Integer blocks that were run length encoded could produce the wrong
value when read back out because the deltas were not zig zag decoded
before scaling the final value. If the deltas were negative, as would
be seen in a counter that decrements by a constant value, the results
would be random with som negative and positive values.
Fixes#7391
This allows encoders to be re-used and maintained in a pool to
avoid allocating new ones on every compactions and write of an encoded
block. The pool used is not a sync.Pool to ensure that the encoders
will not be garbage collected.
This commit makes a number of performance improvements to
reduce allocations during query execution. Several objects
and buffers are now reused across the components to avoid
allocations.
Previously a simple `count(value)` query across 1M points
would require 26,000+ allocations. After the changes in
this commit that number has been reduced to 88.
The current go compiler at the tip of the go master (1d5001af) has a modified implementation of
testing.quick.Check that now generates nil slices as test data. (See: https://gophers.slack.com/archives/general/p14567053570110). The existing tests expect round tripping to work in this case
but it does not. So, in these cases we change the expectation to reflect actual behaviour.
This needs to be checked for reasonableness.
This will help large integer counters type fields that increment by
small amounts over time. Instead of storing the larger raw value
in a compressed format, we store the difference from the prior value
in compressed format which allows the value to be stored using
fewer bits.