrently. limit := limiter.NewFixed(1) return s.walkShards(shards, func(sh *Shard) error { limit.Take() defer limit.Release() return sh.DeleteMeasurement([]byte(name)) }) } // filterShards returns a slice of shards where fn returns true // for the shard. If the provided predicate is nil then all shards are returned. func (s *Store) filterShards(fn func(sh *Shard) bool) []*Shard { var shards []*Shard if fn == nil { shards = make([]*Shard, 0, len(s.shards)) fn = func(*Shard) bool { return true } } else { shards = make([]*Shard, 0) } for _, sh := range s.shards { if fn(sh) { shards = append(shards, sh) } } return shards } // byDatabase provides a predicate for filterShards that matches on the name of // the database passed in. func byDatabase(name string) func(sh *Shard) bool { return func(sh *Shard) bool { return sh.database == name } } // walkShards apply a function to each shard in parallel. fn must be safe for // concurrent use. If any of the functions return an error, the first error is // returned. func (s *Store) walkShards(shards []*Shard, fn func(sh *Shard) error) error { // struct to hold the result of opening each reader in a goroutine type res struct { err error } resC := make(chan res) var n int for _, sh := range shards { n++ go func(sh *Shard) { if err := fn(sh); err != nil { resC <- res{err: fmt.Errorf("shard %d: %s", sh.id, err)} return } resC <- res{} }(sh) } var err error for i := 0; i < n; i++ { res := <-resC if res.err != nil { err = res.err } } close(resC) return err } // ShardIDs returns a slice of all ShardIDs under management. func (s *Store) ShardIDs() []uint64 { s.mu.RLock() defer s.mu.RUnlock() return s.shardIDs() } func (s *Store) shardIDs() []uint64 { a := make([]uint64, 0, len(s.shards)) for shardID := range s.shards { a = append(a, shardID) } return a } // shardsSlice returns an ordered list of shards. func (s *Store) shardsSlice() []*Shard { a := make([]*Shard, 0, len(s.shards)) for _, sh := range s.shards { a = append(a, sh) } sort.Sort(Shards(a)) return a } // Databases returns the names of all databases managed by the store. func (s *Store) Databases() []string { s.mu.RLock() defer s.mu.RUnlock() databases := make([]string, 0, len(s.databases)) for k, _ := range s.databases { databases = append(databases, k) } return databases } // DiskSize returns the size of all the shard files in bytes. // This size does not include the WAL size. func (s *Store) DiskSize() (int64, error) { var size int64 s.mu.RLock() allShards := s.filterShards(nil) s.mu.RUnlock() for _, sh := range allShards { sz, err := sh.DiskSize() if err != nil { return 0, err } size += sz } return size, nil } // sketchesForDatabase returns merged sketches for the provided database, by // walking each shard in the database and merging the sketches found there. func (s *Store) sketchesForDatabase(dbName string, getSketches func(*Shard) (estimator.Sketch, estimator.Sketch, error)) (estimator.Sketch, estimator.Sketch, error) { var ( ss estimator.Sketch // Sketch estimating number of items. ts estimator.Sketch // Sketch estimating number of tombstoned items. ) s.mu.RLock() shards := s.filterShards(byDatabase(dbName)) s.mu.RUnlock() // Never return nil sketches. In the case that db exists but no data written // return empty sketches. if len(shards) == 0 { ss, ts = hll.NewDefaultPlus(), hll.NewDefaultPlus() } // Iterate over all shards for the database and combine all of the sketches. for _, shard := range shards { s, t, err := getSketches(shard) if err != nil { return nil, nil, err } if ss == nil { ss, ts = s, t } else if err = ss.Merge(s); err != nil { return nil, nil, err } else if err = ts.Merge(t); err != nil { return nil, nil, err } } return ss, ts, nil } // SeriesCardinality returns the exact series cardinality for the provided // database. // // Cardinality is calculated exactly by unioning all shards' bitsets of series // IDs. The result of this method cannot be combined with any other results. // func (s *Store) SeriesCardinality(database string) (int64, error) { s.mu.RLock() shards := s.filterShards(byDatabase(database)) s.mu.RUnlock() var setMu sync.Mutex others := make([]*SeriesIDSet, 0, len(shards)) s.walkShards(shards, func(sh *Shard) error { index, err := sh.Index() if err != nil { return err } if i, ok := index.(interface { SeriesIDSet() *SeriesIDSet }); ok { seriesIDs := i.SeriesIDSet() setMu.Lock() others = append(others, seriesIDs) setMu.Unlock() } else { return fmt.Errorf("unable to get series id set for index in shard at %s", sh.Path()) } return nil }) ss := NewSeriesIDSet() ss.Merge(others...) return int64(ss.Cardinality()), nil } // SeriesSketches returns the sketches associated with the series data in all // the shards in the provided database. // // The returned sketches can be combined with other sketches to provide an // estimation across distributed databases. func (s *Store) SeriesSketches(database string) (estimator.Sketch, estimator.Sketch, error) { return s.sketchesForDatabase(database, func(sh *Shard) (estimator.Sketch, estimator.Sketch, error) { if sh == nil { return nil, nil, errors.New("shard nil, can't get cardinality") } return sh.SeriesSketches() }) } // MeasurementsCardinality returns an estimation of the measurement cardinality // for the provided database. // // Cardinality is calculated using a sketch-based estimation. The result of this // method cannot be combined with any other results. func (s *Store) MeasurementsCardinality(database string) (int64, error) { ss, ts, err := s.sketchesForDatabase(database, func(sh *Shard) (estimator.Sketch, estimator.Sketch, error) { if sh == nil { return nil, nil, errors.New("shard nil, can't get cardinality") } return sh.MeasurementsSketches() }) if err != nil { return 0, err } return int64(ss.Count() - ts.Count()), nil } // MeasurementsSketches returns the sketches associated with the measurement // data in all the shards in the provided database. // // The returned sketches can be combined with other sketches to provide an // estimation across distributed databases. func (s *Store) MeasurementsSketches(database string) (estimator.Sketch, estimator.Sketch, error) { return s.sketchesForDatabase(database, func(sh *Shard) (estimator.Sketch, estimator.Sketch, error) { if sh == nil { return nil, nil, errors.New("shard nil, can't get cardinality") } return sh.MeasurementsSketches() }) } // BackupShard will get the shard and have the engine backup since the passed in // time to the writer. func (s *Store) BackupShard(id uint64, since time.Time, w io.Writer) error { shard := s.Shard(id) if shard == nil { return fmt.Errorf("shard %d doesn't exist on this server", id) } path, err := relativePath(s.path, shard.path) if err != nil { return err } return shard.Backup(w, path, since) } func (s *Store) ExportShard(id uint64, start time.Time, end time.Time, w io.Writer) error { shard := s.Shard(id) if shard == nil { return fmt.Errorf("shard %d doesn't exist on this server", id) } path, err := relativePath(s.path, shard.path) if err != nil { return err } return shard.Export(w, path, start, end) } // RestoreShard restores a backup from r to a given shard. // This will only overwrite files included in the backup. func (s *Store) RestoreShard(id uint64, r io.Reader) error { shard := s.Shard(id) if shard == nil { return fmt.Errorf("shard %d doesn't exist on this server", id) } path, err := relativePath(s.path, shard.path) if err != nil { return err } return shard.Restore(r, path) } // ImportShard imports the contents of r to a given shard. // All files in the backup are added as new files which may // cause duplicated data to occur requiring more expensive // compactions. func (s *Store) ImportShard(id uint64, r io.Reader) error { shard := s.Shard(id) if shard == nil { return fmt.Errorf("shard %d doesn't exist on this server", id) } path, err := relativePath(s.path, shard.path) if err != nil { return err } return shard.Import(r, path) } // ShardRelativePath will return the relative path to the shard, i.e., // //. func (s *Store) ShardRelativePath(id uint64) (string, error) { shard := s.Shard(id) if shard == nil { return "", fmt.Errorf("shard %d doesn't exist on this server", id) } return relativePath(s.path, shard.path) } // DeleteSeries loops through the local shards and deletes the series data for // the passed in series keys. func (s *Store) DeleteSeries(database string, sources []influxql.Source, condition influxql.Expr) error { // Expand regex expressions in the FROM clause. a, err := s.ExpandSources(sources) if err != nil { return err } else if len(sources) > 0 && len(a) == 0 { return nil } sources = a // Determine deletion time range. condition, timeRange, err := influxql.ConditionExpr(condition, nil) if err != nil { return err } var min, max int64 if !timeRange.Min.IsZero() { min = timeRange.Min.UnixNano() } else { min = influxql.MinTime } if !timeRange.Max.IsZero() { max = timeRange.Max.UnixNano() } else { max = influxql.MaxTime } s.mu.RLock() sfile := s.sfiles[database] if sfile == nil { s.mu.RUnlock() // No series file means nothing has been written to this DB and thus nothing to delete. return nil } shards := s.filterShards(byDatabase(database)) s.mu.RUnlock() // Limit to 1 delete for each shard since expanding the measurement into the list // of series keys can be very memory intensive if run concurrently. limit := limiter.NewFixed(1) return s.walkShards(shards, func(sh *Shard) error { // Determine list of measurements from sources. // Use all measurements if no FROM clause was provided. var names []string if len(sources) > 0 { for _, source := range sources { names = append(names, source.(*influxql.Measurement).Name) } } else { if err := sh.ForEachMeasurementName(func(name []byte) error { names = append(names, string(name)) return nil }); err != nil { return err } } sort.Strings(names) limit.Take() defer limit.Release() index, err := sh.Index() if err != nil { return err } indexSet := IndexSet{Indexes: []Index{index}, SeriesFile: sfile} // Find matching series keys for each measurement. for _, name := range names { itr, err := indexSet.MeasurementSeriesByExprIterator([]byte(name), condition) if err != nil { return err } else if itr == nil { continue } defer itr.Close() if err := sh.DeleteSeriesRange(NewSeriesIteratorAdapter(sfile, itr), min, max); err != nil { return err } } return nil }) } // ExpandSources expands sources against all local shards. func (s *Store) ExpandSources(sources influxql.Sources) (influxql.Sources, error) { shards := func() Shards { s.mu.RLock() defer s.mu.RUnlock() return Shards(s.shardsSlice()) }() return shards.ExpandSources(sources) } // WriteToShard writes a list of points to a shard identified by its ID. func (s *Store) WriteToShard(shardID uint64, points []models.Point) error { s.mu.RLock() select { case <-s.closing: s.mu.RUnlock() return ErrStoreClosed default: } sh := s.shards[shardID] if sh == nil { s.mu.RUnlock() return ErrShardNotFound } s.mu.RUnlock() // Ensure snapshot compactions are enabled since the shard might have been cold // and disabled by the monitor. if sh.IsIdle() { sh.SetCompactionsEnabled(true) } return sh.WritePoints(points) } // MeasurementNames returns a slice of all measurements. Measurements accepts an // optional condition expression. If cond is nil, then all measurements for the // database will be returned. func (s *Store) MeasurementNames(auth query.Authorizer, database string, cond influxql.Expr) ([][]byte, error) { s.mu.RLock() shards := s.filterShards(byDatabase(database)) s.mu.RUnlock() sfile := s.seriesFile(database) if sfile == nil { return nil, nil } // Build indexset. is := IndexSet{Indexes: make([]Index, 0, len(shards)), SeriesFile: sfile} for _, sh := range shards { index, err := sh.Index() if err != nil { return nil, err } is.Indexes = append(is.Indexes, index) } is = is.DedupeInmemIndexes() return is.MeasurementNamesByExpr(auth, cond) } // MeasurementSeriesCounts returns the number of measurements and series in all // the shards' indices. func (s *Store) MeasurementSeriesCounts(database string) (measuments int, series int) { // TODO: implement me return 0, 0 } type TagKeys struct { Measurement string Keys []string } type TagKeysSlice []TagKeys func (a TagKeysSlice) Len() int { return len(a) } func (a TagKeysSlice) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a TagKeysSlice) Less(i, j int) bool { return a[i].Measurement < a[j].Measurement } // TagKeys returns the tag keys in the given database, matching the condition. func (s *Store) TagKeys(auth query.Authorizer, shardIDs []uint64, cond influxql.Expr) ([]TagKeys, error) { if len(shardIDs) == 0 { return nil, nil } measurementExpr := influxql.CloneExpr(cond) measurementExpr = influxql.Reduce(influxql.RewriteExpr(measurementExpr, func(e influxql.Expr) influxql.Expr { switch e := e.(type) { case *influxql.BinaryExpr: switch e.Op { case influxql.EQ, influxql.NEQ, influxql.EQREGEX, influxql.NEQREGEX: tag, ok := e.LHS.(*influxql.VarRef) if !ok || tag.Val != "_name" { return nil } } } return e }), nil) filterExpr := influxql.CloneExpr(cond) filterExpr = influxql.Reduce(influxql.RewriteExpr(filterExpr, func(e influxql.Expr) influxql.Expr { switch e := e.(type) { case *influxql.BinaryExpr: switch e.Op { case influxql.EQ, influxql.NEQ, influxql.EQREGEX, influxql.NEQREGEX: tag, ok := e.LHS.(*influxql.VarRef) if !ok || strings.HasPrefix(tag.Val, "_") { return nil } } } return e }), nil) // Get all the shards we're interested in. is := IndexSet{Indexes: make([]Index, 0, len(shardIDs))} s.mu.RLock() for _, sid := range shardIDs { shard, ok := s.shards[sid] if !ok { continue } if is.SeriesFile == nil { is.SeriesFile = shard.sfile } is.Indexes = append(is.Indexes, shard.index) } s.mu.RUnlock() // Determine list of measurements. is = is.DedupeInmemIndexes() names, err := is.MeasurementNamesByExpr(nil, measurementExpr) if err != nil { return nil, err } // Iterate over each measurement. var results []TagKeys for _, name := range names { // Build keyset over all indexes for measurement. tagKeySet, err := is.MeasurementTagKeysByExpr(name, nil) if err != nil { return nil, err } else if len(tagKeySet) == 0 { continue } keys := make([]string, 0, len(tagKeySet)) // If no tag value filter is present then all the tag keys can be returned // If they have authorized series associated with them. if filterExpr == nil { for tagKey := range tagKeySet { ok, err := is.TagKeyHasAuthorizedSeries(auth, []byte(name), []byte(tagKey)) if err != nil { return nil, err } else if ok { keys = append(keys, tagKey) } } sort.Strings(keys) // Add to resultset. results = append(results, TagKeys{ Measurement: string(name), Keys: keys, }) continue } // Tag filter provided so filter keys first. // Sort the tag keys. for k := range tagKeySet { keys = append(keys, k) } sort.Strings(keys) // Filter against tag values, skip if no values exist. values, err := is.MeasurementTagKeyValuesByExpr(auth, name, keys, filterExpr, true) if err != nil { return nil, err } // Filter final tag keys using the matching values. If a key has one or // more matching values then it will be included in the final set. finalKeys := keys[:0] // Use same backing array as keys to save allocation. for i, k := range keys { if len(values[i]) > 0 { // Tag key k has one or more matching tag values. finalKeys = append(finalKeys, k) } } // Add to resultset. results = append(results, TagKeys{ Measurement: string(name), Keys: finalKeys, }) } return results, nil } type TagValues struct { Measurement string Values []KeyValue } type TagValuesSlice []TagValues func (a TagValuesSlice) Len() int { return len(a) } func (a TagValuesSlice) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a TagValuesSlice) Less(i, j int) bool { return a[i].Measurement < a[j].Measurement } // tagValues is a temporary representation of a TagValues. Rather than allocating // KeyValues as we build up a TagValues object, We hold off allocating KeyValues // until we have merged multiple tagValues together. type tagValues struct { name []byte keys []string values [][]string } // Is a slice of tagValues that can be sorted by measurement. type tagValuesSlice []tagValues func (a tagValuesSlice) Len() int { return len(a) } func (a tagValuesSlice) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a tagValuesSlice) Less(i, j int) bool { return bytes.Compare(a[i].name, a[j].name) == -1 } // TagValues returns the tag keys and values for the provided shards, where the // tag values satisfy the provided condition. func (s *Store) TagValues(auth query.Authorizer, shardIDs []uint64, cond influxql.Expr) ([]TagValues, error) { if cond == nil { return nil, errors.New("a condition is required") } measurementExpr := influxql.CloneExpr(cond) measurementExpr = influxql.Reduce(influxql.RewriteExpr(measurementExpr, func(e influxql.Expr) influxql.Expr { switch e := e.(type) { case *influxql.BinaryExpr: switch e.Op { case influxql.EQ, influxql.NEQ, influxql.EQREGEX, influxql.NEQREGEX: tag, ok := e.LHS.(*influxql.VarRef) if !ok || tag.Val != "_name" { return nil } } } return e }), nil) filterExpr := influxql.CloneExpr(cond) filterExpr = influxql.Reduce(influxql.RewriteExpr(filterExpr, func(e influxql.Expr) influxql.Expr { switch e := e.(type) { case *influxql.BinaryExpr: switch e.Op { case influxql.EQ, influxql.NEQ, influxql.EQREGEX, influxql.NEQREGEX: tag, ok := e.LHS.(*influxql.VarRef) if !ok || strings.HasPrefix(tag.Val, "_") { return nil } } } return e }), nil) // Build index set to work on. is := IndexSet{Indexes: make([]Index, 0, len(shardIDs))} s.mu.RLock() for _, sid := range shardIDs { shard, ok := s.shards[sid] if !ok { continue } if is.SeriesFile == nil { is.SeriesFile = shard.sfile } is.Indexes = append(is.Indexes, shard.index) } s.mu.RUnlock() is = is.DedupeInmemIndexes() // Stores each list of TagValues for each measurement. var allResults []tagValues var maxMeasurements int // Hint as to lower bound on number of measurements. // names will be sorted by MeasurementNamesByExpr. // Authorisation can be done later on, when series may have been filtered // out by other conditions. names, err := is.MeasurementNamesByExpr(nil, measurementExpr) if err != nil { return nil, err } if len(names) > maxMeasurements { maxMeasurements = len(names) } if allResults == nil { allResults = make([]tagValues, 0, len(is.Indexes)*len(names)) // Assuming all series in all shards. } // Iterate over each matching measurement in the shard. For each // measurement we'll get the matching tag keys (e.g., when a WITH KEYS) // statement is used, and we'll then use those to fetch all the relevant // values from matching series. Series may be filtered using a WHERE // filter. for _, name := range names { // Determine a list of keys from condition. keySet, err := is.MeasurementTagKeysByExpr(name, cond) if err != nil { return nil, err } if len(keySet) == 0 { // No matching tag keys for this measurement continue } result := tagValues{ name: name, keys: make([]string, 0, len(keySet)), } // Add the keys to the tagValues and sort them. for k := range keySet { result.keys = append(result.keys, k) } sort.Sort(sort.StringSlice(result.keys)) // get all the tag values for each key in the keyset. // Each slice in the results contains the sorted values associated // associated with each tag key for the measurement from the key set. if result.values, err = is.MeasurementTagKeyValuesByExpr(auth, name, result.keys, filterExpr, true); err != nil { return nil, err } // remove any tag keys that didn't have any authorized values j := 0 for i := range result.keys { if len(result.values[i]) == 0 { continue } result.keys[j] = result.keys[i] result.values[j] = result.values[i] j++ } result.keys = result.keys[:j] result.values = result.values[:j] // only include result if there are keys with values if len(result.keys) > 0 { allResults = append(allResults, result) } } result := make([]TagValues, 0, maxMeasurements) // We need to sort all results by measurement name. if len(is.Indexes) > 1 { sort.Sort(tagValuesSlice(allResults)) } // The next stage is to merge the tagValue results for each shard's measurements. var i, j int // Used as a temporary buffer in mergeTagValues. There can be at most len(shards) // instances of tagValues for a given measurement. idxBuf := make([][2]int, 0, len(is.Indexes)) for i < len(allResults) { // Gather all occurrences of the same measurement for merging. for j+1 < len(allResults) && bytes.Equal(allResults[j+1].name, allResults[i].name) { j++ } // An invariant is that there can't be more than n instances of tag // key value pairs for a given measurement, where n is the number of // shards. if got, exp := j-i+1, len(is.Indexes); got > exp { return nil, fmt.Errorf("unexpected results returned engine. Got %d measurement sets for %d shards", got, exp) } nextResult := mergeTagValues(idxBuf, allResults[i:j+1]...) i = j + 1 if len(nextResult.Values) > 0 { result = append(result, nextResult) } } return result, nil } // mergeTagValues merges multiple sorted sets of temporary tagValues using a // direct k-way merge whilst also removing duplicated entries. The result is a // single TagValue type. // // TODO(edd): a Tournament based merge (see: Knuth's TAOCP 5.4.1) might be more // appropriate at some point. // func mergeTagValues(valueIdxs [][2]int, tvs ...tagValues) TagValues { var result TagValues if len(tvs) == 0 { return TagValues{} } else if len(tvs) == 1 { result.Measurement = string(tvs[0].name) // TODO(edd): will be too small likely. Find a hint? result.Values = make([]KeyValue, 0, len(tvs[0].values)) for ki, key := range tvs[0].keys { for _, value := range tvs[0].values[ki] { result.Values = append(result.Values, KeyValue{Key: key, Value: value}) } } return result } result.Measurement = string(tvs[0].name) var maxSize int for _, tv := range tvs { if len(tv.values) > maxSize { maxSize = len(tv.values) } } result.Values = make([]KeyValue, 0, maxSize) // This will likely be too small but it's a start. // Resize and reset to the number of TagValues we're merging. valueIdxs = valueIdxs[:len(tvs)] for i := 0; i < len(valueIdxs); i++ { valueIdxs[i][0], valueIdxs[i][1] = 0, 0 } var ( j int keyCmp, valCmp int ) for { // Which of the provided TagValue sets currently holds the smallest element. // j is the candidate we're going to next pick for the result set. j = -1 // Find the smallest element for i := 0; i < len(tvs); i++ { if valueIdxs[i][0] >= len(tvs[i].keys) { continue // We have completely drained all tag keys and values for this shard. } else if len(tvs[i].values[valueIdxs[i][0]]) == 0 { // There are no tag values for these keys. valueIdxs[i][0]++ valueIdxs[i][1] = 0 continue } else if j == -1 { // We haven't picked a best TagValues set yet. Pick this one. j = i continue } // It this tag key is lower than the candidate's tag key keyCmp = strings.Compare(tvs[i].keys[valueIdxs[i][0]], tvs[j].keys[valueIdxs[j][0]]) if keyCmp == -1 { j = i } else if keyCmp == 0 { valCmp = strings.Compare(tvs[i].values[valueIdxs[i][0]][valueIdxs[i][1]], tvs[j].values[valueIdxs[j][0]][valueIdxs[j][1]]) // Same tag key but this tag value is lower than the candidate. if valCmp == -1 { j = i } else if valCmp == 0 { // Duplicate tag key/value pair.... Remove and move onto // the next value for shard i. valueIdxs[i][1]++ if valueIdxs[i][1] >= len(tvs[i].values[valueIdxs[i][0]]) { // Drained all these tag values, move onto next key. valueIdxs[i][0]++ valueIdxs[i][1] = 0 } } } } // We could have drained all of the TagValue sets and be done... if j == -1 { break } // Append the smallest KeyValue result.Values = append(result.Values, KeyValue{ Key: string(tvs[j].keys[valueIdxs[j][0]]), Value: tvs[j].values[valueIdxs[j][0]][valueIdxs[j][1]], }) // Increment the indexes for the chosen TagValue. valueIdxs[j][1]++ if valueIdxs[j][1] >= len(tvs[j].values[valueIdxs[j][0]]) { // Drained all these tag values, move onto next key. valueIdxs[j][0]++ valueIdxs[j][1] = 0 } } return result } func (s *Store) monitorShards() { defer s.wg.Done() t := time.NewTicker(10 * time.Second) defer t.Stop() t2 := time.NewTicker(time.Minute) defer t2.Stop() for { select { case <-s.closing: return case <-t.C: s.mu.RLock() for _, sh := range s.shards { if sh.IsIdle() { if err := sh.Free(); err != nil { s.Logger.Warn("Error while freeing cold shard resources", zap.Error(err)) } } else { sh.SetCompactionsEnabled(true) } } s.mu.RUnlock() case <-t2.C: if s.EngineOptions.Config.MaxValuesPerTag == 0 { continue } s.mu.RLock() shards := s.filterShards(func(sh *Shard) bool { return sh.IndexType() == "inmem" }) s.mu.RUnlock() // No inmem shards... if len(shards) == 0 { continue } var dbLock sync.Mutex databases := make(map[string]struct{}, len(shards)) s.walkShards(shards, func(sh *Shard) error { db := sh.database // Only process 1 shard from each database dbLock.Lock() if _, ok := databases[db]; ok { dbLock.Unlock() return nil } databases[db] = struct{}{} dbLock.Unlock() sfile := s.seriesFile(sh.database) if sfile == nil { return nil } firstShardIndex, err := sh.Index() if err != nil { return err } index, err := sh.Index() if err != nil { return err } // inmem shards share the same index instance so just use the first one to avoid // allocating the same measurements repeatedly indexSet := IndexSet{Indexes: []Index{firstShardIndex}, SeriesFile: sfile} names, err := indexSet.MeasurementNamesByExpr(nil, nil) if err != nil { s.Logger.Warn("Cannot retrieve measurement names", zap.Error(err)) return nil } indexSet.Indexes = []Index{index} for _, name := range names { indexSet.ForEachMeasurementTagKey(name, func(k []byte) error { n := sh.TagKeyCardinality(name, k) perc := int(float64(n) / float64(s.EngineOptions.Config.MaxValuesPerTag) * 100) if perc > 100 { perc = 100 } // Log at 80, 85, 90-100% levels if perc == 80 || perc == 85 || perc >= 90 { s.Logger.Warn("max-values-per-tag limit may be exceeded soon", zap.String("perc", fmt.Sprintf("%d%%", perc)), zap.Int("n", n), zap.Int("max", s.EngineOptions.Config.MaxValuesPerTag), logger.Database(db), zap.ByteString("measurement", name), zap.ByteString("tag", k)) } return nil }) } return nil }) } } } // KeyValue holds a string key and a string value. type KeyValue struct { Key, Value string } // KeyValues is a sortable slice of KeyValue. type KeyValues []KeyValue // Len implements sort.Interface. func (a KeyValues) Len() int { return len(a) } // Swap implements sort.Interface. func (a KeyValues) Swap(i, j int) { a[i], a[j] = a[j], a[i] } // Less implements sort.Interface. Keys are compared before values. func (a KeyValues) Less(i, j int) bool { ki, kj := a[i].Key, a[j].Key if ki == kj { return a[i].Value < a[j].Value } return ki < kj } // decodeStorePath extracts the database and retention policy names // from a given shard or WAL path. func decodeStorePath(shardOrWALPath string) (database, retentionPolicy string) { // shardOrWALPath format: /maybe/absolute/base/then/:database/:retentionPolicy/:nameOfShardOrWAL // Discard the last part of the path (the shard name or the wal name). path, _ := filepath.Split(filepath.Clean(shardOrWALPath)) // Extract the database and retention policy. path, rp := filepath.Split(filepath.Clean(path)) _, db := filepath.Split(filepath.Clean(path)) return db, rp } // relativePath will expand out the full paths passed in and return // the relative shard path from the store func relativePath(storePath, shardPath string) (string, error) { path, err := filepath.Abs(storePath) if err != nil { return "", fmt.Errorf("store abs path: %s", err) } fp, err := filepath.Abs(shardPath) if err != nil { return "", fmt.Errorf("file abs path: %s", err) } name, err := filepath.Rel(path, fp) if err != nil { return "", fmt.Errorf("file rel path: %s", err) } return name, nil } type shardSet struct { store *Store db string } func (s shardSet) ForEach(f func(ids *SeriesIDSet)) error { s.store.mu.RLock() shards := s.store.filterShards(byDatabase(s.db)) s.store.mu.RUnlock() for _, sh := range shards { idx, err := sh.Index() if err != nil { return err } if t, ok := idx.(interface { SeriesIDSet() *SeriesIDSet }); ok { f(t.SeriesIDSet()) } } return nil }