A slower disk can can cause excessive allocations to occur when
writing to the WAL because the slower encoding and compression occurs
before taking the write lock. The encoding/compression grabs a large
byte slice from a pool and ultimately waits until it can acquire the
write lock.
This adds a throttle to limit how many inflight WAL writes can be queued
up to prevent OOMing the processess with slower disks and heavy writes.
If a delete is issued while a compaction is running, the a newly
deleted series could re-appear after the compaction completed. This
could occur the compaction had already written the blocks for series
that were just deleted. When the compaction completes, the newly
written tombstone files would be deleted, essentially undeleting the
series.
Due to a bug in compactions, it's possible some blocks may have duplicate
points stored. If those blocks are decoded and re-compacted, an assertion
panic could trigger.
We now dedup those blocks if necessary to remove the duplicate points
and avoid the panic.
For larger datasets, it's possible for shards to get into a state where
many large, dense TSM files exist. While the shard is still hot for
writes, full compactions will skip these files since they are already
fairly optimized and full compactions are expensive. If the write volume
is large enough, the shard can accumulate lots of these files. When
a file is in this state, it's index can contain every series which
causes startup times to increase since each file must parse the full
set of series keys for every file. If the number of series is high,
the index can be quite large causing large amount of disk IO at startup.
To fix this, a optmize compaction is run when a full compaction planning
step decides there is nothing to do. The optimize compaction combines
and spreads the data and series keys across all files resulting in each
file containing the full series data for that shard and a subset of the
total set of keys in the shard.
This allows a shard to only store a series key once in the shard reducing
storage size as well allows a shard to only load each key once at startup.
Large files created early in the leveled compactions could cause
a shard to get into a bad state. This reworks the level planner
to handle those cases as well as splits large compactions up into
multiple groups to leverage more CPUs when possible.
Truncate the time interval output of the monitor service to be on even
time intervals rather than on every minute based on the start time. This
normalizes the output from the monitor service.
If there were blocks in later TSM files that were for overwritten
points or writes into the past, they could be returned more than
once or out of order causing the cursor values to be unsorted.
One effect of this is that graphs in graphana would render with
the line going all over the place in spots.
This might also cause duplicate data to be returned.
Fixes#6738
The tsdb package had a substantial amount of dead code related to the
old query engine still in there. It is no longer used, so it was removed
since it was left unmaintained. There is likely still more code that is
the same, but wasn't found as part of this code cleanup.
influxql has dead code show up because of the code generation so it is
not included in this pruning.
A copy/paste error had nil cursors destined for a condition cursor get
set to the auxiliary cursor instead. When the number of conditions
exceeded the number of auxiliary fields, this would result in a stack
trace in some situations. When the number of conditions was less than or
equal to the number of auxiliary fields, it means that an auxiliary
cursor may have been overwritten with a nil cursor accidentally and a
leak might have happened since it was never closed.
Fixes#6859.
Restore would try to open the shard if there was an error. If there
was an error, the files written are very likely to be partially written
and they can cause the server to panic.
To prevent a shard from trying to open broken files, we now write to
a temp file and rename it to the actual name only after fully writing
and fsyncing the file.
If cache.Deduplicate is called while writes are in-flight on the cache, a data race
could occur.
WARNING: DATA RACE
Write by goroutine 15:
runtime.mapassign1()
/usr/local/go/src/runtime/hashmap.go:429 +0x0
github.com/influxdata/influxdb/tsdb/engine/tsm1.(*Cache).entry()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/cache.go:482 +0x27e
github.com/influxdata/influxdb/tsdb/engine/tsm1.(*Cache).WriteMulti()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/cache.go:207 +0x3b2
github.com/influxdata/influxdb/tsdb/engine/tsm1.TestCache_Deduplicate_Concurrent.func1()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/cache_test.go:421 +0x73
Previous read by goroutine 16:
runtime.mapiterinit()
/usr/local/go/src/runtime/hashmap.go:607 +0x0
github.com/influxdata/influxdb/tsdb/engine/tsm1.(*Cache).Deduplicate()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/cache.go:272 +0x7c
github.com/influxdata/influxdb/tsdb/engine/tsm1.TestCache_Deduplicate_Concurrent.func2()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/cache_test.go:429 +0x69
Goroutine 15 (running) created at:
github.com/influxdata/influxdb/tsdb/engine/tsm1.TestCache_Deduplicate_Concurrent()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/cache_test.go:423 +0x3f2
testing.tRunner()
/usr/local/go/src/testing/testing.go:473 +0xdc
Goroutine 16 (finished) created at:
github.com/influxdata/influxdb/tsdb/engine/tsm1.TestCache_Deduplicate_Concurrent()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/cache_test.go:431 +0x43b
testing.tRunner()
/usr/local/go/src/testing/testing.go:473 +0xdc
For restoring a shard, we need to be able to have the shard open,
but disabled. It was racy to open it and then disable it separately
since writes/queries could occur in between that time.
This switch the backup shard call to use the shard Snapshot that
internally creates a snapshot by hardlinking all of the TSM and
tombstone files instead. This reduces the time that the FileStore
is locked and will allow for larger shards to be backup more easily.
The level planner would keep including the same TSM files to be
recompacted even if they were already quite compacted and split
across several TSM files.
Fixes#6683
This fixes a pathalogical query condition cause by and problematic
structuring of TSM files based on how points were written. The
condition can occur when there are multiple TSM files and a large
number of points are written into the past. The earlier existing
TSM files must also have points in the past and close to the present
causing their time range to eclipse the later files.
When this condition occurs, some queries can spend an excessive amount
of time merge all the overlapping blocks.
The fix was to constrain the window of overlapping blocks based on
the first one we ran into. There was also a simple case in the Merge
where we could skip the binary search path and just append the two
inputs.
os.Open is documented as:
> Open opens the named file for reading. If successful, methods on
> the returned file can be used for reading;
That suggests the file's methods should only be called if opening
was successful. The original code would defer f.Close() right after
os.Open, before ensuring that err is nil, so f.Close() would run
even if os.Open did not return successfully.
Apply https://github.com/golang/go/wiki/CodeReviewComments#indent-error-flow
suggestion to keep the normal path at minimal indentation, and indent
the error handling code instead. This improves code readability.
The limit optimization was put into the wrong place and caused only part
of the shard to be read when a limit was used. The optimization is
possible, but requires a bit of refactoring to the code here so the call
iterator is created per series before handed to the limit iterator.
Fixes#6661.
Due to an bug in TSM tombstone files, it was possible to create
empty tombstone files. At startup, the TSM file would error out
and not load the TSM file.
Instead, treat it as an empty v1 file so the TSM file can load
correctly.
Fixes#6641
If there were duplicate points in multiple blocks, we would correctly
dedup the points and mark the regions of the blocks we've read.
Unfortunately, we were not excluding the already points as the cursor
moved to points in the later blocks which could cause points to be
return twice incorrectly.
Fixes#6611