It looks like the real import path to the project is go.uber.org/zap
instead of github.com/uber-go/zap since the example in the project
references that path.
The logging library has been switched to use uber-go/zap. While the
logging has been changed to use structured logging, this commit does not
change any of the logging statements to take advantage of the new
structured log or new log levels. Those changes will come in future
commits.
This returns the LastModified time of the shard. The LastModified
time is the wall time when a change to the shards state occurred.
It uses the WAL or FileStore to determine the max mod time.
The file store stats slice is re-used which causes the race below:
WARNING: DATA RACE
Write at 0x00c42007e140 by goroutine 43:
github.com/influxdata/influxdb/tsdb/engine/tsm1.(*FileStore).Stats()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/file_store.go:511 +0x22e
github.com/influxdata/influxdb/tsdb/engine/tsm1.(*DefaultPlanner).findGenerations()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/compact.go:461 +0x6f
github.com/influxdata/influxdb/tsdb/engine/tsm1.(*DefaultPlanner).PlanLevel()
Previous read at 0x00c42007e140 by goroutine 40:
github.com/influxdata/influxdb/tsdb/engine/tsm1.(*DefaultPlanner).findGenerations()
/Users/jason/go/src/github.com/influxdata/influxdb/tsdb/engine/tsm1/compact.go:463 +0x13d
github.com/influxdata/influxdb/tsdb/engine/tsm1.(*DefaultPlanner).PlanOptimize()
If a delete takes a long time to process while writes to the
shard are occuring, it was possible for the cache to fill up
and writes to be rejected. This occurred because we disabled
all compactions while writing tombstone file to prevent deleted
data from re-appearing after a compaction completed.
Instead, we only disable the level compactions and allow snapshot
compactions to continue. Snapshots already handle deleted data
with the cache and wal.
Fixes#7161
The decoders were held onto each iterator to avoid creating them all
the time. Some of them have use quite a bit of memory so they can
be expensive to create when querying across many series.
Intead, more them to a re-usable pool where we create the minimum that
could active be in use. This reduces garbage as well as makes the iterators
less expensive to create.
Negative timestamps are now supported. We also now refuse two
nanoseconds that are at the edge of the minimum time window. One of the
nanoseconds we do not accept is because we need MinInt64 to be used for
some internal comparisons in the TSM engine and it was causing an
underflow when we subtracted one from the minimum time. The second is so
we can have one minimum time that signifies the default minimum that
nobody can write to (so we can implicitly rewrite the timestamp on
aggregate queries) but still use the explicit timestamp if it is given
to us by the user. We aren't able to tell the difference between if the
user provided it or if it was implicit without those values being
different.
If the default minimum time is used with an aggregate query, we rewrite
the time to be the epoch for backwards compatibility since we believe
that's more important than supporting that extra nanosecond.
The path info only contained the file name which caused tombstone
files to not be removed if there were queries running against
a file that was compacted.
This is now consistent with the TSMReader.Path which returns the
full path info.
If a query was running against a file being compacted, we close the file
and the query would end wherever it had read up to. This could result
in queries that randomly lost data, but running them again showed the
full results.
We now use a reference counting approach and move the in-use files out
of the way in the filestore and allow the queries to complete against
the old tsm files. The new files are installed and new queries will
use them.
Fixes#5501
Truncate the time interval output of the monitor service to be on even
time intervals rather than on every minute based on the start time. This
normalizes the output from the monitor service.
If there were blocks in later TSM files that were for overwritten
points or writes into the past, they could be returned more than
once or out of order causing the cursor values to be unsorted.
One effect of this is that graphs in graphana would render with
the line going all over the place in spots.
This might also cause duplicate data to be returned.
Fixes#6738
For restoring a shard, we need to be able to have the shard open,
but disabled. It was racy to open it and then disable it separately
since writes/queries could occur in between that time.
This fixes a pathalogical query condition cause by and problematic
structuring of TSM files based on how points were written. The
condition can occur when there are multiple TSM files and a large
number of points are written into the past. The earlier existing
TSM files must also have points in the past and close to the present
causing their time range to eclipse the later files.
When this condition occurs, some queries can spend an excessive amount
of time merge all the overlapping blocks.
The fix was to constrain the window of overlapping blocks based on
the first one we ran into. There was also a simple case in the Merge
where we could skip the binary search path and just append the two
inputs.
If there were duplicate points in multiple blocks, we would correctly
dedup the points and mark the regions of the blocks we've read.
Unfortunately, we were not excluding the already points as the cursor
moved to points in the later blocks which could cause points to be
return twice incorrectly.
Fixes#6611
If a large series contains a point that is overwritten, the compactor
would load the whole series into RAM during a full compaction. If
the series was large, it could cause very large RAM spikes and OOMs.
The change reworks the compactor to merge blocks more incrementally
similar to the fix done in #6556.
In some query scenarios, if there are a lot of points on disk spread
across many blocks in TSM files and a point is overwritten near the
begginning of the shard's timerange, the full series could be loaded
into RAM triggering OOMs and huge allocations.
The issue was that the KeyCursor code that handles overwriting points
had a simple implementation that just deduped the whole series in this
case. This falls over when the series is quite large.
Instead, the KeyCursor has been changed to only decode blocks with
updated points. It then keeps track of what section of the blocks
have been read so they are not re-read when the later points are
decoded.
Since the points in a block are always sorted, the code was also changed
to remove the Deduplicate calls since they end up
reallocating the slice. Instead, we do a sorted merge and re-use
the slice as much as we can.
There are two TSMIndex implementations, the directIndex and the
indirectIndex. Originally, we only had the directIndex and later
added the indirectIndex and NewTSMReaderWithOptions in order to
allow both indexes to be used in tests and code. This has created
a problem since we really only use the directIndex for writing and
always use the indirectIndex for reading.
This changes removes the NewTSMReaderWithOptions func so that it is
no longer possible to create a TSMReader with a directIndex. This
will allow a lot of the block reading code used by the directIndex
to be removed and simplify maintainence. It also gives better test
coverage of the code that is actually used by the TSM engine now.
This has various benefits:
- Users embedding InfluxDB within other Go programs can specify a different logger / prefix easily.
- More consistent with code used elsewhere in InfluxDB (e.g. services, other `run.Server.*` fields, etc).
- This is also more efficient, because it means `executeQuery` no longer allocates a single `*log.Logger` each time it is called.
This commit makes a number of performance improvements to
reduce allocations during query execution. Several objects
and buffers are now reused across the components to avoid
allocations.
Previously a simple `count(value)` query across 1M points
would require 26,000+ allocations. After the changes in
this commit that number has been reduced to 88.
... by extracting the db/rp from the given path.
Now that the code has "standardized" on extracting db/rp this way, the
ShardLocation struct is no longer necessary and thus has been removed.
We're back on the previous style of passing the path and walPath to
NewShard.