If a query was running against a file being compacted, we close the file
and the query would end wherever it had read up to. This could result
in queries that randomly lost data, but running them again showed the
full results.
We now use a reference counting approach and move the in-use files out
of the way in the filestore and allow the queries to complete against
the old tsm files. The new files are installed and new queries will
use them.
Fixes#5501
There are two TSMIndex implementations, the directIndex and the
indirectIndex. Originally, we only had the directIndex and later
added the indirectIndex and NewTSMReaderWithOptions in order to
allow both indexes to be used in tests and code. This has created
a problem since we really only use the directIndex for writing and
always use the indirectIndex for reading.
This changes removes the NewTSMReaderWithOptions func so that it is
no longer possible to create a TSMReader with a directIndex. This
will allow a lot of the block reading code used by the directIndex
to be removed and simplify maintainence. It also gives better test
coverage of the code that is actually used by the TSM engine now.
Some data shapes would cause files to grow larger than the max size more
quickly which resulted in them getting skipped by the full compaction planner
at times. Some datasets that could make this happen are very large keys or
very large numbers of keys (10M). When this happened, multiple max sized
files would accumulate but the blocks would not be full. When the shard went
cold for writes, these files would get recompacted down to the optimal size, but
a lot of space would be wasted in the mean time.
The block count was an uint16 when incrementing the index location
which was an int32. This caused the value the uint16 value to overflow
before the index location was incremented causing the wrong location
to be read on the next iteration of the loop. This triggers the slice
out of range errors.
Added a test that recreates the panic seen in #5257 and possibly #5202 which
is older code.
Fixes#5257
This has a few changes in it (unfortuantely). The main change is to run compactions
concurrently. While implementing this, a few query and performance bugs showed up that
are also fixed by this commit.